llvm-project/mlir/lib/Parser/Parser.cpp

2269 lines
82 KiB
C++

//===- Parser.cpp - MLIR Parser Implementation ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the parser for the MLIR textual form.
//
//===----------------------------------------------------------------------===//
#include "Parser.h"
#include "AsmParserImpl.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Verifier.h"
#include "mlir/Parser.h"
#include "mlir/Parser/AsmParserState.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/SourceMgr.h"
#include <algorithm>
using namespace mlir;
using namespace mlir::detail;
using llvm::MemoryBuffer;
using llvm::SourceMgr;
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
/// Parse a list of comma-separated items with an optional delimiter. If a
/// delimiter is provided, then an empty list is allowed. If not, then at
/// least one element will be parsed.
ParseResult
Parser::parseCommaSeparatedList(Delimiter delimiter,
function_ref<ParseResult()> parseElementFn,
StringRef contextMessage) {
switch (delimiter) {
case Delimiter::None:
break;
case Delimiter::OptionalParen:
if (getToken().isNot(Token::l_paren))
return success();
LLVM_FALLTHROUGH;
case Delimiter::Paren:
if (parseToken(Token::l_paren, "expected '('" + contextMessage))
return failure();
// Check for empty list.
if (consumeIf(Token::r_paren))
return success();
break;
case Delimiter::OptionalLessGreater:
// Check for absent list.
if (getToken().isNot(Token::less))
return success();
LLVM_FALLTHROUGH;
case Delimiter::LessGreater:
if (parseToken(Token::less, "expected '<'" + contextMessage))
return success();
// Check for empty list.
if (consumeIf(Token::greater))
return success();
break;
case Delimiter::OptionalSquare:
if (getToken().isNot(Token::l_square))
return success();
LLVM_FALLTHROUGH;
case Delimiter::Square:
if (parseToken(Token::l_square, "expected '['" + contextMessage))
return failure();
// Check for empty list.
if (consumeIf(Token::r_square))
return success();
break;
case Delimiter::OptionalBraces:
if (getToken().isNot(Token::l_brace))
return success();
LLVM_FALLTHROUGH;
case Delimiter::Braces:
if (parseToken(Token::l_brace, "expected '{'" + contextMessage))
return failure();
// Check for empty list.
if (consumeIf(Token::r_brace))
return success();
break;
}
// Non-empty case starts with an element.
if (parseElementFn())
return failure();
// Otherwise we have a list of comma separated elements.
while (consumeIf(Token::comma)) {
if (parseElementFn())
return failure();
}
switch (delimiter) {
case Delimiter::None:
return success();
case Delimiter::OptionalParen:
case Delimiter::Paren:
return parseToken(Token::r_paren, "expected ')'" + contextMessage);
case Delimiter::OptionalLessGreater:
case Delimiter::LessGreater:
return parseToken(Token::greater, "expected '>'" + contextMessage);
case Delimiter::OptionalSquare:
case Delimiter::Square:
return parseToken(Token::r_square, "expected ']'" + contextMessage);
case Delimiter::OptionalBraces:
case Delimiter::Braces:
return parseToken(Token::r_brace, "expected '}'" + contextMessage);
}
llvm_unreachable("Unknown delimiter");
}
/// Parse a comma-separated list of elements, terminated with an arbitrary
/// token. This allows empty lists if allowEmptyList is true.
///
/// abstract-list ::= rightToken // if allowEmptyList == true
/// abstract-list ::= element (',' element)* rightToken
///
ParseResult
Parser::parseCommaSeparatedListUntil(Token::Kind rightToken,
function_ref<ParseResult()> parseElement,
bool allowEmptyList) {
// Handle the empty case.
if (getToken().is(rightToken)) {
if (!allowEmptyList)
return emitError("expected list element");
consumeToken(rightToken);
return success();
}
if (parseCommaSeparatedList(parseElement) ||
parseToken(rightToken, "expected ',' or '" +
Token::getTokenSpelling(rightToken) + "'"))
return failure();
return success();
}
InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) {
auto diag = mlir::emitError(getEncodedSourceLocation(loc), message);
// If we hit a parse error in response to a lexer error, then the lexer
// already reported the error.
if (getToken().is(Token::error))
diag.abandon();
return diag;
}
/// Consume the specified token if present and return success. On failure,
/// output a diagnostic and return failure.
ParseResult Parser::parseToken(Token::Kind expectedToken,
const Twine &message) {
if (consumeIf(expectedToken))
return success();
return emitError(message);
}
/// Parse an optional integer value from the stream.
OptionalParseResult Parser::parseOptionalInteger(APInt &result) {
Token curToken = getToken();
if (curToken.isNot(Token::integer, Token::minus))
return llvm::None;
bool negative = consumeIf(Token::minus);
Token curTok = getToken();
if (parseToken(Token::integer, "expected integer value"))
return failure();
StringRef spelling = curTok.getSpelling();
bool isHex = spelling.size() > 1 && spelling[1] == 'x';
if (spelling.getAsInteger(isHex ? 0 : 10, result))
return emitError(curTok.getLoc(), "integer value too large");
// Make sure we have a zero at the top so we return the right signedness.
if (result.isNegative())
result = result.zext(result.getBitWidth() + 1);
// Process the negative sign if present.
if (negative)
result.negate();
return success();
}
/// Parse a floating point value from an integer literal token.
