llvm-project/llvm/lib/CodeGen/LiveRangeCalc.cpp

505 lines
18 KiB
C++

//===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the LiveRangeCalc class.
//
//===----------------------------------------------------------------------===//
#include "LiveRangeCalc.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "regalloc"
void LiveRangeCalc::reset(const MachineFunction *mf,
SlotIndexes *SI,
MachineDominatorTree *MDT,
VNInfo::Allocator *VNIA) {
MF = mf;
MRI = &MF->getRegInfo();
Indexes = SI;
DomTree = MDT;
Alloc = VNIA;
MainLiveOutData.reset(MF->getNumBlockIDs());
LiveIn.clear();
}
static SlotIndex getDefIndex(const SlotIndexes &Indexes, const MachineInstr &MI,
bool EarlyClobber) {
// PHI defs begin at the basic block start index.
if (MI.isPHI())
return Indexes.getMBBStartIdx(MI.getParent());
// Instructions are either normal 'r', or early clobber 'e'.
return Indexes.getInstructionIndex(&MI).getRegSlot(EarlyClobber);
}
void LiveRangeCalc::createDeadDefs(LiveInterval &LI) {
assert(MRI && Indexes && "call reset() first");
// Visit all def operands. If the same instruction has multiple defs of Reg,
// LR.createDeadDef() will deduplicate.
const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
unsigned Reg = LI.reg;
for (const MachineOperand &MO : MRI->def_operands(Reg)) {
const MachineInstr *MI = MO.getParent();
SlotIndex Idx = getDefIndex(*Indexes, *MI, MO.isEarlyClobber());
unsigned SubReg = MO.getSubReg();
if (LI.hasSubRanges() || (SubReg != 0 && MRI->tracksSubRegLiveness())) {
unsigned Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
: MRI->getMaxLaneMaskForVReg(Reg);
// If this is the first time we see a subregister def, initialize
// subranges by creating a copy of the main range.
if (!LI.hasSubRanges() && !LI.empty()) {
unsigned ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
LI.createSubRangeFrom(*Alloc, ClassMask, LI);
}
for (LiveInterval::subrange_iterator S = LI.subrange_begin(),
SE = LI.subrange_end(); S != SE; ++S) {
// A Mask for subregs common to the existing subrange and current def.
unsigned Common = S->LaneMask & Mask;
if (Common == 0)
continue;
// A Mask for subregs covered by the subrange but not the current def.
unsigned LRest = S->LaneMask & ~Mask;
LiveInterval::SubRange *CommonRange;
if (LRest != 0) {
// Split current subrange into Common and LRest ranges.
S->LaneMask = LRest;
CommonRange = LI.createSubRangeFrom(*Alloc, Common, *S);
} else {
assert(Common == S->LaneMask);
CommonRange = &*S;
}
CommonRange->createDeadDef(Idx, *Alloc);
Mask &= ~Common;
}
if (Mask != 0) {
LiveInterval::SubRange *SubRange = LI.createSubRange(*Alloc, Mask);
SubRange->createDeadDef(Idx, *Alloc);
}
}
// Create the def in LR. This may find an existing def.
LI.createDeadDef(Idx, *Alloc);
}
}
void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
assert(MRI && Indexes && "call reset() first");
// Visit all def operands. If the same instruction has multiple defs of Reg,
// LR.createDeadDef() will deduplicate.
for (MachineOperand &MO : MRI->def_operands(Reg)) {
const MachineInstr *MI = MO.getParent();
SlotIndex Idx = getDefIndex(*Indexes, *MI, MO.isEarlyClobber());
// Create the def in LR. This may find an existing def.
LR.createDeadDef(Idx, *Alloc);
}
}
static SlotIndex getUseIndex(const SlotIndexes &Indexes,
const MachineOperand &MO) {
const MachineInstr *MI = MO.getParent();
unsigned OpNo = (&MO - &MI->getOperand(0));
if (MI->isPHI()) {
assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
// The actual place where a phi operand is used is the end of the pred MBB.
