forked from OSchip/llvm-project
2088 lines
74 KiB
C++
2088 lines
74 KiB
C++
//===- Deserializer.cpp - MLIR SPIR-V Deserializer ------------------------===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file defines the SPIR-V binary to MLIR SPIR-V module deserializer.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "Deserializer.h"
|
||
|
||
#include "mlir/Dialect/SPIRV/IR/SPIRVAttributes.h"
|
||
#include "mlir/Dialect/SPIRV/IR/SPIRVEnums.h"
|
||
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
|
||
#include "mlir/Dialect/SPIRV/IR/SPIRVTypes.h"
|
||
#include "mlir/IR/BlockAndValueMapping.h"
|
||
#include "mlir/IR/Builders.h"
|
||
#include "mlir/IR/Location.h"
|
||
#include "mlir/Support/LogicalResult.h"
|
||
#include "mlir/Target/SPIRV/SPIRVBinaryUtils.h"
|
||
#include "llvm/ADT/STLExtras.h"
|
||
#include "llvm/ADT/Sequence.h"
|
||
#include "llvm/ADT/SmallVector.h"
|
||
#include "llvm/ADT/StringExtras.h"
|
||
#include "llvm/ADT/bit.h"
|
||
#include "llvm/Support/Debug.h"
|
||
#include "llvm/Support/SaveAndRestore.h"
|
||
#include "llvm/Support/raw_ostream.h"
|
||
|
||
using namespace mlir;
|
||
|
||
#define DEBUG_TYPE "spirv-deserialization"
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Utility Functions
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
/// Returns true if the given `block` is a function entry block.
|
||
static inline bool isFnEntryBlock(Block *block) {
|
||
return block->isEntryBlock() &&
|
||
isa_and_nonnull<spirv::FuncOp>(block->getParentOp());
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Deserializer Method Definitions
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
spirv::Deserializer::Deserializer(ArrayRef<uint32_t> binary,
|
||
MLIRContext *context)
|
||
: binary(binary), context(context), unknownLoc(UnknownLoc::get(context)),
|
||
module(createModuleOp()), opBuilder(module->getRegion())
|
||
#ifndef NDEBUG
|
||
,
|
||
logger(llvm::dbgs())
|
||
#endif
|
||
{
|
||
}
|
||
|
||
LogicalResult spirv::Deserializer::deserialize() {
|
||
LLVM_DEBUG({
|
||
logger.resetIndent();
|
||
logger.startLine()
|
||
<< "//+++---------- start deserialization ----------+++//\n";
|
||
});
|
||
|
||
if (failed(processHeader()))
|
||
return failure();
|
||
|
||
spirv::Opcode opcode = spirv::Opcode::OpNop;
|
||
ArrayRef<uint32_t> operands;
|
||
auto binarySize = binary.size();
|
||
while (curOffset < binarySize) {
|
||
// Slice the next instruction out and populate `opcode` and `operands`.
|
||
// Internally this also updates `curOffset`.
|
||
if (failed(sliceInstruction(opcode, operands)))
|
||
return failure();
|
||
|
||
if (failed(processInstruction(opcode, operands)))
|
||
return failure();
|
||
}
|
||
|
||
assert(curOffset == binarySize &&
|
||
"deserializer should never index beyond the binary end");
|
||
|
||
for (auto &deferred : deferredInstructions) {
|
||
if (failed(processInstruction(deferred.first, deferred.second, false))) {
|
||
return failure();
|
||
}
|
||
}
|
||
|
||
attachVCETriple();
|
||
|
||
LLVM_DEBUG(logger.startLine()
|
||
<< "//+++-------- completed deserialization --------+++//\n");
|
||
return success();
|
||
}
|
||
|
||
OwningOpRef<spirv::ModuleOp> spirv::Deserializer::collect() {
|
||
return std::move(module);
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Module structure
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
OwningOpRef<spirv::ModuleOp> spirv::Deserializer::createModuleOp() {
|
||
OpBuilder builder(context);
|
||
OperationState state(unknownLoc, spirv::ModuleOp::getOperationName());
|
||
spirv::ModuleOp::build(builder, state);
|
||
return cast<spirv::ModuleOp>(Operation::create(state));
|
||
}
|
||
|
||
LogicalResult spirv::Deserializer::processHeader() {
|
||
if (binary.size() < spirv::kHeaderWordCount)
|
||
return emitError(unknownLoc,
|
||
"SPIR-V binary module must have a 5-word header");
|
||
|
||
if (binary[0] != spirv::kMagicNumber)
|
||
return emitError(unknownLoc, "incorrect magic number");
|
||
|
||
// Version number bytes: 0 | major number | minor number | 0
|
||
uint32_t majorVersion = (binary[1] << 8) >> 24;
|
||
uint32_t minorVersion = (binary[1] << 16) >> 24;
|
||
if (majorVersion == 1) {
|
||
switch (minorVersion) {
|
||
#define MIN_VERSION_CASE(v) \
|
||
case v: \
|
||
version = spirv::Version::V_1_##v; \
|
||
break
|
||
|
||
MIN_VERSION_CASE(0);
|
||
MIN_VERSION_CASE(1);
|
||
MIN_VERSION_CASE(2);
|
||
MIN_VERSION_CASE(3);
|
||
MIN_VERSION_CASE(4);
|
||
MIN_VERSION_CASE(5);
|
||
#undef MIN_VERSION_CASE
|
||
default:
|
||
return emitError(unknownLoc, "unsupported SPIR-V minor version: ")
|
||
<< minorVersion;
|
||
}
|
||
} else {
|
||
return emitError(unknownLoc, "unsupported SPIR-V major version: ")
|
||
<< majorVersion;
|
||
}
|
||
|
||
// TODO: generator number, bound, schema
|
||
curOffset = spirv::kHeaderWordCount;
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processCapability(ArrayRef<uint32_t> operands) {
|
||
if (operands.size() != 1)
|
||
return emitError(unknownLoc, "OpMemoryModel must have one parameter");
|
||
|
||
auto cap = spirv::symbolizeCapability(operands[0]);
|
||
if (!cap)
|
||
return emitError(unknownLoc, "unknown capability: ") << operands[0];
|
||
|
||
capabilities.insert(*cap);
|
||
return success();
|
||
}
|
||
|
||
LogicalResult spirv::Deserializer::processExtension(ArrayRef<uint32_t> words) {
|
||
if (words.empty()) {
|
||
return emitError(
|
||
unknownLoc,
|
||
"OpExtension must have a literal string for the extension name");
|
||
}
|
||
|
||
unsigned wordIndex = 0;
|
||
StringRef extName = decodeStringLiteral(words, wordIndex);
|
||
if (wordIndex != words.size())
|
||
return emitError(unknownLoc,
|
||
"unexpected trailing words in OpExtension instruction");
|
||
auto ext = spirv::symbolizeExtension(extName);
|
||
if (!ext)
|
||
return emitError(unknownLoc, "unknown extension: ") << extName;
|
||
|
||
extensions.insert(*ext);
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processExtInstImport(ArrayRef<uint32_t> words) {
|
||
if (words.size() < 2) {
|
||
return emitError(unknownLoc,
|
||
"OpExtInstImport must have a result <id> and a literal "
|
||
"string for the extended instruction set name");
|
||
}
|
||
|
||
unsigned wordIndex = 1;
|
||
extendedInstSets[words[0]] = decodeStringLiteral(words, wordIndex);
|
||
if (wordIndex != words.size()) {
|
||
return emitError(unknownLoc,
|
||
"unexpected trailing words in OpExtInstImport");
|
||
}
|
||
return success();
|
||
}
|
||
|
||
void spirv::Deserializer::attachVCETriple() {
|
||
(*module)->setAttr(
|
||
spirv::ModuleOp::getVCETripleAttrName(),
|
||
spirv::VerCapExtAttr::get(version, capabilities.getArrayRef(),
|
||
extensions.getArrayRef(), context));
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processMemoryModel(ArrayRef<uint32_t> operands) {
|
||
if (operands.size() != 2)
|
||
return emitError(unknownLoc, "OpMemoryModel must have two operands");
|
||
|
||
(*module)->setAttr(
|
||
"addressing_model",
|
||
opBuilder.getI32IntegerAttr(llvm::bit_cast<int32_t>(operands.front())));
|
||
(*module)->setAttr(
|
||
"memory_model",
|
||
opBuilder.getI32IntegerAttr(llvm::bit_cast<int32_t>(operands.back())));
|
||
|
||
return success();
|
||
}
|
||
|
||
LogicalResult spirv::Deserializer::processDecoration(ArrayRef<uint32_t> words) {
|
||
// TODO: This function should also be auto-generated. For now, since only a
|
||
// few decorations are processed/handled in a meaningful manner, going with a
|
||
// manual implementation.
|
||
if (words.size() < 2) {
|
||
return emitError(
|
||
unknownLoc, "OpDecorate must have at least result <id> and Decoration");
|
||
}
|
||
auto decorationName =
|
||
stringifyDecoration(static_cast<spirv::Decoration>(words[1]));
|
||
if (decorationName.empty()) {
|
||
return emitError(unknownLoc, "invalid Decoration code : ") << words[1];
|
||
}
|
||
auto attrName = llvm::convertToSnakeFromCamelCase(decorationName);
|
||
auto symbol = opBuilder.getStringAttr(attrName);
|
||
switch (static_cast<spirv::Decoration>(words[1])) {
|
||
case spirv::Decoration::DescriptorSet:
|
||
case spirv::Decoration::Binding:
|
||
if (words.size() != 3) {
|
||
return emitError(unknownLoc, "OpDecorate with ")
|
||
<< decorationName << " needs a single integer literal";
|
||
}
|
||
decorations[words[0]].set(
|
||
symbol, opBuilder.getI32IntegerAttr(static_cast<int32_t>(words[2])));
|
||
break;
|
||
case spirv::Decoration::BuiltIn:
|
||
if (words.size() != 3) {
|
||
return emitError(unknownLoc, "OpDecorate with ")
|
||
<< decorationName << " needs a single integer literal";
|
||
}
|
||
decorations[words[0]].set(
|
||
symbol, opBuilder.getStringAttr(
|
||
stringifyBuiltIn(static_cast<spirv::BuiltIn>(words[2]))));
|
||
break;
|
||
case spirv::Decoration::ArrayStride:
|
||
if (words.size() != 3) {
|
||
return emitError(unknownLoc, "OpDecorate with ")
|
||
<< decorationName << " needs a single integer literal";
|
||
}
|
||
typeDecorations[words[0]] = words[2];
|
||
break;
|
||
case spirv::Decoration::Aliased:
|
||
case spirv::Decoration::Block:
|
||
case spirv::Decoration::BufferBlock:
|
||
case spirv::Decoration::Flat:
|
||
case spirv::Decoration::NonReadable:
|
||
case spirv::Decoration::NonWritable:
|
||
case spirv::Decoration::NoPerspective:
|
||
case spirv::Decoration::Restrict:
|
||
case spirv::Decoration::RelaxedPrecision:
|
||
if (words.size() != 2) {
|
||
return emitError(unknownLoc, "OpDecoration with ")
|
||
<< decorationName << "needs a single target <id>";
|
||
}
|
||
// Block decoration does not affect spv.struct type, but is still stored for
|
||
// verification.