ParseResult Parser::parseFloatFromIntegerLiteral(
Optional<APFloat> &result, const Token &tok, bool isNegative,
const llvm::fltSemantics &semantics, size_t typeSizeInBits) {
SMLoc loc = tok.getLoc();
StringRef spelling = tok.getSpelling();
bool isHex = spelling.size() > 1 && spelling[1] == 'x';
if (!isHex) {
return emitError(loc, "unexpected decimal integer literal for a "
"floating point value")
.attachNote()
<< "add a trailing dot to make the literal a float";
}
if (isNegative) {
return emitError(loc, "hexadecimal float literal should not have a "
"leading minus");
}
Optional<uint64_t> value = tok.getUInt64IntegerValue();
if (!value.hasValue())
return emitError(loc, "hexadecimal float constant out of range for type");
if (&semantics == &APFloat::IEEEdouble()) {
result = APFloat(semantics, APInt(typeSizeInBits, *value));
return success();
}
APInt apInt(typeSizeInBits, *value);
if (apInt != *value)
return emitError(loc, "hexadecimal float constant out of range for type");
result = APFloat(semantics, apInt);
return success();
}
//===----------------------------------------------------------------------===//
// OperationParser
//===----------------------------------------------------------------------===//
namespace {
/// This class provides support for parsing operations and regions of
/// operations.
class OperationParser : public Parser {
public:
OperationParser(ParserState &state, ModuleOp topLevelOp);
~OperationParser();
/// After parsing is finished, this function must be called to see if there
/// are any remaining issues.
ParseResult finalize();
//===--------------------------------------------------------------------===//
// SSA Value Handling
//===--------------------------------------------------------------------===//
/// This represents a use of an SSA value in the program. The first two
/// entries in the tuple are the name and result number of a reference. The
/// third is the location of the reference, which is used in case this ends
/// up being a use of an undefined value.
struct SSAUseInfo {
StringRef name; // Value name, e.g. %42 or %abc
unsigned number; // Number, specified with #12
SMLoc loc; // Location of first definition or use.
};
/// Push a new SSA name scope to the parser.
void pushSSANameScope(bool isIsolated);
/// Pop the last SSA name scope from the parser.
ParseResult popSSANameScope();
/// Register a definition of a value with the symbol table.
ParseResult addDefinition(SSAUseInfo useInfo, Value value);
/// Parse an optional list of SSA uses into 'results'.
ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results);
/// Parse a single SSA use into 'result'.
ParseResult parseSSAUse(SSAUseInfo &result);
/// Given a reference to an SSA value and its type, return a reference. This
/// returns null on failure.
Value resolveSSAUse(SSAUseInfo useInfo, Type type);
ParseResult
parseSSADefOrUseAndType(function_ref<ParseResult(SSAUseInfo, Type)> action);
ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results);
/// Return the location of the value identified by its name and number if it
/// has been already reference.
Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) {
auto &values = isolatedNameScopes.back().values;
if (!values.count(name) || number >= values[name].size())
return {};
if (values[name][number].value)
return values[name][number].loc;
return {};
}
//===--------------------------------------------------------------------===//
// Operation Parsing
//===--------------------------------------------------------------------===//
/// Parse an operation instance.
ParseResult parseOperation();
/// Parse a single operation successor.
ParseResult parseSuccessor(Block *&dest);
/// Parse a comma-separated list of operation successors in brackets.
ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations);
/// Parse an operation instance that is in the generic form.
Operation *parseGenericOperation();
/// Parse different components, viz., use-info of operand(s), successor(s),
/// region(s), attribute(s) and function-type, of the generic form of an
/// operation instance and populate the input operation-state 'result' with
/// those components. If any of the components is explicitly provided, then
/// skip parsing that component.
ParseResult parseGenericOperationAfterOpName(
OperationState &result,
Optional<ArrayRef<SSAUseInfo>> parsedOperandUseInfo = llvm::None,
Optional<ArrayRef<Block *>> parsedSuccessors = llvm::None,
Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions =
llvm::None,
Optional<ArrayRef<NamedAttribute>> parsedAttributes = llvm::None,
Optional<FunctionType> parsedFnType = llvm::None);
/// Parse an operation instance that is in the generic form and insert it at
/// the provided insertion point.
Operation *parseGenericOperation(Block *insertBlock,
Block::iterator insertPt);
/// This type is used to keep track of things that are either an Operation or
/// a BlockArgument. We cannot use Value for this, because not all Operations
/// have results.
using OpOrArgument = llvm::PointerUnion<Operation *, BlockArgument>;
/// Parse an optional trailing location and add it to the specifier Operation
/// or `OperandType` if present.
///
/// trailing-location ::= (`loc` (`(` location `)` | attribute-alias))?
///
ParseResult parseTrailingLocationSpecifier(OpOrArgument opOrArgument);
/// Parse a location alias, that is a sequence looking like: #loc42
/// The alias may have already be defined or may be defined later, in which
/// case an OpaqueLoc is used a placeholder.
ParseResult parseLocationAlias(LocationAttr &loc);
/// This is the structure of a result specifier in the assembly syntax,
/// including the name, number of results, and location.
using ResultRecord = std::tuple<StringRef, unsigned, SMLoc>;
/// Parse an operation instance that is in the op-defined custom form.
/// resultInfo specifies information about the "%name =" specifiers.
Operation *parseCustomOperation(ArrayRef<ResultRecord> resultIDs);
/// Parse the name of an operation, in the custom form. On success, return a
/// an object of type 'OperationName'. Otherwise, failure is returned.
FailureOr<OperationName> parseCustomOperationName();
//===--------------------------------------------------------------------===//
// Region Parsing
//===--------------------------------------------------------------------===//
/// Parse a region into 'region' with the provided entry block arguments.