// PHI operands are paired: (Reg, PredMBB).
return Indexes.getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
}
// Check for early-clobber redefs.
bool isEarlyClobber = false;
unsigned DefIdx;
if (MO.isDef()) {
isEarlyClobber = MO.isEarlyClobber();
} else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
// FIXME: This would be a lot easier if tied early-clobber uses also
// had an early-clobber flag.
isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
}
return Indexes.getInstructionIndex(MI).getRegSlot(isEarlyClobber);
}
void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg) {
assert(MRI && Indexes && "call reset() first");
// Visit all operands that read Reg. This may include partial defs.
for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
// Clear all kill flags. They will be reinserted after register allocation
// by LiveIntervalAnalysis::addKillFlags().
if (MO.isUse())
MO.setIsKill(false);
if (!MO.readsReg())
continue;
// MI is reading Reg. We may have visited MI before if it happens to be
// reading Reg multiple times. That is OK, extend() is idempotent.
SlotIndex Idx = getUseIndex(*Indexes, MO);
extend(LR, Idx, Reg, MainLiveOutData);
}
}
void LiveRangeCalc::extendToUses(LiveInterval &LI) {
assert(MRI && Indexes && "call reset() first");
const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
SmallVector<LiveOutData,2> LiveOuts;
unsigned NumSubRanges = 0;
for (LiveInterval::subrange_iterator S = LI.subrange_begin(),
SE = LI.subrange_end(); S != SE; ++S, ++NumSubRanges) {
LiveOuts.push_back(LiveOutData());
LiveOuts.back().reset(MF->getNumBlockIDs());
}
// Visit all operands that read Reg. This may include partial defs.
unsigned Reg = LI.reg;
for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
// Clear all kill flags. They will be reinserted after register allocation
// by LiveIntervalAnalysis::addKillFlags().
if (MO.isUse())
MO.setIsKill(false);
if (!MO.readsReg())
continue;
SlotIndex Idx = getUseIndex(*Indexes, MO);
unsigned SubReg = MO.getSubReg();
if (MO.isUse() && (LI.hasSubRanges() ||
(MRI->tracksSubRegLiveness() && SubReg != 0))) {
unsigned Mask = SubReg != 0
? TRI.getSubRegIndexLaneMask(SubReg)
: MRI->getMaxLaneMaskForVReg(Reg);
// If this is the first time we see a subregister def/use. Initialize
// subranges by creating a copy of the main range.
if (!LI.hasSubRanges()) {
unsigned ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
LI.createSubRangeFrom(*Alloc, ClassMask, LI);
LiveOuts.insert(LiveOuts.begin(), LiveOutData());
LiveOuts.front().reset(MF->getNumBlockIDs());
++NumSubRanges;
}
unsigned SubRangeIdx = 0;
for (LiveInterval::subrange_iterator S = LI.subrange_begin(),
SE = LI.subrange_end(); S != SE; ++S, ++SubRangeIdx) {
// A Mask for subregs common to the existing subrange and current def.
unsigned Common = S->LaneMask & Mask;
if (Common == 0)
continue;
// A Mask for subregs covered by the subrange but not the current def.
unsigned LRest = S->LaneMask & ~Mask;
LiveInterval::SubRange *CommonRange;
unsigned CommonRangeIdx;
if (LRest != 0) {
// Split current subrange into Common and LRest ranges.
S->LaneMask = LRest;
CommonRange = LI.createSubRangeFrom(*Alloc, Common, *S);
CommonRangeIdx = 0;
LiveOuts.insert(LiveOuts.begin(), LiveOutData());
LiveOuts.front().reset(MF->getNumBlockIDs());
++NumSubRanges;
++SubRangeIdx;
} else {
// The subrange and current def lanemasks match completely.
assert(Common == S->LaneMask);
CommonRange = &*S;
CommonRangeIdx = SubRangeIdx;
}
extend(*CommonRange, Idx, Reg, LiveOuts[CommonRangeIdx]);
Mask &= ~Common;
}
assert(SubRangeIdx == NumSubRanges);
}
extend(LI, Idx, Reg, MainLiveOutData);
}
}
void LiveRangeCalc::updateFromLiveIns(LiveOutData &LiveOuts) {
LiveRangeUpdater Updater;
for (SmallVectorImpl<LiveInBlock>::iterator I = LiveIn.begin(),
E = LiveIn.end(); I != E; ++I) {
if (!I->DomNode)
continue;
MachineBasicBlock *MBB = I->DomNode->getBlock();
assert(I->Value && "No live-in value found");
SlotIndex Start, End;
std::tie(Start, End) = Indexes->getMBBRange(MBB);
if (I->Kill.isValid())
// Value is killed inside this block.