|
||
// TODO: Update StructType to contain this information since
|
||
// it is needed for many validation rules.
|
||
decorations[words[0]].set(symbol, opBuilder.getUnitAttr());
|
||
break;
|
||
case spirv::Decoration::Location:
|
||
case spirv::Decoration::SpecId:
|
||
if (words.size() != 3) {
|
||
return emitError(unknownLoc, "OpDecoration with ")
|
||
<< decorationName << "needs a single integer literal";
|
||
}
|
||
decorations[words[0]].set(
|
||
symbol, opBuilder.getI32IntegerAttr(static_cast<int32_t>(words[2])));
|
||
break;
|
||
default:
|
||
return emitError(unknownLoc, "unhandled Decoration : '") << decorationName;
|
||
}
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processMemberDecoration(ArrayRef<uint32_t> words) {
|
||
// The binary layout of OpMemberDecorate is different comparing to OpDecorate
|
||
if (words.size() < 3) {
|
||
return emitError(unknownLoc,
|
||
"OpMemberDecorate must have at least 3 operands");
|
||
}
|
||
|
||
auto decoration = static_cast<spirv::Decoration>(words[2]);
|
||
if (decoration == spirv::Decoration::Offset && words.size() != 4) {
|
||
return emitError(unknownLoc,
|
||
" missing offset specification in OpMemberDecorate with "
|
||
"Offset decoration");
|
||
}
|
||
ArrayRef<uint32_t> decorationOperands;
|
||
if (words.size() > 3) {
|
||
decorationOperands = words.slice(3);
|
||
}
|
||
memberDecorationMap[words[0]][words[1]][decoration] = decorationOperands;
|
||
return success();
|
||
}
|
||
|
||
LogicalResult spirv::Deserializer::processMemberName(ArrayRef<uint32_t> words) {
|
||
if (words.size() < 3) {
|
||
return emitError(unknownLoc, "OpMemberName must have at least 3 operands");
|
||
}
|
||
unsigned wordIndex = 2;
|
||
auto name = decodeStringLiteral(words, wordIndex);
|
||
if (wordIndex != words.size()) {
|
||
return emitError(unknownLoc,
|
||
"unexpected trailing words in OpMemberName instruction");
|
||
}
|
||
memberNameMap[words[0]][words[1]] = name;
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processFunction(ArrayRef<uint32_t> operands) {
|
||
if (curFunction) {
|
||
return emitError(unknownLoc, "found function inside function");
|
||
}
|
||
|
||
// Get the result type
|
||
if (operands.size() != 4) {
|
||
return emitError(unknownLoc, "OpFunction must have 4 parameters");
|
||
}
|
||
Type resultType = getType(operands[0]);
|
||
if (!resultType) {
|
||
return emitError(unknownLoc, "undefined result type from <id> ")
|
||
<< operands[0];
|
||
}
|
||
|
||
uint32_t fnID = operands[1];
|
||
if (funcMap.count(fnID)) {
|
||
return emitError(unknownLoc, "duplicate function definition/declaration");
|
||
}
|
||
|
||
auto fnControl = spirv::symbolizeFunctionControl(operands[2]);
|
||
if (!fnControl) {
|
||
return emitError(unknownLoc, "unknown Function Control: ") << operands[2];
|
||
}
|
||
|
||
Type fnType = getType(operands[3]);
|
||
if (!fnType || !fnType.isa<FunctionType>()) {
|
||
return emitError(unknownLoc, "unknown function type from <id> ")
|
||
<< operands[3];
|
||
}
|
||
auto functionType = fnType.cast<FunctionType>();
|
||
|
||
if ((isVoidType(resultType) && functionType.getNumResults() != 0) ||
|
||
(functionType.getNumResults() == 1 &&
|
||
functionType.getResult(0) != resultType)) {
|
||
return emitError(unknownLoc, "mismatch in function type ")
|
||
<< functionType << " and return type " << resultType << " specified";
|
||
}
|
||
|
||
std::string fnName = getFunctionSymbol(fnID);
|
||
auto funcOp = opBuilder.create<spirv::FuncOp>(
|
||
unknownLoc, fnName, functionType, fnControl.getValue());
|
||
curFunction = funcMap[fnID] = funcOp;
|
||
auto *entryBlock = funcOp.addEntryBlock();
|
||
LLVM_DEBUG({
|
||
logger.startLine()
|
||
<< "//===-------------------------------------------===//\n";
|
||
logger.startLine() << "[fn] name: " << fnName << "\n";
|
||
logger.startLine() << "[fn] type: " << fnType << "\n";
|
||
logger.startLine() << "[fn] ID: " << fnID << "\n";
|
||
logger.startLine() << "[fn] entry block: " << entryBlock << "\n";
|
||
logger.indent();
|
||
});
|
||
|
||
// Parse the op argument instructions
|
||
if (functionType.getNumInputs()) {
|
||
for (size_t i = 0, e = functionType.getNumInputs(); i != e; ++i) {
|
||
auto argType = functionType.getInput(i);
|
||
spirv::Opcode opcode = spirv::Opcode::OpNop;
|
||
ArrayRef<uint32_t> operands;
|
||
if (failed(sliceInstruction(opcode, operands,
|
||
spirv::Opcode::OpFunctionParameter))) {
|
||
return failure();
|
||
}
|
||
if (opcode != spirv::Opcode::OpFunctionParameter) {
|
||
return emitError(
|
||
unknownLoc,
|
||
"missing OpFunctionParameter instruction for argument ")
|
||
<< i;
|
||
}
|
||
if (operands.size() != 2) {
|
||
return emitError(
|
||
unknownLoc,
|
||
"expected result type and result <id> for OpFunctionParameter");
|
||
}
|
||
auto argDefinedType = getType(operands[0]);
|
||
if (!argDefinedType || argDefinedType != argType) {
|
||
return emitError(unknownLoc,
|
||
"mismatch in argument type between function type "
|
||
"definition ")
|
||
<< functionType << " and argument type definition "
|
||
<< argDefinedType << " at argument " << i;
|
||
}
|
||
if (getValue(operands[1])) {
|
||
return emitError(unknownLoc, "duplicate definition of result <id> ")
|
||
<< operands[1];
|
||
}
|
||
auto argValue = funcOp.getArgument(i);
|
||
valueMap[operands[1]] = argValue;
|
||
}
|
||
}
|
||
|
||
// RAII guard to reset the insertion point to the module's region after
|
||
// deserializing the body of this function.
|
||
OpBuilder::InsertionGuard moduleInsertionGuard(opBuilder);
|
||
|
||
spirv::Opcode opcode = spirv::Opcode::OpNop;
|
||
ArrayRef<uint32_t> instOperands;
|
||
|
||
// Special handling for the entry block. We need to make sure it starts with
|
||
// an OpLabel instruction. The entry block takes the same parameters as the
|
||
// function. All other blocks do not take any parameter. We have already
|
||
// created the entry block, here we need to register it to the correct label
|
||
// <id>.
|
||
if (failed(sliceInstruction(opcode, instOperands,
|
||
spirv::Opcode::OpFunctionEnd))) {
|
||
return failure();
|
||
}
|
||
if (opcode == spirv::Opcode::OpFunctionEnd) {
|
||
return processFunctionEnd(instOperands);
|
||
}
|
||
if (opcode != spirv::Opcode::OpLabel) {
|
||
return emitError(unknownLoc, "a basic block must start with OpLabel");
|
||
}
|
||
if (instOperands.size() != 1) {
|
||
return emitError(unknownLoc, "OpLabel should only have result <id>");
|
||
}
|
||
blockMap[instOperands[0]] = entryBlock;
|
||
if (failed(processLabel(instOperands))) {
|
||
return failure();
|
||
}
|
||
|
||
// Then process all the other instructions in the function until we hit
|
||
// OpFunctionEnd.
|
||
while (succeeded(sliceInstruction(opcode, instOperands,
|
||
spirv::Opcode::OpFunctionEnd)) &&
|
||
opcode != spirv::Opcode::OpFunctionEnd) {
|
||
if (failed(processInstruction(opcode, instOperands))) {
|
||
return failure();
|
||
}
|
||
}
|
||
if (opcode != spirv::Opcode::OpFunctionEnd) {
|
||
return failure();
|
||
}
|
||
|
||
return processFunctionEnd(instOperands);
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processFunctionEnd(ArrayRef<uint32_t> operands) {
|
||
// Process OpFunctionEnd.
|
||
if (!operands.empty()) {
|
||
return emitError(unknownLoc, "unexpected operands for OpFunctionEnd");
|
||
}
|
||
|
||
// Wire up block arguments from OpPhi instructions.
|
||
// Put all structured control flow in spv.mlir.selection/spv.mlir.loop ops.
|
||
if (failed(wireUpBlockArgument()) || failed(structurizeControlFlow())) {
|
||
return failure();
|
||
}
|
||
|
||
curBlock = nullptr;
|
||
curFunction = llvm::None;
|
||
|
||
LLVM_DEBUG({
|
||
logger.unindent();
|
||
logger.startLine()
|
||
<< "//===-------------------------------------------===//\n";
|
||
});
|
||
return success();
|
||
}
|
||
|
||
Optional<std::pair<Attribute, Type>>
|
||
spirv::Deserializer::getConstant(uint32_t id) {
|
||
auto constIt = constantMap.find(id);
|
||
if (constIt == constantMap.end())
|
||
return llvm::None;
|
||
return constIt->getSecond();
|
||
}
|
||
|
||
Optional<spirv::SpecConstOperationMaterializationInfo>
|
||
spirv::Deserializer::getSpecConstantOperation(uint32_t id) {
|
||
auto constIt = specConstOperationMap.find(id);
|
||
if (constIt == specConstOperationMap.end())
|
||
return llvm::None;
|
||
return constIt->getSecond();
|
||
}
|
||
|
||
std::string spirv::Deserializer::getFunctionSymbol(uint32_t id) {
|
||
auto funcName = nameMap.lookup(id).str();
|
||
if (funcName.empty()) {
|
||
funcName = "spirv_fn_" + std::to_string(id);
|
||
}
|
||
return funcName;
|
||
}
|
||
|
||
std::string spirv::Deserializer::getSpecConstantSymbol(uint32_t id) {
|
||
auto constName = nameMap.lookup(id).str();
|
||
if (constName.empty()) {
|
||
constName = "spirv_spec_const_" + std::to_string(id);
|
||
}
|
||
return constName;
|
||
}
|
||
|
||
spirv::SpecConstantOp
|
||
spirv::Deserializer::createSpecConstant(Location loc, uint32_t resultID,
|
||
Attribute defaultValue) {
|
||
auto symName = opBuilder.getStringAttr(getSpecConstantSymbol(resultID));
|
||
auto op = opBuilder.create<spirv::SpecConstantOp>(unknownLoc, symName,
|
||
defaultValue);
|
||
if (decorations.count(resultID)) {
|
||
for (auto attr : decorations[resultID].getAttrs())
|
||
op->setAttr(attr.getName(), attr.getValue());
|
||
}
|
||
specConstMap[resultID] = op;
|
||
return op;
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processGlobalVariable(ArrayRef<uint32_t> operands) {
|
||
unsigned wordIndex = 0;
|
||
if (operands.size() < 3) {
|
||
return emitError(
|
||
unknownLoc,
|
||
"OpVariable needs at least 3 operands, type, <id> and storage class");
|
||
}
|
||
|
||
// Result Type.