/// If non-empty, 'argLocations' contains an optional locations for each
/// argument. 'isIsolatedNameScope' indicates if the naming scope of this
/// region is isolated from those above.
ParseResult parseRegion(Region &region,
ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments,
ArrayRef<Location> argLocations,
bool isIsolatedNameScope = false);
/// Parse a region body into 'region'.
ParseResult
parseRegionBody(Region &region, SMLoc startLoc,
ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments,
ArrayRef<Location> argLocations, bool isIsolatedNameScope);
//===--------------------------------------------------------------------===//
// Block Parsing
//===--------------------------------------------------------------------===//
/// Parse a new block into 'block'.
ParseResult parseBlock(Block *&block);
/// Parse a list of operations into 'block'.
ParseResult parseBlockBody(Block *block);
/// Parse a (possibly empty) list of block arguments.
ParseResult parseOptionalBlockArgList(Block *owner);
/// Get the block with the specified name, creating it if it doesn't
/// already exist. The location specified is the point of use, which allows
/// us to diagnose references to blocks that are not defined precisely.
Block *getBlockNamed(StringRef name, SMLoc loc);
/// Define the block with the specified name. Returns the Block* or nullptr in
/// the case of redefinition.
Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing);
private:
/// This class represents a definition of a Block.
struct BlockDefinition {
/// A pointer to the defined Block.
Block *block;
/// The location that the Block was defined at.
SMLoc loc;
};
/// This class represents a definition of a Value.
struct ValueDefinition {
/// A pointer to the defined Value.
Value value;
/// The location that the Value was defined at.
SMLoc loc;
};
/// Returns the info for a block at the current scope for the given name.
BlockDefinition &getBlockInfoByName(StringRef name) {
return blocksByName.back()[name];
}
/// Insert a new forward reference to the given block.
void insertForwardRef(Block *block, SMLoc loc) {
forwardRef.back().try_emplace(block, loc);
}
/// Erase any forward reference to the given block.
bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); }
/// Record that a definition was added at the current scope.
void recordDefinition(StringRef def);
/// Get the value entry for the given SSA name.
SmallVectorImpl<ValueDefinition> &getSSAValueEntry(StringRef name);
/// Create a forward reference placeholder value with the given location and
/// result type.
Value createForwardRefPlaceholder(SMLoc loc, Type type);
/// Return true if this is a forward reference.
bool isForwardRefPlaceholder(Value value) {
return forwardRefPlaceholders.count(value);
}
/// This struct represents an isolated SSA name scope. This scope may contain
/// other nested non-isolated scopes. These scopes are used for operations
/// that are known to be isolated to allow for reusing names within their
/// regions, even if those names are used above.
struct IsolatedSSANameScope {
/// Record that a definition was added at the current scope.
void recordDefinition(StringRef def) {
definitionsPerScope.back().insert(def);
}
/// Push a nested name scope.
void pushSSANameScope() { definitionsPerScope.push_back({}); }
/// Pop a nested name scope.
void popSSANameScope() {
for (auto &def : definitionsPerScope.pop_back_val())
values.erase(def.getKey());
}
/// This keeps track of all of the SSA values we are tracking for each name
/// scope, indexed by their name. This has one entry per result number.
llvm::StringMap<SmallVector<ValueDefinition, 1>> values;
/// This keeps track of all of the values defined by a specific name scope.
SmallVector<llvm::StringSet<>, 2> definitionsPerScope;
};
/// A list of isolated name scopes.
SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes;
/// This keeps track of the block names as well as the location of the first
/// reference for each nested name scope. This is used to diagnose invalid
/// block references and memorize them.
SmallVector<DenseMap<StringRef, BlockDefinition>, 2> blocksByName;
SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef;
/// These are all of the placeholders we've made along with the location of
/// their first reference, to allow checking for use of undefined values.
DenseMap<Value, SMLoc> forwardRefPlaceholders;
/// Deffered locations: when parsing `loc(#loc42)` we add an entry to this
/// map. After parsing the definition `#loc42 = ...` we'll patch back users
/// of this location.
struct DeferredLocInfo {
SMLoc loc;
StringRef identifier;
};
std::vector<DeferredLocInfo> deferredLocsReferences;
/// The builder used when creating parsed operation instances.
OpBuilder opBuilder;
/// The top level operation that holds all of the parsed operations.
Operation *topLevelOp;
};
} // namespace
OperationParser::OperationParser(ParserState &state, ModuleOp topLevelOp)
: Parser(state), opBuilder(topLevelOp.getRegion()), topLevelOp(topLevelOp) {
// The top level operation starts a new name scope.
pushSSANameScope(/*isIsolated=*/true);
// If we are populating the parser state, prepare it for parsing.
if (state.asmState)
state.asmState->initialize(topLevelOp);
}
OperationParser::~OperationParser() {
for (auto &fwd : forwardRefPlaceholders) {
// Drop all uses of undefined forward declared reference and destroy
// defining operation.
fwd.first.dropAllUses();
fwd.first.getDefiningOp()->destroy();
}
for (const auto &scope : forwardRef) {
for (const auto &fwd : scope) {
// Delete all blocks that were created as forward references but never
// included into a region.
fwd.first->dropAllUses();
delete fwd.first;
}
}
}
/// After parsing is finished, this function must be called to see if there are
/// any remaining issues.