End = I->Kill;
else {
// The value is live-through, update LiveOut as well.
// Defer the Domtree lookup until it is needed.
assert(LiveOuts.Seen.test(MBB->getNumber()));
LiveOuts.Map[MBB] = LiveOutPair(I->Value, nullptr);
}
Updater.setDest(&I->LR);
Updater.add(Start, End, I->Value);
}
LiveIn.clear();
}
void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg,
LiveOutData &LiveOuts) {
assert(Kill.isValid() && "Invalid SlotIndex");
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill.getPrevSlot());
assert(KillMBB && "No MBB at Kill");
// Is there a def in the same MBB we can extend?
if (LR.extendInBlock(Indexes->getMBBStartIdx(KillMBB), Kill))
return;
// Find the single reaching def, or determine if Kill is jointly dominated by
// multiple values, and we may need to create even more phi-defs to preserve
// VNInfo SSA form. Perform a search for all predecessor blocks where we
// know the dominating VNInfo.
if (findReachingDefs(LR, *KillMBB, Kill, PhysReg, LiveOuts))
return;
// When there were multiple different values, we may need new PHIs.
calculateValues(LiveOuts);
}
// This function is called by a client after using the low-level API to add
// live-out and live-in blocks. The unique value optimization is not
// available, SplitEditor::transferValues handles that case directly anyway.
void LiveRangeCalc::calculateValues(LiveOutData &LiveOuts) {
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
updateSSA(LiveOuts);
updateFromLiveIns(LiveOuts);
}
bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
SlotIndex Kill, unsigned PhysReg,
LiveOutData &LiveOuts) {
unsigned KillMBBNum = KillMBB.getNumber();
// Block numbers where LR should be live-in.
SmallVector<unsigned, 16> WorkList(1, KillMBBNum);
// Remember if we have seen more than one value.
bool UniqueVNI = true;
VNInfo *TheVNI = nullptr;
// Using Seen as a visited set, perform a BFS for all reaching defs.
for (unsigned i = 0; i != WorkList.size(); ++i) {
MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);
#ifndef NDEBUG
if (MBB->pred_empty()) {
MBB->getParent()->verify();
llvm_unreachable("Use not jointly dominated by defs.");
}
if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
!MBB->isLiveIn(PhysReg)) {
MBB->getParent()->verify();
errs() << "The register needs to be live in to BB#" << MBB->getNumber()
<< ", but is missing from the live-in list.\n";
llvm_unreachable("Invalid global physical register");
}
#endif
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
MachineBasicBlock *Pred = *PI;
// Is this a known live-out block?
if (LiveOuts.Seen.test(Pred->getNumber())) {
if (VNInfo *VNI = LiveOuts.Map[Pred].first) {
if (TheVNI && TheVNI != VNI)
UniqueVNI = false;
TheVNI = VNI;
}
continue;
}
SlotIndex Start, End;
std::tie(Start, End) = Indexes->getMBBRange(Pred);
// First time we see Pred. Try to determine the live-out value, but set
// it as null if Pred is live-through with an unknown value.
VNInfo *VNI = LR.extendInBlock(Start, End);
LiveOuts.setLiveOutValue(Pred, VNI);
if (VNI) {
if (TheVNI && TheVNI != VNI)
UniqueVNI = false;
TheVNI = VNI;
continue;
}
// No, we need a live-in value for Pred as well
if (Pred != &KillMBB)
WorkList.push_back(Pred->getNumber());
else
// Loopback to KillMBB, so value is really live through.
Kill = SlotIndex();
}
}
LiveIn.clear();
// Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
// neither require it. Skip the sorting overhead for small updates.
if (WorkList.size() > 4)
array_pod_sort(WorkList.begin(), WorkList.end());
// If a unique reaching def was found, blit in the live ranges immediately.
if (UniqueVNI) {
LiveRangeUpdater Updater(&LR);
for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(),
E = WorkList.end(); I != E; ++I) {
SlotIndex Start, End;
std::tie(Start, End) = Indexes->getMBBRange(*I);
// Trim the live range in KillMBB.
if (*I == KillMBBNum && Kill.isValid())
End = Kill;
else
LiveOuts.Map[MF->getBlockNumbered(*I)] =
LiveOutPair(TheVNI, nullptr);
Updater.add(Start, End, TheVNI);
}
return true;
}
// Multiple values were found, so transfer the work list to the LiveIn array
// where UpdateSSA will use it as a work list.