|
||
auto type = getType(operands[wordIndex]);
|
||
if (!type) {
|
||
return emitError(unknownLoc, "unknown result type <id> : ")
|
||
<< operands[wordIndex];
|
||
}
|
||
auto ptrType = type.dyn_cast<spirv::PointerType>();
|
||
if (!ptrType) {
|
||
return emitError(unknownLoc,
|
||
"expected a result type <id> to be a spv.ptr, found : ")
|
||
<< type;
|
||
}
|
||
wordIndex++;
|
||
|
||
// Result <id>.
|
||
auto variableID = operands[wordIndex];
|
||
auto variableName = nameMap.lookup(variableID).str();
|
||
if (variableName.empty()) {
|
||
variableName = "spirv_var_" + std::to_string(variableID);
|
||
}
|
||
wordIndex++;
|
||
|
||
// Storage class.
|
||
auto storageClass = static_cast<spirv::StorageClass>(operands[wordIndex]);
|
||
if (ptrType.getStorageClass() != storageClass) {
|
||
return emitError(unknownLoc, "mismatch in storage class of pointer type ")
|
||
<< type << " and that specified in OpVariable instruction : "
|
||
<< stringifyStorageClass(storageClass);
|
||
}
|
||
wordIndex++;
|
||
|
||
// Initializer.
|
||
FlatSymbolRefAttr initializer = nullptr;
|
||
if (wordIndex < operands.size()) {
|
||
auto initializerOp = getGlobalVariable(operands[wordIndex]);
|
||
if (!initializerOp) {
|
||
return emitError(unknownLoc, "unknown <id> ")
|
||
<< operands[wordIndex] << "used as initializer";
|
||
}
|
||
wordIndex++;
|
||
initializer = SymbolRefAttr::get(initializerOp.getOperation());
|
||
}
|
||
if (wordIndex != operands.size()) {
|
||
return emitError(unknownLoc,
|
||
"found more operands than expected when deserializing "
|
||
"OpVariable instruction, only ")
|
||
<< wordIndex << " of " << operands.size() << " processed";
|
||
}
|
||
auto loc = createFileLineColLoc(opBuilder);
|
||
auto varOp = opBuilder.create<spirv::GlobalVariableOp>(
|
||
loc, TypeAttr::get(type), opBuilder.getStringAttr(variableName),
|
||
initializer);
|
||
|
||
// Decorations.
|
||
if (decorations.count(variableID)) {
|
||
for (auto attr : decorations[variableID].getAttrs())
|
||
varOp->setAttr(attr.getName(), attr.getValue());
|
||
}
|
||
globalVariableMap[variableID] = varOp;
|
||
return success();
|
||
}
|
||
|
||
IntegerAttr spirv::Deserializer::getConstantInt(uint32_t id) {
|
||
auto constInfo = getConstant(id);
|
||
if (!constInfo) {
|
||
return nullptr;
|
||
}
|
||
return constInfo->first.dyn_cast<IntegerAttr>();
|
||
}
|
||
|
||
LogicalResult spirv::Deserializer::processName(ArrayRef<uint32_t> operands) {
|
||
if (operands.size() < 2) {
|
||
return emitError(unknownLoc, "OpName needs at least 2 operands");
|
||
}
|
||
if (!nameMap.lookup(operands[0]).empty()) {
|
||
return emitError(unknownLoc, "duplicate name found for result <id> ")
|
||
<< operands[0];
|
||
}
|
||
unsigned wordIndex = 1;
|
||
StringRef name = decodeStringLiteral(operands, wordIndex);
|
||
if (wordIndex != operands.size()) {
|
||
return emitError(unknownLoc,
|
||
"unexpected trailing words in OpName instruction");
|
||
}
|
||
nameMap[operands[0]] = name;
|
||
return success();
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Type
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
LogicalResult spirv::Deserializer::processType(spirv::Opcode opcode,
|
||
ArrayRef<uint32_t> operands) {
|
||
if (operands.empty()) {
|
||
return emitError(unknownLoc, "type instruction with opcode ")
|
||
<< spirv::stringifyOpcode(opcode) << " needs at least one <id>";
|
||
}
|
||
|
||
/// TODO: Types might be forward declared in some instructions and need to be
|
||
/// handled appropriately.
|
||
if (typeMap.count(operands[0])) {
|
||
return emitError(unknownLoc, "duplicate definition for result <id> ")
|
||
<< operands[0];
|
||
}
|
||
|
||
switch (opcode) {
|
||
case spirv::Opcode::OpTypeVoid:
|
||
if (operands.size() != 1)
|
||
return emitError(unknownLoc, "OpTypeVoid must have no parameters");
|
||
typeMap[operands[0]] = opBuilder.getNoneType();
|
||
break;
|
||
case spirv::Opcode::OpTypeBool:
|
||
if (operands.size() != 1)
|
||
return emitError(unknownLoc, "OpTypeBool must have no parameters");
|
||
typeMap[operands[0]] = opBuilder.getI1Type();
|
||
break;
|
||
case spirv::Opcode::OpTypeInt: {
|
||
if (operands.size() != 3)
|
||
return emitError(
|
||
unknownLoc, "OpTypeInt must have bitwidth and signedness parameters");
|
||
|
||
// SPIR-V OpTypeInt "Signedness specifies whether there are signed semantics
|
||
// to preserve or validate.
|
||
// 0 indicates unsigned, or no signedness semantics
|
||
// 1 indicates signed semantics."
|
||
//
|
||
// So we cannot differentiate signless and unsigned integers; always use
|
||
// signless semantics for such cases.
|
||
auto sign = operands[2] == 1 ? IntegerType::SignednessSemantics::Signed
|
||
: IntegerType::SignednessSemantics::Signless;
|
||
typeMap[operands[0]] = IntegerType::get(context, operands[1], sign);
|
||
} break;
|
||
case spirv::Opcode::OpTypeFloat: {
|
||
if (operands.size() != 2)
|
||
return emitError(unknownLoc, "OpTypeFloat must have bitwidth parameter");
|
||
|
||
Type floatTy;
|
||
switch (operands[1]) {
|
||
case 16:
|
||
floatTy = opBuilder.getF16Type();
|
||
break;
|
||
case 32:
|
||
floatTy = opBuilder.getF32Type();
|
||
break;
|
||
case 64:
|
||
floatTy = opBuilder.getF64Type();
|
||
break;
|
||
default:
|
||
return emitError(unknownLoc, "unsupported OpTypeFloat bitwidth: ")
|
||
<< operands[1];
|
||
}
|
||
typeMap[operands[0]] = floatTy;
|
||
} break;
|
||
case spirv::Opcode::OpTypeVector: {
|
||
if (operands.size() != 3) {
|
||
return emitError(
|
||
unknownLoc,
|
||
"OpTypeVector must have element type and count parameters");
|
||
}
|
||
Type elementTy = getType(operands[1]);
|
||
if (!elementTy) {
|
||
return emitError(unknownLoc, "OpTypeVector references undefined <id> ")
|
||
<< operands[1];
|
||
}
|
||
typeMap[operands[0]] = VectorType::get({operands[2]}, elementTy);
|
||
} break;
|
||
case spirv::Opcode::OpTypePointer: {
|
||
return processOpTypePointer(operands);
|
||
} break;
|
||
case spirv::Opcode::OpTypeArray:
|
||
return processArrayType(operands);
|
||
case spirv::Opcode::OpTypeCooperativeMatrixNV:
|
||
return processCooperativeMatrixType(operands);
|
||
case spirv::Opcode::OpTypeFunction:
|
||
return processFunctionType(operands);
|
||
case spirv::Opcode::OpTypeImage:
|
||
return processImageType(operands);
|
||
case spirv::Opcode::OpTypeSampledImage:
|
||
return processSampledImageType(operands);
|
||
case spirv::Opcode::OpTypeRuntimeArray:
|
||
return processRuntimeArrayType(operands);
|
||
case spirv::Opcode::OpTypeStruct:
|
||
return processStructType(operands);
|
||
case spirv::Opcode::OpTypeMatrix:
|
||
return processMatrixType(operands);
|
||
default:
|
||
return emitError(unknownLoc, "unhandled type instruction");
|
||
}
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processOpTypePointer(ArrayRef<uint32_t> operands) {
|
||
if (operands.size() != 3)
|
||
return emitError(unknownLoc, "OpTypePointer must have two parameters");
|
||
|
||
auto pointeeType = getType(operands[2]);
|
||
if (!pointeeType)
|
||
return emitError(unknownLoc, "unknown OpTypePointer pointee type <id> ")
|
||
<< operands[2];
|
||
|
||
uint32_t typePointerID = operands[0];
|
||
auto storageClass = static_cast<spirv::StorageClass>(operands[1]);
|
||
typeMap[typePointerID] = spirv::PointerType::get(pointeeType, storageClass);
|
||
|
||
for (auto *deferredStructIt = std::begin(deferredStructTypesInfos);
|
||
deferredStructIt != std::end(deferredStructTypesInfos);) {
|
||
for (auto *unresolvedMemberIt =
|
||
std::begin(deferredStructIt->unresolvedMemberTypes);
|
||
unresolvedMemberIt !=
|
||
std::end(deferredStructIt->unresolvedMemberTypes);) {
|
||
if (unresolvedMemberIt->first == typePointerID) {
|
||
// The newly constructed pointer type can resolve one of the
|
||
// deferred struct type members; update the memberTypes list and
|
||
// clean the unresolvedMemberTypes list accordingly.
|
||
deferredStructIt->memberTypes[unresolvedMemberIt->second] =
|
||
typeMap[typePointerID];
|
||
unresolvedMemberIt =
|
||
deferredStructIt->unresolvedMemberTypes.erase(unresolvedMemberIt);
|
||
} else {
|
||
++unresolvedMemberIt;
|
||
}
|
||
}
|
||
|
||
if (deferredStructIt->unresolvedMemberTypes.empty()) {
|
||
// All deferred struct type members are now resolved, set the struct body.
|
||
auto structType = deferredStructIt->deferredStructType;
|
||
|
||
assert(structType && "expected a spirv::StructType");
|
||
assert(structType.isIdentified() && "expected an indentified struct");
|
||
|
||
if (failed(structType.trySetBody(
|
||
deferredStructIt->memberTypes, deferredStructIt->offsetInfo,
|
||
deferredStructIt->memberDecorationsInfo)))
|
||
return failure();
|
||
|
||
deferredStructIt = deferredStructTypesInfos.erase(deferredStructIt);
|
||
} else {
|
||
++deferredStructIt;
|
||
}
|
||
}
|
||
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processArrayType(ArrayRef<uint32_t> operands) {
|
||
if (operands.size() != 3) {
|
||
return emitError(unknownLoc,
|
||
"OpTypeArray must have element type and count parameters");
|
||
}
|
||
|
||
Type elementTy = getType(operands[1]);
|
||
if (!elementTy) {
|
||
return emitError(unknownLoc, "OpTypeArray references undefined <id> ")
|
||
<< operands[1];
|
||
}
|
||
|
||
unsigned count = 0;
|
||
// TODO: The count can also come frome a specialization constant.