ParseResult OperationParser::finalize() {
// Check for any forward references that are left. If we find any, error
// out.
if (!forwardRefPlaceholders.empty()) {
SmallVector<const char *, 4> errors;
// Iteration over the map isn't deterministic, so sort by source location.
for (auto entry : forwardRefPlaceholders)
errors.push_back(entry.second.getPointer());
llvm::array_pod_sort(errors.begin(), errors.end());
for (const char *entry : errors) {
auto loc = SMLoc::getFromPointer(entry);
emitError(loc, "use of undeclared SSA value name");
}
return failure();
}
// Resolve the locations of any deferred operations.
auto &attributeAliases = state.symbols.attributeAliasDefinitions;
auto locID = TypeID::get<DeferredLocInfo *>();
auto resolveLocation = [&, this](auto &opOrArgument) -> LogicalResult {
auto fwdLoc = opOrArgument.getLoc().template dyn_cast<OpaqueLoc>();
if (!fwdLoc || fwdLoc.getUnderlyingTypeID() != locID)
return success();
auto locInfo = deferredLocsReferences[fwdLoc.getUnderlyingLocation()];
Attribute attr = attributeAliases.lookup(locInfo.identifier);
if (!attr)
return this->emitError(locInfo.loc)
<< "operation location alias was never defined";
auto locAttr = attr.dyn_cast<LocationAttr>();
if (!locAttr)
return this->emitError(locInfo.loc)
<< "expected location, but found '" << attr << "'";
opOrArgument.setLoc(locAttr);
return success();
};
auto walkRes = topLevelOp->walk([&](Operation *op) {
if (failed(resolveLocation(*op)))
return WalkResult::interrupt();
for (Region &region : op->getRegions())
for (Block &block : region.getBlocks())
for (BlockArgument arg : block.getArguments())
if (failed(resolveLocation(arg)))
return WalkResult::interrupt();
return WalkResult::advance();
});
if (walkRes.wasInterrupted())
return failure();
// Pop the top level name scope.
if (failed(popSSANameScope()))
return failure();
// Verify that the parsed operations are valid.
if (failed(verify(topLevelOp)))
return failure();
// If we are populating the parser state, finalize the top-level operation.
if (state.asmState)
state.asmState->finalize(topLevelOp);
return success();
}
//===----------------------------------------------------------------------===//
// SSA Value Handling
//===----------------------------------------------------------------------===//
void OperationParser::pushSSANameScope(bool isIsolated) {
blocksByName.push_back(DenseMap<StringRef, BlockDefinition>());
forwardRef.push_back(DenseMap<Block *, SMLoc>());
// Push back a new name definition scope.
if (isIsolated)
isolatedNameScopes.push_back({});
isolatedNameScopes.back().pushSSANameScope();
}
ParseResult OperationParser::popSSANameScope() {
auto forwardRefInCurrentScope = forwardRef.pop_back_val();
// Verify that all referenced blocks were defined.
if (!forwardRefInCurrentScope.empty()) {
SmallVector<std::pair<const char *, Block *>, 4> errors;
// Iteration over the map isn't deterministic, so sort by source location.
for (auto entry : forwardRefInCurrentScope) {
errors.push_back({entry.second.getPointer(), entry.first});
// Add this block to the top-level region to allow for automatic cleanup.
topLevelOp->getRegion(0).push_back(entry.first);
}
llvm::array_pod_sort(errors.begin(), errors.end());
for (auto entry : errors) {
auto loc = SMLoc::getFromPointer(entry.first);
emitError(loc, "reference to an undefined block");
}
return failure();
}
// Pop the next nested namescope. If there is only one internal namescope,
// just pop the isolated scope.
auto &currentNameScope = isolatedNameScopes.back();
if (currentNameScope.definitionsPerScope.size() == 1)
isolatedNameScopes.pop_back();
else
currentNameScope.popSSANameScope();
blocksByName.pop_back();
return success();
}
/// Register a definition of a value with the symbol table.
ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) {
auto &entries = getSSAValueEntry(useInfo.name);
// Make sure there is a slot for this value.
if (entries.size() <= useInfo.number)
entries.resize(useInfo.number + 1);
// If we already have an entry for this, check to see if it was a definition
// or a forward reference.
if (auto existing = entries[useInfo.number].value) {
if (!isForwardRefPlaceholder(existing)) {
return emitError(useInfo.loc)
.append("redefinition of SSA value '", useInfo.name, "'")
.attachNote(getEncodedSourceLocation(entries[useInfo.number].loc))
.append("previously defined here");
}
if (existing.getType() != value.getType()) {
return emitError(useInfo.loc)
.append("definition of SSA value '", useInfo.name, "#",
useInfo.number, "' has type ", value.getType())
.attachNote(getEncodedSourceLocation(entries[useInfo.number].loc))
.append("previously used here with type ", existing.getType());
}
// If it was a forward reference, update everything that used it to use
// the actual definition instead, delete the forward ref, and remove it
// from our set of forward references we track.
existing.replaceAllUsesWith(value);
existing.getDefiningOp()->destroy();
forwardRefPlaceholders.erase(existing);
// If a definition of the value already exists, replace it in the assembly
// state.
if (state.asmState)
state.asmState->refineDefinition(existing, value);
}
/// Record this definition for the current scope.
entries[useInfo.number] = {value, useInfo.loc};
recordDefinition(useInfo.name);
return success();
}
/// Parse a (possibly empty) list of SSA operands.
///
/// ssa-use-list ::= ssa-use (`,` ssa-use)*
/// ssa-use-list-opt ::= ssa-use-list?
///
ParseResult
OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) {
if (getToken().isNot(Token::percent_identifier))
return success();
return parseCommaSeparatedList([&]() -> ParseResult {
SSAUseInfo result;
if (parseSSAUse(result))
return failure();
results.push_back(result);
return success();
});
}
/// Parse a SSA operand for an operation.