LiveIn.reserve(WorkList.size());
for (SmallVectorImpl<unsigned>::const_iterator
I = WorkList.begin(), E = WorkList.end(); I != E; ++I) {
MachineBasicBlock *MBB = MF->getBlockNumbered(*I);
addLiveInBlock(LR, DomTree->getNode(MBB));
if (MBB == &KillMBB)
LiveIn.back().Kill = Kill;
}
return false;
}
// This is essentially the same iterative algorithm that SSAUpdater uses,
// except we already have a dominator tree, so we don't have to recompute it.
void LiveRangeCalc::updateSSA(LiveOutData &LiveOuts) {
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
// Interate until convergence.
unsigned Changes;
do {
Changes = 0;
// Propagate live-out values down the dominator tree, inserting phi-defs
// when necessary.
for (SmallVectorImpl<LiveInBlock>::iterator I = LiveIn.begin(),
E = LiveIn.end(); I != E; ++I) {
MachineDomTreeNode *Node = I->DomNode;
// Skip block if the live-in value has already been determined.
if (!Node)
continue;
MachineBasicBlock *MBB = Node->getBlock();
MachineDomTreeNode *IDom = Node->getIDom();
LiveOutPair IDomValue;
// We need a live-in value to a block with no immediate dominator?
// This is probably an unreachable block that has survived somehow.
bool needPHI = !IDom
|| !LiveOuts.Seen.test(IDom->getBlock()->getNumber());
// IDom dominates all of our predecessors, but it may not be their
// immediate dominator. Check if any of them have live-out values that are
// properly dominated by IDom. If so, we need a phi-def here.
if (!needPHI) {
IDomValue = LiveOuts.Map[IDom->getBlock()];
// Cache the DomTree node that defined the value.
if (IDomValue.first && !IDomValue.second)
LiveOuts.Map[IDom->getBlock()].second = IDomValue.second =
DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
LiveOutPair &Value = LiveOuts.Map[*PI];
if (!Value.first || Value.first == IDomValue.first)
continue;
// Cache the DomTree node that defined the value.
if (!Value.second)
Value.second =
DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
// This predecessor is carrying something other than IDomValue.
// It could be because IDomValue hasn't propagated yet, or it could be
// because MBB is in the dominance frontier of that value.
if (DomTree->dominates(IDom, Value.second)) {
needPHI = true;
break;
}
}
}
// The value may be live-through even if Kill is set, as can happen when
// we are called from extendRange. In that case LiveOutSeen is true, and
// LiveOut indicates a foreign or missing value.
LiveOutPair &LOP = LiveOuts.Map[MBB];
// Create a phi-def if required.
if (needPHI) {
++Changes;
assert(Alloc && "Need VNInfo allocator to create PHI-defs");
SlotIndex Start, End;
std::tie(Start, End) = Indexes->getMBBRange(MBB);
LiveRange &LR = I->LR;
VNInfo *VNI = LR.getNextValue(Start, *Alloc);
I->Value = VNI;
// This block is done, we know the final value.
I->DomNode = nullptr;
// Add liveness since updateFromLiveIns now skips this node.
if (I->Kill.isValid())
LR.addSegment(LiveInterval::Segment(Start, I->Kill, VNI));
else {
LR.addSegment(LiveInterval::Segment(Start, End, VNI));
LOP = LiveOutPair(VNI, Node);
}
} else if (IDomValue.first) {
// No phi-def here. Remember incoming value.
I->Value = IDomValue.first;
// If the IDomValue is killed in the block, don't propagate through.
if (I->Kill.isValid())
continue;
// Propagate IDomValue if it isn't killed:
// MBB is live-out and doesn't define its own value.
if (LOP.first == IDomValue.first)
continue;
++Changes;
LOP = IDomValue;
}
}
} while (Changes);
}