|
||
auto countInfo = getConstant(operands[2]);
|
||
if (!countInfo) {
|
||
return emitError(unknownLoc, "OpTypeArray count <id> ")
|
||
<< operands[2] << "can only come from normal constant right now";
|
||
}
|
||
|
||
if (auto intVal = countInfo->first.dyn_cast<IntegerAttr>()) {
|
||
count = intVal.getValue().getZExtValue();
|
||
} else {
|
||
return emitError(unknownLoc, "OpTypeArray count must come from a "
|
||
"scalar integer constant instruction");
|
||
}
|
||
|
||
typeMap[operands[0]] = spirv::ArrayType::get(
|
||
elementTy, count, typeDecorations.lookup(operands[0]));
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processFunctionType(ArrayRef<uint32_t> operands) {
|
||
assert(!operands.empty() && "No operands for processing function type");
|
||
if (operands.size() == 1) {
|
||
return emitError(unknownLoc, "missing return type for OpTypeFunction");
|
||
}
|
||
auto returnType = getType(operands[1]);
|
||
if (!returnType) {
|
||
return emitError(unknownLoc, "unknown return type in OpTypeFunction");
|
||
}
|
||
SmallVector<Type, 1> argTypes;
|
||
for (size_t i = 2, e = operands.size(); i < e; ++i) {
|
||
auto ty = getType(operands[i]);
|
||
if (!ty) {
|
||
return emitError(unknownLoc, "unknown argument type in OpTypeFunction");
|
||
}
|
||
argTypes.push_back(ty);
|
||
}
|
||
ArrayRef<Type> returnTypes;
|
||
if (!isVoidType(returnType)) {
|
||
returnTypes = llvm::makeArrayRef(returnType);
|
||
}
|
||
typeMap[operands[0]] = FunctionType::get(context, argTypes, returnTypes);
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processCooperativeMatrixType(ArrayRef<uint32_t> operands) {
|
||
if (operands.size() != 5) {
|
||
return emitError(unknownLoc, "OpTypeCooperativeMatrix must have element "
|
||
"type and row x column parameters");
|
||
}
|
||
|
||
Type elementTy = getType(operands[1]);
|
||
if (!elementTy) {
|
||
return emitError(unknownLoc,
|
||
"OpTypeCooperativeMatrix references undefined <id> ")
|
||
<< operands[1];
|
||
}
|
||
|
||
auto scope = spirv::symbolizeScope(getConstantInt(operands[2]).getInt());
|
||
if (!scope) {
|
||
return emitError(unknownLoc,
|
||
"OpTypeCooperativeMatrix references undefined scope <id> ")
|
||
<< operands[2];
|
||
}
|
||
|
||
unsigned rows = getConstantInt(operands[3]).getInt();
|
||
unsigned columns = getConstantInt(operands[4]).getInt();
|
||
|
||
typeMap[operands[0]] = spirv::CooperativeMatrixNVType::get(
|
||
elementTy, scope.getValue(), rows, columns);
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processRuntimeArrayType(ArrayRef<uint32_t> operands) {
|
||
if (operands.size() != 2) {
|
||
return emitError(unknownLoc, "OpTypeRuntimeArray must have two operands");
|
||
}
|
||
Type memberType = getType(operands[1]);
|
||
if (!memberType) {
|
||
return emitError(unknownLoc,
|
||
"OpTypeRuntimeArray references undefined <id> ")
|
||
<< operands[1];
|
||
}
|
||
typeMap[operands[0]] = spirv::RuntimeArrayType::get(
|
||
memberType, typeDecorations.lookup(operands[0]));
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processStructType(ArrayRef<uint32_t> operands) {
|
||
// TODO: Find a way to handle identified structs when debug info is stripped.
|
||
|
||
if (operands.empty()) {
|
||
return emitError(unknownLoc, "OpTypeStruct must have at least result <id>");
|
||
}
|
||
|
||
if (operands.size() == 1) {
|
||
// Handle empty struct.
|
||
typeMap[operands[0]] =
|
||
spirv::StructType::getEmpty(context, nameMap.lookup(operands[0]).str());
|
||
return success();
|
||
}
|
||
|
||
// First element is operand ID, second element is member index in the struct.
|
||
SmallVector<std::pair<uint32_t, unsigned>, 0> unresolvedMemberTypes;
|
||
SmallVector<Type, 4> memberTypes;
|
||
|
||
for (auto op : llvm::drop_begin(operands, 1)) {
|
||
Type memberType = getType(op);
|
||
bool typeForwardPtr = (typeForwardPointerIDs.count(op) != 0);
|
||
|
||
if (!memberType && !typeForwardPtr)
|
||
return emitError(unknownLoc, "OpTypeStruct references undefined <id> ")
|
||
<< op;
|
||
|
||
if (!memberType)
|
||
unresolvedMemberTypes.emplace_back(op, memberTypes.size());
|
||
|
||
memberTypes.push_back(memberType);
|
||
}
|
||
|
||
SmallVector<spirv::StructType::OffsetInfo, 0> offsetInfo;
|
||
SmallVector<spirv::StructType::MemberDecorationInfo, 0> memberDecorationsInfo;
|
||
if (memberDecorationMap.count(operands[0])) {
|
||
auto &allMemberDecorations = memberDecorationMap[operands[0]];
|
||
for (auto memberIndex : llvm::seq<uint32_t>(0, memberTypes.size())) {
|
||
if (allMemberDecorations.count(memberIndex)) {
|
||
for (auto &memberDecoration : allMemberDecorations[memberIndex]) {
|
||
// Check for offset.
|
||
if (memberDecoration.first == spirv::Decoration::Offset) {
|
||
// If offset info is empty, resize to the number of members;
|
||
if (offsetInfo.empty()) {
|
||
offsetInfo.resize(memberTypes.size());
|
||
}
|
||
offsetInfo[memberIndex] = memberDecoration.second[0];
|
||
} else {
|
||
if (!memberDecoration.second.empty()) {
|
||
memberDecorationsInfo.emplace_back(memberIndex, /*hasValue=*/1,
|
||
memberDecoration.first,
|
||
memberDecoration.second[0]);
|
||
} else {
|
||
memberDecorationsInfo.emplace_back(memberIndex, /*hasValue=*/0,
|
||
memberDecoration.first, 0);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
uint32_t structID = operands[0];
|
||
std::string structIdentifier = nameMap.lookup(structID).str();
|
||
|
||
if (structIdentifier.empty()) {
|
||
assert(unresolvedMemberTypes.empty() &&
|
||
"didn't expect unresolved member types");
|
||
typeMap[structID] =
|
||
spirv::StructType::get(memberTypes, offsetInfo, memberDecorationsInfo);
|
||
} else {
|
||
auto structTy = spirv::StructType::getIdentified(context, structIdentifier);
|
||
typeMap[structID] = structTy;
|
||
|
||
if (!unresolvedMemberTypes.empty())
|
||
deferredStructTypesInfos.push_back({structTy, unresolvedMemberTypes,
|
||
memberTypes, offsetInfo,
|
||
memberDecorationsInfo});
|
||
else if (failed(structTy.trySetBody(memberTypes, offsetInfo,
|
||
memberDecorationsInfo)))
|
||
return failure();
|
||
}
|
||
|
||
// TODO: Update StructType to have member name as attribute as
|
||
// well.
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processMatrixType(ArrayRef<uint32_t> operands) {
|
||
if (operands.size() != 3) {
|
||
// Three operands are needed: result_id, column_type, and column_count
|
||
return emitError(unknownLoc, "OpTypeMatrix must have 3 operands"
|
||
" (result_id, column_type, and column_count)");
|
||
}
|
||
// Matrix columns must be of vector type
|
||
Type elementTy = getType(operands[1]);
|
||
if (!elementTy) {
|
||
return emitError(unknownLoc,
|
||
"OpTypeMatrix references undefined column type.")
|
||
<< operands[1];
|
||
}
|
||
|
||
uint32_t colsCount = operands[2];
|
||
typeMap[operands[0]] = spirv::MatrixType::get(elementTy, colsCount);
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processTypeForwardPointer(ArrayRef<uint32_t> operands) {
|
||
if (operands.size() != 2)
|
||
return emitError(unknownLoc,
|
||
"OpTypeForwardPointer instruction must have two operands");
|
||
|
||
typeForwardPointerIDs.insert(operands[0]);
|
||
// TODO: Use the 2nd operand (Storage Class) to validate the OpTypePointer
|
||
// instruction that defines the actual type.
|
||
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processImageType(ArrayRef<uint32_t> operands) {
|
||
// TODO: Add support for Access Qualifier.