///
/// ssa-use ::= ssa-id
///
ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) {
result.name = getTokenSpelling();
result.number = 0;
result.loc = getToken().getLoc();
if (parseToken(Token::percent_identifier, "expected SSA operand"))
return failure();
// If we have an attribute ID, it is a result number.
if (getToken().is(Token::hash_identifier)) {
if (auto value = getToken().getHashIdentifierNumber())
result.number = value.getValue();
else
return emitError("invalid SSA value result number");
consumeToken(Token::hash_identifier);
}
return success();
}
/// Given an unbound reference to an SSA value and its type, return the value
/// it specifies. This returns null on failure.
Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) {
auto &entries = getSSAValueEntry(useInfo.name);
// Functor used to record the use of the given value if the assembly state
// field is populated.
auto maybeRecordUse = [&](Value value) {
if (state.asmState)
state.asmState->addUses(value, useInfo.loc);
return value;
};
// If we have already seen a value of this name, return it.
if (useInfo.number < entries.size() && entries[useInfo.number].value) {
Value result = entries[useInfo.number].value;
// Check that the type matches the other uses.
if (result.getType() == type)
return maybeRecordUse(result);
emitError(useInfo.loc, "use of value '")
.append(useInfo.name,
"' expects different type than prior uses: ", type, " vs ",
result.getType())
.attachNote(getEncodedSourceLocation(entries[useInfo.number].loc))
.append("prior use here");
return nullptr;
}
// Make sure we have enough slots for this.
if (entries.size() <= useInfo.number)
entries.resize(useInfo.number + 1);
// If the value has already been defined and this is an overly large result
// number, diagnose that.
if (entries[0].value && !isForwardRefPlaceholder(entries[0].value))
return (emitError(useInfo.loc, "reference to invalid result number"),
nullptr);
// Otherwise, this is a forward reference. Create a placeholder and remember
// that we did so.
Value result = createForwardRefPlaceholder(useInfo.loc, type);
entries[useInfo.number] = {result, useInfo.loc};
return maybeRecordUse(result);
}
/// Parse an SSA use with an associated type.
///
/// ssa-use-and-type ::= ssa-use `:` type
ParseResult OperationParser::parseSSADefOrUseAndType(
function_ref<ParseResult(SSAUseInfo, Type)> action) {
SSAUseInfo useInfo;
if (parseSSAUse(useInfo) ||
parseToken(Token::colon, "expected ':' and type for SSA operand"))
return failure();
auto type = parseType();
if (!type)
return failure();
return action(useInfo, type);
}
/// Parse a (possibly empty) list of SSA operands, followed by a colon, then
/// followed by a type list.
///
/// ssa-use-and-type-list
/// ::= ssa-use-list ':' type-list-no-parens
///
ParseResult OperationParser::parseOptionalSSAUseAndTypeList(
SmallVectorImpl<Value> &results) {
SmallVector<SSAUseInfo, 4> valueIDs;
if (parseOptionalSSAUseList(valueIDs))
return failure();
// If there were no operands, then there is no colon or type lists.
if (valueIDs.empty())
return success();
SmallVector<Type, 4> types;
if (parseToken(Token::colon, "expected ':' in operand list") ||
parseTypeListNoParens(types))
return failure();
if (valueIDs.size() != types.size())
return emitError("expected ")
<< valueIDs.size() << " types to match operand list";
results.reserve(valueIDs.size());
for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) {
if (auto value = resolveSSAUse(valueIDs[i], types[i]))
results.push_back(value);
else
return failure();
}
return success();
}
/// Record that a definition was added at the current scope.
void OperationParser::recordDefinition(StringRef def) {
isolatedNameScopes.back().recordDefinition(def);
}
/// Get the value entry for the given SSA name.
auto OperationParser::getSSAValueEntry(StringRef name)
-> SmallVectorImpl<ValueDefinition> & {
return isolatedNameScopes.back().values[name];
}
/// Create and remember a new placeholder for a forward reference.
Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) {
// Forward references are always created as operations, because we just need
// something with a def/use chain.
//
// We create these placeholders as having an empty name, which we know
// cannot be created through normal user input, allowing us to distinguish
// them.
auto name = OperationName("builtin.unrealized_conversion_cast", getContext());
auto *op = Operation::create(
getEncodedSourceLocation(loc), name, type, /*operands=*/{},
/*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0);
forwardRefPlaceholders[op->getResult(0)] = loc;
return op->getResult(0);
}
//===----------------------------------------------------------------------===//
// Operation Parsing
//===----------------------------------------------------------------------===//
/// Parse an operation.
///
/// operation ::= op-result-list?
/// (generic-operation | custom-operation)
/// trailing-location?
/// generic-operation ::= string-literal `(` ssa-use-list? `)`
/// successor-list? (`(` region-list `)`)?
/// attribute-dict? `:` function-type
/// custom-operation ::= bare-id custom-operation-format
/// op-result-list ::= op-result (`,` op-result)* `=`
/// op-result ::= ssa-id (`:` integer-literal)
///
ParseResult OperationParser::parseOperation() {
auto loc = getToken().getLoc();
SmallVector<ResultRecord, 1> resultIDs;
size_t numExpectedResults = 0;
if (getToken().is(Token::percent_identifier)) {
// Parse the group of result ids.
auto parseNextResult = [&]() -> ParseResult {
// Parse the next result id.
if (!getToken().is(Token::percent_identifier))
return emitError("expected valid ssa identifier");
Token nameTok = getToken();
consumeToken(Token::percent_identifier);
// If the next token is a ':', we parse the expected result count.
size_t expectedSubResults = 1;
if (consumeIf(Token::colon)) {
// Check that the next token is an integer.
if (!getToken().is(Token::integer))
return emitError("expected integer number of results");
// Check that number of results is > 0.
auto val = getToken().getUInt64IntegerValue();
if (!val.hasValue() || val.getValue() < 1)
return emitError("expected named operation to have atleast 1 result");
consumeToken(Token::integer);
expectedSubResults = *val;
}
resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults,
nameTok.getLoc());
numExpectedResults += expectedSubResults;
return success();
};
if (parseCommaSeparatedList(parseNextResult))
return failure();
if (parseToken(Token::equal, "expected '=' after SSA name"))
return failure();
}
Operation *op;
Token nameTok = getToken();
if (nameTok.is(Token::bare_identifier) || nameTok.isKeyword())
op = parseCustomOperation(resultIDs);
else if (nameTok.is(Token::string))
op = parseGenericOperation();
else
return emitError("expected operation name in quotes");
// If parsing of the basic operation failed, then this whole thing fails.
if (!op)
return failure();
// If the operation had a name, register it.
if (!resultIDs.empty()) {
if (op->getNumResults() == 0)
return emitError(loc, "cannot name an operation with no results");
if (numExpectedResults != op->getNumResults())
return emitError(loc, "operation defines ")
<< op->getNumResults() << " results but was provided "
<< numExpectedResults << " to bind";
// Add this operation to the assembly state if it was provided to populate.
if (state.asmState) {
unsigned resultIt = 0;
SmallVector<std::pair<unsigned, SMLoc>> asmResultGroups;
asmResultGroups.reserve(resultIDs.size());
for (ResultRecord &record : resultIDs) {
asmResultGroups.emplace_back(resultIt, std::get<2>(record));
resultIt += std::get<1>(record);
}
state.asmState->finalizeOperationDefinition(
op, nameTok.getLocRange(), /*endLoc=*/getToken().getLoc(),
asmResultGroups);
}
// Add definitions for each of the result groups.
unsigned opResI = 0;
for (ResultRecord &resIt : resultIDs) {
for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) {
if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)},
op->getResult(opResI++)))
return failure();
}
}
// Add this operation to the assembly state if it was provided to populate.
} else if (state.asmState) {
state.asmState->finalizeOperationDefinition(op, nameTok.getLocRange(),
/*endLoc=*/getToken().getLoc());
}
return success();
}
/// Parse a single operation successor.
///
/// successor ::= block-id
///
ParseResult OperationParser::parseSuccessor(Block *&dest) {
// Verify branch is identifier and get the matching block.
if (!getToken().is(Token::caret_identifier))
return emitError("expected block name");
dest = getBlockNamed(getTokenSpelling(), getToken().getLoc());
consumeToken();
return success();
}
/// Parse a comma-separated list of operation successors in brackets.
///
/// successor-list ::= `[` successor (`,` successor )* `]`
///
ParseResult
OperationParser::parseSuccessors(SmallVectorImpl<Block *> &destinations) {
if (parseToken(Token::l_square, "expected '['"))
return failure();
auto parseElt = [this, &destinations] {
Block *dest;
ParseResult res = parseSuccessor(dest);
destinations.push_back(dest);
return res;
};
return parseCommaSeparatedListUntil(Token::r_square, parseElt,
/*allowEmptyList=*/false);
}
namespace {
// RAII-style guard for cleaning up the regions in the operation state before
// deleting them. Within the parser, regions may get deleted if parsing failed,
// and other errors may be present, in particular undominated uses. This makes
// sure such uses are deleted.
struct CleanupOpStateRegions {
~CleanupOpStateRegions() {
SmallVector<Region *, 4> regionsToClean;
regionsToClean.reserve(state.regions.size());
for (auto &region : state.regions)
if (region)
for (auto &block : *region)
block.dropAllDefinedValueUses();
}
OperationState &state;
};
} // namespace
ParseResult OperationParser::parseGenericOperationAfterOpName(
OperationState &result, Optional<ArrayRef<SSAUseInfo>> parsedOperandUseInfo,
Optional<ArrayRef<Block *>> parsedSuccessors,
Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions,
Optional<ArrayRef<NamedAttribute>> parsedAttributes,
Optional<FunctionType> parsedFnType) {
// Parse the operand list, if not explicitly provided.
SmallVector<SSAUseInfo, 8> opInfo;
if (!parsedOperandUseInfo) {
if (parseToken(Token::l_paren, "expected '(' to start operand list") ||
parseOptionalSSAUseList(opInfo) ||
parseToken(Token::r_paren, "expected ')' to end operand list")) {
return failure();
}
parsedOperandUseInfo = opInfo;
}
// Parse the successor list, if not explicitly provided.
if (!parsedSuccessors) {
if (getToken().is(Token::l_square)) {
// Check if the operation is not a known terminator.
if (!result.name.mightHaveTrait<OpTrait::IsTerminator>())
return emitError("successors in non-terminator");
SmallVector<Block *, 2> successors;
if (parseSuccessors(successors))
return failure();
result.addSuccessors(successors);
}
} else {
result.addSuccessors(*parsedSuccessors);
}
// Parse the region list, if not explicitly provided.
if (!parsedRegions) {
if (consumeIf(Token::l_paren)) {
do {
// Create temporary regions with the top level region as parent.
result.regions.emplace_back(new Region(topLevelOp));
if (parseRegion(*result.regions.back(), /*entryArguments=*/{},
/*argLocations=*/{}))
return failure();
} while (consumeIf(Token::comma));
if (parseToken(Token::r_paren, "expected ')' to end region list"))
return failure();
}
} else {
result.addRegions(*parsedRegions);
}
// Parse the attributes, if not explicitly provided.
if (!parsedAttributes) {
if (getToken().is(Token::l_brace)) {
if (parseAttributeDict(result.attributes))
return failure();
}
} else {
result.addAttributes(*parsedAttributes);
}
// Parse the operation type, if not explicitly provided.