|
||
if (operands.size() != 8)
|
||
return emitError(
|
||
unknownLoc,
|
||
"OpTypeImage with non-eight operands are not supported yet");
|
||
|
||
Type elementTy = getType(operands[1]);
|
||
if (!elementTy)
|
||
return emitError(unknownLoc, "OpTypeImage references undefined <id>: ")
|
||
<< operands[1];
|
||
|
||
auto dim = spirv::symbolizeDim(operands[2]);
|
||
if (!dim)
|
||
return emitError(unknownLoc, "unknown Dim for OpTypeImage: ")
|
||
<< operands[2];
|
||
|
||
auto depthInfo = spirv::symbolizeImageDepthInfo(operands[3]);
|
||
if (!depthInfo)
|
||
return emitError(unknownLoc, "unknown Depth for OpTypeImage: ")
|
||
<< operands[3];
|
||
|
||
auto arrayedInfo = spirv::symbolizeImageArrayedInfo(operands[4]);
|
||
if (!arrayedInfo)
|
||
return emitError(unknownLoc, "unknown Arrayed for OpTypeImage: ")
|
||
<< operands[4];
|
||
|
||
auto samplingInfo = spirv::symbolizeImageSamplingInfo(operands[5]);
|
||
if (!samplingInfo)
|
||
return emitError(unknownLoc, "unknown MS for OpTypeImage: ") << operands[5];
|
||
|
||
auto samplerUseInfo = spirv::symbolizeImageSamplerUseInfo(operands[6]);
|
||
if (!samplerUseInfo)
|
||
return emitError(unknownLoc, "unknown Sampled for OpTypeImage: ")
|
||
<< operands[6];
|
||
|
||
auto format = spirv::symbolizeImageFormat(operands[7]);
|
||
if (!format)
|
||
return emitError(unknownLoc, "unknown Format for OpTypeImage: ")
|
||
<< operands[7];
|
||
|
||
typeMap[operands[0]] = spirv::ImageType::get(
|
||
elementTy, dim.getValue(), depthInfo.getValue(), arrayedInfo.getValue(),
|
||
samplingInfo.getValue(), samplerUseInfo.getValue(), format.getValue());
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processSampledImageType(ArrayRef<uint32_t> operands) {
|
||
if (operands.size() != 2)
|
||
return emitError(unknownLoc, "OpTypeSampledImage must have two operands");
|
||
|
||
Type elementTy = getType(operands[1]);
|
||
if (!elementTy)
|
||
return emitError(unknownLoc,
|
||
"OpTypeSampledImage references undefined <id>: ")
|
||
<< operands[1];
|
||
|
||
typeMap[operands[0]] = spirv::SampledImageType::get(elementTy);
|
||
return success();
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Constant
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
LogicalResult spirv::Deserializer::processConstant(ArrayRef<uint32_t> operands,
|
||
bool isSpec) {
|
||
StringRef opname = isSpec ? "OpSpecConstant" : "OpConstant";
|
||
|
||
if (operands.size() < 2) {
|
||
return emitError(unknownLoc)
|
||
<< opname << " must have type <id> and result <id>";
|
||
}
|
||
if (operands.size() < 3) {
|
||
return emitError(unknownLoc)
|
||
<< opname << " must have at least 1 more parameter";
|
||
}
|
||
|
||
Type resultType = getType(operands[0]);
|
||
if (!resultType) {
|
||
return emitError(unknownLoc, "undefined result type from <id> ")
|
||
<< operands[0];
|
||
}
|
||
|
||
auto checkOperandSizeForBitwidth = [&](unsigned bitwidth) -> LogicalResult {
|
||
if (bitwidth == 64) {
|
||
if (operands.size() == 4) {
|
||
return success();
|
||
}
|
||
return emitError(unknownLoc)
|
||
<< opname << " should have 2 parameters for 64-bit values";
|
||
}
|
||
if (bitwidth <= 32) {
|
||
if (operands.size() == 3) {
|
||
return success();
|
||
}
|
||
|
||
return emitError(unknownLoc)
|
||
<< opname
|
||
<< " should have 1 parameter for values with no more than 32 bits";
|
||
}
|
||
return emitError(unknownLoc, "unsupported OpConstant bitwidth: ")
|
||
<< bitwidth;
|
||
};
|
||
|
||
auto resultID = operands[1];
|
||
|
||
if (auto intType = resultType.dyn_cast<IntegerType>()) {
|
||
auto bitwidth = intType.getWidth();
|
||
if (failed(checkOperandSizeForBitwidth(bitwidth))) {
|
||
return failure();
|
||
}
|
||
|
||
APInt value;
|
||
if (bitwidth == 64) {
|
||
// 64-bit integers are represented with two SPIR-V words. According to
|
||
// SPIR-V spec: "When the type’s bit width is larger than one word, the
|
||
// literal’s low-order words appear first."
|
||
struct DoubleWord {
|
||
uint32_t word1;
|
||
uint32_t word2;
|
||
} words = {operands[2], operands[3]};
|
||
value = APInt(64, llvm::bit_cast<uint64_t>(words), /*isSigned=*/true);
|
||
} else if (bitwidth <= 32) {
|
||
value = APInt(bitwidth, operands[2], /*isSigned=*/true);
|
||
}
|
||
|
||
auto attr = opBuilder.getIntegerAttr(intType, value);
|
||
|
||
if (isSpec) {
|
||
createSpecConstant(unknownLoc, resultID, attr);
|
||
} else {
|
||
// For normal constants, we just record the attribute (and its type) for
|
||
// later materialization at use sites.
|
||
constantMap.try_emplace(resultID, attr, intType);
|
||
}
|
||
|
||
return success();
|
||
}
|
||
|
||
if (auto floatType = resultType.dyn_cast<FloatType>()) {
|
||
auto bitwidth = floatType.getWidth();
|
||
if (failed(checkOperandSizeForBitwidth(bitwidth))) {
|
||
return failure();
|
||
}
|
||
|
||
APFloat value(0.f);
|
||
if (floatType.isF64()) {
|
||
// Double values are represented with two SPIR-V words. According to
|
||
// SPIR-V spec: "When the type’s bit width is larger than one word, the
|
||
// literal’s low-order words appear first."
|
||
struct DoubleWord {
|
||
uint32_t word1;
|
||
uint32_t word2;
|
||
} words = {operands[2], operands[3]};
|
||
value = APFloat(llvm::bit_cast<double>(words));
|
||
} else if (floatType.isF32()) {
|
||
value = APFloat(llvm::bit_cast<float>(operands[2]));
|
||
} else if (floatType.isF16()) {
|
||
APInt data(16, operands[2]);
|
||
value = APFloat(APFloat::IEEEhalf(), data);
|
||
}
|
||
|
||
auto attr = opBuilder.getFloatAttr(floatType, value);
|
||
if (isSpec) {
|
||
createSpecConstant(unknownLoc, resultID, attr);
|
||
} else {
|
||
// For normal constants, we just record the attribute (and its type) for
|
||
// later materialization at use sites.
|
||
constantMap.try_emplace(resultID, attr, floatType);
|
||
}
|
||
|
||
return success();
|
||
}
|
||
|
||
return emitError(unknownLoc, "OpConstant can only generate values of "
|
||
"scalar integer or floating-point type");
|
||
}
|
||
|
||
LogicalResult spirv::Deserializer::processConstantBool(
|
||
bool isTrue, ArrayRef<uint32_t> operands, bool isSpec) {
|
||
if (operands.size() != 2) {
|
||
return emitError(unknownLoc, "Op")
|
||
<< (isSpec ? "Spec" : "") << "Constant"
|
||
<< (isTrue ? "True" : "False")
|
||
<< " must have type <id> and result <id>";
|
||
}
|
||
|
||
auto attr = opBuilder.getBoolAttr(isTrue);
|
||
auto resultID = operands[1];
|
||
if (isSpec) {
|
||
createSpecConstant(unknownLoc, resultID, attr);
|
||
} else {
|
||
// For normal constants, we just record the attribute (and its type) for
|
||
// later materialization at use sites.
|
||
constantMap.try_emplace(resultID, attr, opBuilder.getI1Type());
|
||
}
|
||
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processConstantComposite(ArrayRef<uint32_t> operands) {
|
||
if (operands.size() < 2) {
|
||
return emitError(unknownLoc,
|
||
"OpConstantComposite must have type <id> and result <id>");
|
||
}
|
||
if (operands.size() < 3) {
|
||
return emitError(unknownLoc,
|
||
"OpConstantComposite must have at least 1 parameter");
|
||
}
|
||
|
||
Type resultType = getType(operands[0]);
|
||
if (!resultType) {
|
||
return emitError(unknownLoc, "undefined result type from <id> ")
|
||
<< operands[0];
|
||
}
|
||
|
||
SmallVector<Attribute, 4> elements;
|
||
elements.reserve(operands.size() - 2);
|
||
for (unsigned i = 2, e = operands.size(); i < e; ++i) {
|
||
auto elementInfo = getConstant(operands[i]);
|
||
if (!elementInfo) {
|
||
return emitError(unknownLoc, "OpConstantComposite component <id> ")
|
||
<< operands[i] << " must come from a normal constant";
|
||
}
|
||
elements.push_back(elementInfo->first);
|
||
}
|
||
|
||
auto resultID = operands[1];
|
||
if (auto vectorType = resultType.dyn_cast<VectorType>()) {
|
||
auto attr = DenseElementsAttr::get(vectorType, elements);
|
||
// For normal constants, we just record the attribute (and its type) for
|
||
// later materialization at use sites.
|
||
constantMap.try_emplace(resultID, attr, resultType);
|
||
} else if (auto arrayType = resultType.dyn_cast<spirv::ArrayType>()) {
|
||
auto attr = opBuilder.getArrayAttr(elements);
|
||
constantMap.try_emplace(resultID, attr, resultType);
|
||
} else {
|
||
return emitError(unknownLoc, "unsupported OpConstantComposite type: ")
|
||
<< resultType;
|
||
}
|
||
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processSpecConstantComposite(ArrayRef<uint32_t> operands) {
|
||
if (operands.size() < 2) {
|
||
return emitError(unknownLoc,
|
||
"OpConstantComposite must have type <id> and result <id>");
|
||
}
|
||
if (operands.size() < 3) {
|
||
return emitError(unknownLoc,
|
||
"OpConstantComposite must have at least 1 parameter");
|
||
}
|
||
|
||
Type resultType = getType(operands[0]);
|
||
if (!resultType) {
|
||
return emitError(unknownLoc, "undefined result type from <id> ")
|
||
<< operands[0];
|
||
}
|
||
|
||
auto resultID = operands[1];
|
||
auto symName = opBuilder.getStringAttr(getSpecConstantSymbol(resultID));
|
||
|
||
SmallVector<Attribute, 4> elements;
|
||
elements.reserve(operands.size() - 2);
|
||
for (unsigned i = 2, e = operands.size(); i < e; ++i) {
|
||
auto elementInfo = getSpecConstant(operands[i]);
|
||
elements.push_back(SymbolRefAttr::get(elementInfo));
|
||
}
|
||
|
||
auto op = opBuilder.create<spirv::SpecConstantCompositeOp>(
|
||
unknownLoc, TypeAttr::get(resultType), symName,
|
||
opBuilder.getArrayAttr(elements));
|
||
specConstCompositeMap[resultID] = op;
|
||
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processSpecConstantOperation(ArrayRef<uint32_t> operands) {
|
||
if (operands.size() < 3)
|
||
return emitError(unknownLoc, "OpConstantOperation must have type <id>, "
|
||
"result <id>, and operand opcode");
|
||
|
||
uint32_t resultTypeID = operands[0];
|
||
|
||
if (!getType(resultTypeID))
|
||
return emitError(unknownLoc, "undefined result type from <id> ")
|
||
<< resultTypeID;
|
||
|
||
uint32_t resultID = operands[1];
|
||
spirv::Opcode enclosedOpcode = static_cast<spirv::Opcode>(operands[2]);
|
||
auto emplaceResult = specConstOperationMap.try_emplace(
|
||
resultID,
|
||
SpecConstOperationMaterializationInfo{
|
||
enclosedOpcode, resultTypeID,
|
||
SmallVector<uint32_t>{operands.begin() + 3, operands.end()}});
|
||
|
||
if (!emplaceResult.second)
|
||
return emitError(unknownLoc, "value with <id>: ")
|
||
<< resultID << " is probably defined before.";
|
||
|
||
return success();
|
||
}
|
||
|
||
Value spirv::Deserializer::materializeSpecConstantOperation(
|
||
uint32_t resultID, spirv::Opcode enclosedOpcode, uint32_t resultTypeID,
|
||
ArrayRef<uint32_t> enclosedOpOperands) {
|
||
|
||
Type resultType = getType(resultTypeID);
|
||
|
||
// Instructions wrapped by OpSpecConstantOp need an ID for their
|
||
// Deserializer::processOp<op_name>(...) to emit the corresponding SPIR-V
|
||
// dialect wrapped op. For that purpose, a new value map is created and "fake"
|
||
// ID in that map is assigned to the result of the enclosed instruction. Note
|
||
// that there is no need to update this fake ID since we only need to
|
||
// reference the created Value for the enclosed op from the spv::YieldOp
|
||
// created later in this method (both of which are the only values in their
|
||
// region: the SpecConstantOperation's region). If we encounter another
|
||
// SpecConstantOperation in the module, we simply re-use the fake ID since the
|
||
// previous Value assigned to it isn't visible in the current scope anyway.