Location typeLoc = result.location;
if (!parsedFnType) {
if (parseToken(Token::colon, "expected ':' followed by operation type"))
return failure();
typeLoc = getEncodedSourceLocation(getToken().getLoc());
auto type = parseType();
if (!type)
return failure();
auto fnType = type.dyn_cast<FunctionType>();
if (!fnType)
return mlir::emitError(typeLoc, "expected function type");
parsedFnType = fnType;
}
result.addTypes(parsedFnType->getResults());
// Check that we have the right number of types for the operands.
ArrayRef<Type> operandTypes = parsedFnType->getInputs();
if (operandTypes.size() != parsedOperandUseInfo->size()) {
auto plural = "s"[parsedOperandUseInfo->size() == 1];
return mlir::emitError(typeLoc, "expected ")
<< parsedOperandUseInfo->size() << " operand type" << plural
<< " but had " << operandTypes.size();
}
// Resolve all of the operands.
for (unsigned i = 0, e = parsedOperandUseInfo->size(); i != e; ++i) {
result.operands.push_back(
resolveSSAUse((*parsedOperandUseInfo)[i], operandTypes[i]));
if (!result.operands.back())
return failure();
}
return success();
}
Operation *OperationParser::parseGenericOperation() {
// Get location information for the operation.
auto srcLocation = getEncodedSourceLocation(getToken().getLoc());
std::string name = getToken().getStringValue();
if (name.empty())
return (emitError("empty operation name is invalid"), nullptr);
if (name.find('\0') != StringRef::npos)
return (emitError("null character not allowed in operation name"), nullptr);
consumeToken(Token::string);
OperationState result(srcLocation, name);
CleanupOpStateRegions guard{result};
// Lazy load dialects in the context as needed.
if (!result.name.isRegistered()) {
StringRef dialectName = StringRef(name).split('.').first;
if (!getContext()->getLoadedDialect(dialectName) &&
!getContext()->getOrLoadDialect(dialectName) &&
!getContext()->allowsUnregisteredDialects()) {
// Emit an error if the dialect couldn't be loaded (i.e., it was not
// registered) and unregistered dialects aren't allowed.
emitError("operation being parsed with an unregistered dialect. If "
"this is intended, please use -allow-unregistered-dialect "
"with the MLIR tool used");
return nullptr;
}
}
// If we are populating the parser state, start a new operation definition.
if (state.asmState)
state.asmState->startOperationDefinition(result.name);
if (parseGenericOperationAfterOpName(result))
return nullptr;
// Create the operation and try to parse a location for it.
Operation *op = opBuilder.createOperation(result);
if (parseTrailingLocationSpecifier(op))
return nullptr;
return op;
}
Operation *OperationParser::parseGenericOperation(Block *insertBlock,
Block::iterator insertPt) {
Token nameToken = getToken();
OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder);
opBuilder.setInsertionPoint(insertBlock, insertPt);
Operation *op = parseGenericOperation();
if (!op)
return nullptr;
// If we are populating the parser asm state, finalize this operation
// definition.
if (state.asmState)
state.asmState->finalizeOperationDefinition(op, nameToken.getLocRange(),
/*endLoc=*/getToken().getLoc());
return op;
}
namespace {
class CustomOpAsmParser : public AsmParserImpl<OpAsmParser> {
public:
CustomOpAsmParser(
SMLoc nameLoc, ArrayRef<OperationParser::ResultRecord> resultIDs,
function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly,
bool isIsolatedFromAbove, StringRef opName, OperationParser &parser)
: AsmParserImpl<OpAsmParser>(nameLoc, parser), resultIDs(resultIDs),
parseAssembly(parseAssembly), isIsolatedFromAbove(isIsolatedFromAbove),
opName(opName), parser(parser) {
(void)isIsolatedFromAbove; // Only used in assert, silence unused warning.
}
/// Parse an instance of the operation described by 'opDefinition' into the
/// provided operation state.
ParseResult parseOperation(OperationState &opState) {
if (parseAssembly(*this, opState))
return failure();
// Verify that the parsed attributes does not have duplicate attributes.
// This can happen if an attribute set during parsing is also specified in
// the attribute dictionary in the assembly, or the attribute is set
// multiple during parsing.
Optional<NamedAttribute> duplicate = opState.attributes.findDuplicate();
if (duplicate)
return emitError(getNameLoc(), "attribute '")
<< duplicate->getName().getValue()
<< "' occurs more than once in the attribute list";
return success();
}
Operation *parseGenericOperation(Block *insertBlock,
Block::iterator insertPt) final {
return parser.parseGenericOperation(insertBlock, insertPt);
}
FailureOr<OperationName> parseCustomOperationName() final {
return parser.parseCustomOperationName();
}
ParseResult parseGenericOperationAfterOpName(
OperationState &result,
Optional<ArrayRef<OperandType>> parsedOperandTypes,
Optional<ArrayRef<Block *>> parsedSuccessors,
Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions,
Optional<ArrayRef<NamedAttribute>> parsedAttributes,
Optional<FunctionType> parsedFnType) final {
// TODO: The types, OperandType and SSAUseInfo, both share the same members
// but in different order. It would be cleaner to make one alias of the
// other, making the following code redundant.