|
||
DenseMap<uint32_t, Value> newValueMap;
|
||
llvm::SaveAndRestore<DenseMap<uint32_t, Value>> valueMapGuard(valueMap,
|
||
newValueMap);
|
||
constexpr uint32_t fakeID = static_cast<uint32_t>(-3);
|
||
|
||
SmallVector<uint32_t, 4> enclosedOpResultTypeAndOperands;
|
||
enclosedOpResultTypeAndOperands.push_back(resultTypeID);
|
||
enclosedOpResultTypeAndOperands.push_back(fakeID);
|
||
enclosedOpResultTypeAndOperands.append(enclosedOpOperands.begin(),
|
||
enclosedOpOperands.end());
|
||
|
||
// Process enclosed instruction before creating the enclosing
|
||
// specConstantOperation (and its region). This way, references to constants,
|
||
// global variables, and spec constants will be materialized outside the new
|
||
// op's region. For more info, see Deserializer::getValue's implementation.
|
||
if (failed(
|
||
processInstruction(enclosedOpcode, enclosedOpResultTypeAndOperands)))
|
||
return Value();
|
||
|
||
// Since the enclosed op is emitted in the current block, split it in a
|
||
// separate new block.
|
||
Block *enclosedBlock = curBlock->splitBlock(&curBlock->back());
|
||
|
||
auto loc = createFileLineColLoc(opBuilder);
|
||
auto specConstOperationOp =
|
||
opBuilder.create<spirv::SpecConstantOperationOp>(loc, resultType);
|
||
|
||
Region &body = specConstOperationOp.body();
|
||
// Move the new block into SpecConstantOperation's body.
|
||
body.getBlocks().splice(body.end(), curBlock->getParent()->getBlocks(),
|
||
Region::iterator(enclosedBlock));
|
||
Block &block = body.back();
|
||
|
||
// RAII guard to reset the insertion point to the module's region after
|
||
// deserializing the body of the specConstantOperation.
|
||
OpBuilder::InsertionGuard moduleInsertionGuard(opBuilder);
|
||
opBuilder.setInsertionPointToEnd(&block);
|
||
|
||
opBuilder.create<spirv::YieldOp>(loc, block.front().getResult(0));
|
||
return specConstOperationOp.getResult();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processConstantNull(ArrayRef<uint32_t> operands) {
|
||
if (operands.size() != 2) {
|
||
return emitError(unknownLoc,
|
||
"OpConstantNull must have type <id> and result <id>");
|
||
}
|
||
|
||
Type resultType = getType(operands[0]);
|
||
if (!resultType) {
|
||
return emitError(unknownLoc, "undefined result type from <id> ")
|
||
<< operands[0];
|
||
}
|
||
|
||
auto resultID = operands[1];
|
||
if (resultType.isIntOrFloat() || resultType.isa<VectorType>()) {
|
||
auto attr = opBuilder.getZeroAttr(resultType);
|
||
// For normal constants, we just record the attribute (and its type) for
|
||
// later materialization at use sites.
|
||
constantMap.try_emplace(resultID, attr, resultType);
|
||
return success();
|
||
}
|
||
|
||
return emitError(unknownLoc, "unsupported OpConstantNull type: ")
|
||
<< resultType;
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Control flow
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
Block *spirv::Deserializer::getOrCreateBlock(uint32_t id) {
|
||
if (auto *block = getBlock(id)) {
|
||
LLVM_DEBUG(logger.startLine() << "[block] got exiting block for id = " << id
|
||
<< " @ " << block << "\n");
|
||
return block;
|
||
}
|
||
|
||
// We don't know where this block will be placed finally (in a
|
||
// spv.mlir.selection or spv.mlir.loop or function). Create it into the
|
||
// function for now and sort out the proper place later.
|
||
auto *block = curFunction->addBlock();
|
||
LLVM_DEBUG(logger.startLine() << "[block] created block for id = " << id
|
||
<< " @ " << block << "\n");
|
||
return blockMap[id] = block;
|
||
}
|
||
|
||
LogicalResult spirv::Deserializer::processBranch(ArrayRef<uint32_t> operands) {
|
||
if (!curBlock) {
|
||
return emitError(unknownLoc, "OpBranch must appear inside a block");
|
||
}
|
||
|
||
if (operands.size() != 1) {
|
||
return emitError(unknownLoc, "OpBranch must take exactly one target label");
|
||
}
|
||
|
||
auto *target = getOrCreateBlock(operands[0]);
|
||
auto loc = createFileLineColLoc(opBuilder);
|
||
// The preceding instruction for the OpBranch instruction could be an
|
||
// OpLoopMerge or an OpSelectionMerge instruction, in this case they will have
|
||
// the same OpLine information.
|
||
opBuilder.create<spirv::BranchOp>(loc, target);
|
||
|
||
clearDebugLine();
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processBranchConditional(ArrayRef<uint32_t> operands) {
|
||
if (!curBlock) {
|
||
return emitError(unknownLoc,
|
||
"OpBranchConditional must appear inside a block");
|
||
}
|
||
|
||
if (operands.size() != 3 && operands.size() != 5) {
|
||
return emitError(unknownLoc,
|
||
"OpBranchConditional must have condition, true label, "
|
||
"false label, and optionally two branch weights");
|
||
}
|
||
|
||
auto condition = getValue(operands[0]);
|
||
auto *trueBlock = getOrCreateBlock(operands[1]);
|
||
auto *falseBlock = getOrCreateBlock(operands[2]);
|
||
|
||
Optional<std::pair<uint32_t, uint32_t>> weights;
|
||
if (operands.size() == 5) {
|
||
weights = std::make_pair(operands[3], operands[4]);
|
||
}
|
||
// The preceding instruction for the OpBranchConditional instruction could be
|
||
// an OpSelectionMerge instruction, in this case they will have the same
|
||
// OpLine information.
|
||
auto loc = createFileLineColLoc(opBuilder);
|
||
opBuilder.create<spirv::BranchConditionalOp>(
|
||
loc, condition, trueBlock,
|
||
/*trueArguments=*/ArrayRef<Value>(), falseBlock,
|
||
/*falseArguments=*/ArrayRef<Value>(), weights);
|
||
|
||
clearDebugLine();
|
||
return success();
|
||
}
|
||
|
||
LogicalResult spirv::Deserializer::processLabel(ArrayRef<uint32_t> operands) {
|
||
if (!curFunction) {
|
||
return emitError(unknownLoc, "OpLabel must appear inside a function");
|
||
}
|
||
|
||
if (operands.size() != 1) {
|
||
return emitError(unknownLoc, "OpLabel should only have result <id>");
|
||
}
|
||
|
||
auto labelID = operands[0];
|
||
// We may have forward declared this block.
|
||
auto *block = getOrCreateBlock(labelID);
|
||
LLVM_DEBUG(logger.startLine()
|
||
<< "[block] populating block " << block << "\n");
|
||
// If we have seen this block, make sure it was just a forward declaration.
|
||
assert(block->empty() && "re-deserialize the same block!");
|
||
|
||
opBuilder.setInsertionPointToStart(block);
|
||
blockMap[labelID] = curBlock = block;
|
||
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processSelectionMerge(ArrayRef<uint32_t> operands) {
|
||
if (!curBlock) {
|
||
return emitError(unknownLoc, "OpSelectionMerge must appear in a block");
|
||
}
|
||
|
||
if (operands.size() < 2) {
|
||
return emitError(
|
||
unknownLoc,
|
||
"OpSelectionMerge must specify merge target and selection control");
|
||
}
|
||
|
||
auto *mergeBlock = getOrCreateBlock(operands[0]);
|
||
auto loc = createFileLineColLoc(opBuilder);
|
||
auto selectionControl = operands[1];
|
||
|
||
if (!blockMergeInfo.try_emplace(curBlock, loc, selectionControl, mergeBlock)
|
||
.second) {
|
||
return emitError(
|
||
unknownLoc,
|
||
"a block cannot have more than one OpSelectionMerge instruction");
|
||
}
|
||
|
||
return success();
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processLoopMerge(ArrayRef<uint32_t> operands) {
|
||
if (!curBlock) {
|
||
return emitError(unknownLoc, "OpLoopMerge must appear in a block");
|
||
}
|
||
|
||
if (operands.size() < 3) {
|
||
return emitError(unknownLoc, "OpLoopMerge must specify merge target, "
|
||
"continue target and loop control");
|
||
}
|
||
|
||
auto *mergeBlock = getOrCreateBlock(operands[0]);
|
||
auto *continueBlock = getOrCreateBlock(operands[1]);
|
||
auto loc = createFileLineColLoc(opBuilder);
|
||
uint32_t loopControl = operands[2];
|
||
|
||
if (!blockMergeInfo
|
||
.try_emplace(curBlock, loc, loopControl, mergeBlock, continueBlock)
|
||
.second) {
|
||
return emitError(
|
||
unknownLoc,
|
||
"a block cannot have more than one OpLoopMerge instruction");
|
||
}
|
||
|
||
return success();
|
||
}
|
||
|
||
LogicalResult spirv::Deserializer::processPhi(ArrayRef<uint32_t> operands) {
|
||
if (!curBlock) {
|
||
return emitError(unknownLoc, "OpPhi must appear in a block");
|
||
}
|
||
|
||
if (operands.size() < 4) {
|
||
return emitError(unknownLoc, "OpPhi must specify result type, result <id>, "
|
||
"and variable-parent pairs");
|
||
}
|
||
|
||
// Create a block argument for this OpPhi instruction.
|
||
Type blockArgType = getType(operands[0]);
|
||
BlockArgument blockArg = curBlock->addArgument(blockArgType, unknownLoc);
|
||
valueMap[operands[1]] = blockArg;
|
||
LLVM_DEBUG(logger.startLine()
|
||
<< "[phi] created block argument " << blockArg
|
||
<< " id = " << operands[1] << " of type " << blockArgType << "\n");
|
||
|
||
// For each (value, predecessor) pair, insert the value to the predecessor's
|
||
// blockPhiInfo entry so later we can fix the block argument there.
|
||
for (unsigned i = 2, e = operands.size(); i < e; i += 2) {
|
||
uint32_t value = operands[i];
|
||
Block *predecessor = getOrCreateBlock(operands[i + 1]);
|
||
std::pair<Block *, Block *> predecessorTargetPair{predecessor, curBlock};
|
||
blockPhiInfo[predecessorTargetPair].push_back(value);
|
||
LLVM_DEBUG(logger.startLine() << "[phi] predecessor @ " << predecessor
|
||
<< " with arg id = " << value << "\n");
|
||
}
|
||
|
||
return success();
|
||
}
|
||
|
||
namespace {
|
||
/// A class for putting all blocks in a structured selection/loop in a
|
||
/// spv.mlir.selection/spv.mlir.loop op.
|
||
class ControlFlowStructurizer {
|
||
public:
|
||
#ifndef NDEBUG
|
||
ControlFlowStructurizer(Location loc, uint32_t control,
|
||
spirv::BlockMergeInfoMap &mergeInfo, Block *header,
|
||
Block *merge, Block *cont,
|
||
llvm::ScopedPrinter &logger)
|
||
: location(loc), control(control), blockMergeInfo(mergeInfo),
|
||
headerBlock(header), mergeBlock(merge), continueBlock(cont),
|
||
logger(logger) {}
|
||
#else
|
||
ControlFlowStructurizer(Location loc, uint32_t control,
|
||
spirv::BlockMergeInfoMap &mergeInfo, Block *header,
|
||
Block *merge, Block *cont)
|
||
: location(loc), control(control), blockMergeInfo(mergeInfo),
|
||
headerBlock(header), mergeBlock(merge), continueBlock(cont) {}
|
||
#endif
|
||
|
||
/// Structurizes the loop at the given `headerBlock`.
|
||
///
|
||
/// This method will create an spv.mlir.loop op in the `mergeBlock` and move
|
||
/// all blocks in the structured loop into the spv.mlir.loop's region. All
|
||
/// branches to the `headerBlock` will be redirected to the `mergeBlock`. This
|
||
/// method will also update `mergeInfo` by remapping all blocks inside to the
|
||
/// newly cloned ones inside structured control flow op's regions.
|
||
LogicalResult structurize();
|
||
|
||
private:
|
||
/// Creates a new spv.mlir.selection op at the beginning of the `mergeBlock`.
|
||
spirv::SelectionOp createSelectionOp(uint32_t selectionControl);
|
||
|
||
/// Creates a new spv.mlir.loop op at the beginning of the `mergeBlock`.
|
||
spirv::LoopOp createLoopOp(uint32_t loopControl);
|
||
|
||
/// Collects all blocks reachable from `headerBlock` except `mergeBlock`.
|
||
void collectBlocksInConstruct();
|
||
|
||
Location location;
|
||
uint32_t control;
|
||
|
||
spirv::BlockMergeInfoMap &blockMergeInfo;
|
||
|
||
Block *headerBlock;
|
||
Block *mergeBlock;
|
||
Block *continueBlock; // nullptr for spv.mlir.selection
|
||
|
||
SetVector<Block *> constructBlocks;
|
||
|
||
#ifndef NDEBUG
|
||
/// A logger used to emit information during the deserialzation process.
|
||
llvm::ScopedPrinter &logger;
|
||
#endif
|
||
};
|
||
} // namespace
|
||
|
||
spirv::SelectionOp
|
||
ControlFlowStructurizer::createSelectionOp(uint32_t selectionControl) {
|
||
// Create a builder and set the insertion point to the beginning of the
|
||
// merge block so that the newly created SelectionOp will be inserted there.
|
||
OpBuilder builder(&mergeBlock->front());
|
||
|
||
auto control = static_cast<spirv::SelectionControl>(selectionControl);
|
||
auto selectionOp = builder.create<spirv::SelectionOp>(location, control);
|
||
selectionOp.addMergeBlock();
|
||
|
||
return selectionOp;
|
||
}
|
||
|
||
spirv::LoopOp ControlFlowStructurizer::createLoopOp(uint32_t loopControl) {
|
||
// Create a builder and set the insertion point to the beginning of the
|
||
// merge block so that the newly created LoopOp will be inserted there.
|
||
OpBuilder builder(&mergeBlock->front());
|
||
|
||
auto control = static_cast<spirv::LoopControl>(loopControl);
|
||
auto loopOp = builder.create<spirv::LoopOp>(location, control);
|
||
loopOp.addEntryAndMergeBlock();
|
||
|
||
return loopOp;
|
||
}
|
||
|
||
void ControlFlowStructurizer::collectBlocksInConstruct() {
|
||
assert(constructBlocks.empty() && "expected empty constructBlocks");
|
||
|
||
// Put the header block in the work list first.
|
||
constructBlocks.insert(headerBlock);
|
||
|
||
// For each item in the work list, add its successors excluding the merge
|
||
// block.
|
||
for (unsigned i = 0; i < constructBlocks.size(); ++i) {
|
||
for (auto *successor : constructBlocks[i]->getSuccessors())
|
||
if (successor != mergeBlock)
|
||
constructBlocks.insert(successor);
|
||
}
|
||
}
|
||
|
||
LogicalResult ControlFlowStructurizer::structurize() {
|
||
Operation *op = nullptr;
|
||
bool isLoop = continueBlock != nullptr;
|
||
if (isLoop) {
|
||
if (auto loopOp = createLoopOp(control))
|
||
op = loopOp.getOperation();
|
||
} else {
|
||
if (auto selectionOp = createSelectionOp(control))
|
||
op = selectionOp.getOperation();
|
||
}
|
||
if (!op)
|
||
return failure();
|
||
Region &body = op->getRegion(0);
|
||
|
||
BlockAndValueMapping mapper;
|
||
// All references to the old merge block should be directed to the
|
||
// selection/loop merge block in the SelectionOp/LoopOp's region.
|
||
mapper.map(mergeBlock, &body.back());
|
||
|
||
collectBlocksInConstruct();
|
||
|
||
// We've identified all blocks belonging to the selection/loop's region. Now
|
||
// need to "move" them into the selection/loop. Instead of really moving the
|
||
// blocks, in the following we copy them and remap all values and branches.
|
||
// This is because:
|
||
// * Inserting a block into a region requires the block not in any region
|
||
// before. But selections/loops can nest so we can create selection/loop ops
|
||
// in a nested manner, which means some blocks may already be in a
|
||
// selection/loop region when to be moved again.
|
||
// * It's much trickier to fix up the branches into and out of the loop's
|
||
// region: we need to treat not-moved blocks and moved blocks differently:
|
||
// Not-moved blocks jumping to the loop header block need to jump to the
|
||
// merge point containing the new loop op but not the loop continue block's
|
||
// back edge. Moved blocks jumping out of the loop need to jump to the
|
||
// merge block inside the loop region but not other not-moved blocks.
|
||
// We cannot use replaceAllUsesWith clearly and it's harder to follow the
|
||
// logic.
|
||
|
||
// Create a corresponding block in the SelectionOp/LoopOp's region for each
|
||
// block in this loop construct.
|
||
OpBuilder builder(body);
|
||
for (auto *block : constructBlocks) {
|
||
// Create a block and insert it before the selection/loop merge block in the
|
||
// SelectionOp/LoopOp's region.
|
||
auto *newBlock = builder.createBlock(&body.back());
|
||
mapper.map(block, newBlock);
|
||
LLVM_DEBUG(logger.startLine() << "[cf] cloned block " << newBlock
|
||
<< " from block " << block << "\n");
|
||
if (!isFnEntryBlock(block)) {
|
||
for (BlockArgument blockArg : block->getArguments()) {
|
||
auto newArg =
|
||
newBlock->addArgument(blockArg.getType(), blockArg.getLoc());
|
||
mapper.map(blockArg, newArg);
|
||
LLVM_DEBUG(logger.startLine() << "[cf] remapped block argument "
|
||
<< blockArg << " to " << newArg << "\n");
|
||
}
|
||
} else {
|
||
LLVM_DEBUG(logger.startLine()
|
||
<< "[cf] block " << block << " is a function entry block\n");
|
||
}
|
||
|
||
for (auto &op : *block)
|
||
newBlock->push_back(op.clone(mapper));
|
||
}
|
||
|
||
// Go through all ops and remap the operands.
|
||
auto remapOperands = [&](Operation *op) {
|
||
for (auto &operand : op->getOpOperands())
|
||
if (Value mappedOp = mapper.lookupOrNull(operand.get()))
|
||
operand.set(mappedOp);
|
||
for (auto &succOp : op->getBlockOperands())
|
||
if (Block *mappedOp = mapper.lookupOrNull(succOp.get()))
|
||
succOp.set(mappedOp);
|
||
};
|
||
for (auto &block : body)
|
||
block.walk(remapOperands);
|
||
|
||
// We have created the SelectionOp/LoopOp and "moved" all blocks belonging to
|
||
// the selection/loop construct into its region. Next we need to fix the
|
||
// connections between this new SelectionOp/LoopOp with existing blocks.
|
||
|
||
// All existing incoming branches should go to the merge block, where the
|
||
// SelectionOp/LoopOp resides right now.
|
||
headerBlock->replaceAllUsesWith(mergeBlock);
|
||
|
||
LLVM_DEBUG({
|
||
logger.startLine() << "[cf] after cloning and fixing references:\n";
|
||
headerBlock->getParentOp()->print(logger.getOStream());
|
||
logger.startLine() << "\n";
|
||
});
|
||
|
||
if (isLoop) {
|
||
if (!mergeBlock->args_empty()) {
|
||
return mergeBlock->getParentOp()->emitError(
|
||
"OpPhi in loop merge block unsupported");
|
||
}
|
||
|
||
// The loop header block may have block arguments. Since now we place the
|
||
// loop op inside the old merge block, we need to make sure the old merge
|
||
// block has the same block argument list.
|
||
for (BlockArgument blockArg : headerBlock->getArguments())
|
||
mergeBlock->addArgument(blockArg.getType(), blockArg.getLoc());
|
||
|
||
// If the loop header block has block arguments, make sure the spv.Branch op
|
||
// matches.
|
||
SmallVector<Value, 4> blockArgs;
|
||
if (!headerBlock->args_empty())
|
||
blockArgs = {mergeBlock->args_begin(), mergeBlock->args_end()};
|
||
|
||
// The loop entry block should have a unconditional branch jumping to the
|
||
// loop header block.
|
||
builder.setInsertionPointToEnd(&body.front());
|
||
builder.create<spirv::BranchOp>(location, mapper.lookupOrNull(headerBlock),
|
||
ArrayRef<Value>(blockArgs));
|
||
}
|
||
|
||
// All the blocks cloned into the SelectionOp/LoopOp's region can now be
|
||
// cleaned up.
|
||
LLVM_DEBUG(logger.startLine() << "[cf] cleaning up blocks after clone\n");
|
||
// First we need to drop all operands' references inside all blocks. This is
|
||
// needed because we can have blocks referencing SSA values from one another.
|
||
for (auto *block : constructBlocks)
|
||
block->dropAllReferences();
|
||
|
||
// Check that whether some op in the to-be-erased blocks still has uses. Those
|
||
// uses come from blocks that won't be sinked into the SelectionOp/LoopOp's
|
||
// region. We cannot handle such cases given that once a value is sinked into
|
||
// the SelectionOp/LoopOp's region, there is no escape for it:
|
||
// SelectionOp/LooOp does not support yield values right now.
|
||
for (auto *block : constructBlocks) {
|
||
for (Operation &op : *block)
|
||
if (!op.use_empty())
|
||
return op.emitOpError(
|
||
"failed control flow structurization: it has uses outside of the "
|
||
"enclosing selection/loop construct");
|
||
}
|
||
|
||
// Then erase all old blocks.
|
||
for (auto *block : constructBlocks) {
|
||
// We've cloned all blocks belonging to this construct into the structured
|
||
// control flow op's region. Among these blocks, some may compose another
|
||
// selection/loop. If so, they will be recorded within blockMergeInfo.
|
||
// We need to update the pointers there to the newly remapped ones so we can
|
||
// continue structurizing them later.
|
||
// TODO: The asserts in the following assumes input SPIR-V blob forms
|
||
// correctly nested selection/loop constructs. We should relax this and
|
||
// support error cases better.
|
||
auto it = blockMergeInfo.find(block);
|
||
if (it != blockMergeInfo.end()) {
|
||
// Use the original location for nested selection/loop ops.
|
||
Location loc = it->second.loc;
|
||
|
||
Block *newHeader = mapper.lookupOrNull(block);
|
||
if (!newHeader)
|
||
return emitError(loc, "failed control flow structurization: nested "
|
||
"loop header block should be remapped!");
|
||
|
||
Block *newContinue = it->second.continueBlock;
|
||
if (newContinue) {
|
||
newContinue = mapper.lookupOrNull(newContinue);
|
||
if (!newContinue)
|
||
return emitError(loc, "failed control flow structurization: nested "
|
||
"loop continue block should be remapped!");
|
||
}
|
||
|
||
Block *newMerge = it->second.mergeBlock;
|
||
if (Block *mappedTo = mapper.lookupOrNull(newMerge))
|
||
newMerge = mappedTo;
|
||
|
||
// The iterator should be erased before adding a new entry into
|
||
// blockMergeInfo to avoid iterator invalidation.
|
||
blockMergeInfo.erase(it);
|
||
blockMergeInfo.try_emplace(newHeader, loc, it->second.control, newMerge,
|
||
newContinue);
|
||
}
|
||
|
||
// The structured selection/loop's entry block does not have arguments.
|
||
// If the function's header block is also part of the structured control
|
||
// flow, we cannot just simply erase it because it may contain arguments
|
||
// matching the function signature and used by the cloned blocks.
|
||
if (isFnEntryBlock(block)) {
|
||
LLVM_DEBUG(logger.startLine() << "[cf] changing entry block " << block
|
||
<< " to only contain a spv.Branch op\n");
|
||
// Still keep the function entry block for the potential block arguments,
|
||
// but replace all ops inside with a branch to the merge block.
|
||
block->clear();
|
||
builder.setInsertionPointToEnd(block);
|
||
builder.create<spirv::BranchOp>(location, mergeBlock);
|
||
} else {
|
||
LLVM_DEBUG(logger.startLine() << "[cf] erasing block " << block << "\n");
|
||
block->erase();
|
||
}
|
||
}
|
||
|
||
LLVM_DEBUG(logger.startLine()
|
||
<< "[cf] after structurizing construct with header block "
|
||
<< headerBlock << ":\n"
|
||
<< *op << "\n");
|
||
|
||
return success();
|
||
}
|
||
|
||
LogicalResult spirv::Deserializer::wireUpBlockArgument() {
|
||
LLVM_DEBUG({
|
||
logger.startLine()
|
||
<< "//----- [phi] start wiring up block arguments -----//\n";
|
||
logger.indent();
|
||
});
|
||
|
||
OpBuilder::InsertionGuard guard(opBuilder);
|
||
|
||
for (const auto &info : blockPhiInfo) {
|
||
Block *block = info.first.first;
|
||
Block *target = info.first.second;
|
||
const BlockPhiInfo &phiInfo = info.second;
|
||
LLVM_DEBUG({
|
||
logger.startLine() << "[phi] block " << block << "\n";
|
||
logger.startLine() << "[phi] before creating block argument:\n";
|
||
block->getParentOp()->print(logger.getOStream());
|
||
logger.startLine() << "\n";
|
||
});
|
||
|
||
// Set insertion point to before this block's terminator early because we
|
||
// may materialize ops via getValue() call.
|
||
auto *op = block->getTerminator();
|
||
opBuilder.setInsertionPoint(op);
|
||
|
||
SmallVector<Value, 4> blockArgs;
|
||
blockArgs.reserve(phiInfo.size());
|
||
for (uint32_t valueId : phiInfo) {
|
||
if (Value value = getValue(valueId)) {
|
||
blockArgs.push_back(value);
|
||
LLVM_DEBUG(logger.startLine() << "[phi] block argument " << value
|
||
<< " id = " << valueId << "\n");
|
||
} else {
|
||
return emitError(unknownLoc, "OpPhi references undefined value!");
|
||
}
|
||
}
|
||
|
||
if (auto branchOp = dyn_cast<spirv::BranchOp>(op)) {
|
||
// Replace the previous branch op with a new one with block arguments.
|
||
opBuilder.create<spirv::BranchOp>(branchOp.getLoc(), branchOp.getTarget(),
|
||
blockArgs);
|
||
branchOp.erase();
|
||
} else if (auto branchCondOp = dyn_cast<spirv::BranchConditionalOp>(op)) {
|
||
assert((branchCondOp.getTrueBlock() == target ||
|
||
branchCondOp.getFalseBlock() == target) &&
|
||
"expected target to be either the true or false target");
|
||
if (target == branchCondOp.trueTarget())
|
||
opBuilder.create<spirv::BranchConditionalOp>(
|
||
branchCondOp.getLoc(), branchCondOp.condition(), blockArgs,
|
||
branchCondOp.getFalseBlockArguments(),
|
||
branchCondOp.branch_weightsAttr(), branchCondOp.trueTarget(),
|
||
branchCondOp.falseTarget());
|
||
else
|
||
opBuilder.create<spirv::BranchConditionalOp>(
|
||
branchCondOp.getLoc(), branchCondOp.condition(),
|
||
branchCondOp.getTrueBlockArguments(), blockArgs,
|
||
branchCondOp.branch_weightsAttr(), branchCondOp.getTrueBlock(),
|
||
branchCondOp.getFalseBlock());
|
||
|
||
branchCondOp.erase();
|
||
} else {
|
||
return emitError(unknownLoc, "unimplemented terminator for Phi creation");
|
||
}
|
||
|
||
LLVM_DEBUG({
|
||
logger.startLine() << "[phi] after creating block argument:\n";
|
||
block->getParentOp()->print(logger.getOStream());
|
||
logger.startLine() << "\n";
|
||
});
|
||
}
|
||
blockPhiInfo.clear();
|
||
|
||
LLVM_DEBUG({
|
||
logger.unindent();
|
||
logger.startLine()
|
||
<< "//--- [phi] completed wiring up block arguments ---//\n";
|
||
});
|
||
return success();
|
||
}
|
||
|
||
LogicalResult spirv::Deserializer::structurizeControlFlow() {
|
||
LLVM_DEBUG({
|
||
logger.startLine()
|
||
<< "//----- [cf] start structurizing control flow -----//\n";
|
||
logger.indent();
|
||
});
|
||
|
||
while (!blockMergeInfo.empty()) {
|
||
Block *headerBlock = blockMergeInfo.begin()->first;
|
||
BlockMergeInfo mergeInfo = blockMergeInfo.begin()->second;
|
||
|
||
LLVM_DEBUG({
|
||
logger.startLine() << "[cf] header block " << headerBlock << ":\n";
|
||
headerBlock->print(logger.getOStream());
|
||
logger.startLine() << "\n";
|
||
});
|
||
|
||
auto *mergeBlock = mergeInfo.mergeBlock;
|
||
assert(mergeBlock && "merge block cannot be nullptr");
|
||
if (!mergeBlock->args_empty())
|
||
return emitError(unknownLoc, "OpPhi in loop merge block unimplemented");
|
||
LLVM_DEBUG({
|
||
logger.startLine() << "[cf] merge block " << mergeBlock << ":\n";
|
||
mergeBlock->print(logger.getOStream());
|
||
logger.startLine() << "\n";
|
||
});
|
||
|
||
auto *continueBlock = mergeInfo.continueBlock;
|
||
LLVM_DEBUG(if (continueBlock) {
|
||
logger.startLine() << "[cf] continue block " << continueBlock << ":\n";
|
||
continueBlock->print(logger.getOStream());
|
||
logger.startLine() << "\n";
|
||
});
|
||
// Erase this case before calling into structurizer, who will update
|
||
// blockMergeInfo.
|
||
blockMergeInfo.erase(blockMergeInfo.begin());
|
||
ControlFlowStructurizer structurizer(mergeInfo.loc, mergeInfo.control,
|
||
blockMergeInfo, headerBlock,
|
||
mergeBlock, continueBlock
|
||
#ifndef NDEBUG
|
||
,
|
||
logger
|
||
#endif
|
||
);
|
||
if (failed(structurizer.structurize()))
|
||
return failure();
|
||
}
|
||
|
||
LLVM_DEBUG({
|
||
logger.unindent();
|
||
logger.startLine()
|
||
<< "//--- [cf] completed structurizing control flow ---//\n";
|
||
});
|
||
return success();
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Debug
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
Location spirv::Deserializer::createFileLineColLoc(OpBuilder opBuilder) {
|
||
if (!debugLine)
|
||
return unknownLoc;
|
||
|
||
auto fileName = debugInfoMap.lookup(debugLine->fileID).str();
|
||
if (fileName.empty())
|
||
fileName = "<unknown>";
|
||
return FileLineColLoc::get(opBuilder.getStringAttr(fileName), debugLine->line,
|
||
debugLine->column);
|
||
}
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processDebugLine(ArrayRef<uint32_t> operands) {
|
||
// According to SPIR-V spec:
|
||
// "This location information applies to the instructions physically
|
||
// following this instruction, up to the first occurrence of any of the
|
||
// following: the next end of block, the next OpLine instruction, or the next
|
||
// OpNoLine instruction."
|
||
if (operands.size() != 3)
|
||
return emitError(unknownLoc, "OpLine must have 3 operands");
|
||
debugLine = DebugLine{operands[0], operands[1], operands[2]};
|
||
return success();
|
||
}
|
||
|
||
void spirv::Deserializer::clearDebugLine() { debugLine = llvm::None; }
|
||
|
||
LogicalResult
|
||
spirv::Deserializer::processDebugString(ArrayRef<uint32_t> operands) {
|
||
if (operands.size() < 2)
|
||
return emitError(unknownLoc, "OpString needs at least 2 operands");
|
||
|
||
if (!debugInfoMap.lookup(operands[0]).empty())
|
||
return emitError(unknownLoc,
|
||
"duplicate debug string found for result <id> ")
|
||
<< operands[0];
|
||
|
||
unsigned wordIndex = 1;
|
||
StringRef debugString = decodeStringLiteral(operands, wordIndex);
|
||
if (wordIndex != operands.size())
|
||
return emitError(unknownLoc,
|
||
"unexpected trailing words in OpString instruction");
|
||
|
||
debugInfoMap[operands[0]] = debugString;
|
||
return success();
|
||
}
|