SmallVector<OperationParser::SSAUseInfo> parsedOperandUseInfo;
if (parsedOperandTypes) {
for (const OperandType &parsedOperandType : *parsedOperandTypes)
parsedOperandUseInfo.push_back({
parsedOperandType.name,
parsedOperandType.number,
parsedOperandType.location,
});
}
return parser.parseGenericOperationAfterOpName(
result,
parsedOperandTypes ? llvm::makeArrayRef(parsedOperandUseInfo)
: llvm::None,
parsedSuccessors, parsedRegions, parsedAttributes, parsedFnType);
}
//===--------------------------------------------------------------------===//
// Utilities
//===--------------------------------------------------------------------===//
/// Return the name of the specified result in the specified syntax, as well
/// as the subelement in the name. For example, in this operation:
///
/// %x, %y:2, %z = foo.op
///
/// getResultName(0) == {"x", 0 }
/// getResultName(1) == {"y", 0 }
/// getResultName(2) == {"y", 1 }
/// getResultName(3) == {"z", 0 }
std::pair<StringRef, unsigned>
getResultName(unsigned resultNo) const override {
// Scan for the resultID that contains this result number.
for (const auto &entry : resultIDs) {
if (resultNo < std::get<1>(entry)) {
// Don't pass on the leading %.
StringRef name = std::get<0>(entry).drop_front();
return {name, resultNo};
}
resultNo -= std::get<1>(entry);
}
// Invalid result number.
return {"", ~0U};
}
/// Return the number of declared SSA results. This returns 4 for the foo.op
/// example in the comment for getResultName.
size_t getNumResults() const override {
size_t count = 0;
for (auto &entry : resultIDs)
count += std::get<1>(entry);
return count;
}
/// Emit a diagnostic at the specified location and return failure.
InFlightDiagnostic emitError(SMLoc loc, const Twine &message) override {
return AsmParserImpl<OpAsmParser>::emitError(loc, "custom op '" + opName +
"' " + message);
}
//===--------------------------------------------------------------------===//
// Operand Parsing
//===--------------------------------------------------------------------===//
/// Parse a single operand.
ParseResult parseOperand(OperandType &result) override {
OperationParser::SSAUseInfo useInfo;
if (parser.parseSSAUse(useInfo))
return failure();
result = {useInfo.loc, useInfo.name, useInfo.number};
return success();
}
/// Parse a single operand if present.
OptionalParseResult parseOptionalOperand(OperandType &result) override {
if (parser.getToken().is(Token::percent_identifier))
return parseOperand(result);
return llvm::None;
}
/// Parse zero or more SSA comma-separated operand references with a specified
/// surrounding delimiter, and an optional required operand count.
ParseResult parseOperandList(SmallVectorImpl<OperandType> &result,
int requiredOperandCount = -1,
Delimiter delimiter = Delimiter::None) override {
return parseOperandOrRegionArgList(result, /*isOperandList=*/true,
requiredOperandCount, delimiter);
}
/// Parse zero or more SSA comma-separated operand or region arguments with
/// optional surrounding delimiter and required operand count.
ParseResult
parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result,
bool isOperandList, int requiredOperandCount = -1,
Delimiter delimiter = Delimiter::None) {
auto startLoc = parser.getToken().getLoc();
// The no-delimiter case has some special handling for better diagnostics.
if (delimiter == Delimiter::None) {
// parseCommaSeparatedList doesn't handle the missing case for "none",
// so we handle it custom here.
if (parser.getToken().isNot(Token::percent_identifier)) {
// If we didn't require any operands or required exactly zero (weird)
// then this is success.
if (requiredOperandCount == -1 || requiredOperandCount == 0)
return success();
// Otherwise, try to produce a nice error message.
if (parser.getToken().is(Token::l_paren) ||
parser.getToken().is(Token::l_square))
return emitError(startLoc, "unexpected delimiter");
return emitError(startLoc, "invalid operand");
}
}
auto parseOneOperand = [&]() -> ParseResult {
OperandType operandOrArg;
if (isOperandList ? parseOperand(operandOrArg)
: parseRegionArgument(operandOrArg))
return failure();
result.push_back(operandOrArg);
return success();
};
if (parseCommaSeparatedList(delimiter, parseOneOperand, " in operand list"))
return failure();
// Check that we got the expected # of elements.
if (requiredOperandCount != -1 &&
result.size() != static_cast<size_t>(requiredOperandCount))
return emitError(startLoc, "expected ")
<< requiredOperandCount << " operands";
return success();
}
/// Parse zero or more trailing SSA comma-separated trailing operand
/// references with a specified surrounding delimiter, and an optional
/// required operand count. A leading comma is expected before the operands.
ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result,
int requiredOperandCount,
Delimiter delimiter) override {
if (parser.getToken().is(Token::comma)) {
parseComma();
return parseOperandList(result, requiredOperandCount, delimiter);
}
if (requiredOperandCount != -1)
return emitError(parser.getToken().getLoc(), "expected ")
<< requiredOperandCount << " operands";
return success();
}
/// Resolve an operand to an SSA value, emitting an error on failure.
ParseResult resolveOperand(const OperandType &operand, Type type,
SmallVectorImpl<Value> &result) override {
OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
operand.location};
if (auto value = parser.resolveSSAUse(operandInfo, type)) {
result.push_back(value);
return success();
}
return failure();
}
/// Parse an AffineMap of SSA ids.
ParseResult parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands,
Attribute &mapAttr, StringRef attrName,
NamedAttrList &attrs,
Delimiter delimiter) override {
SmallVector<OperandType, 2> dimOperands;
SmallVector<OperandType, 1> symOperands;
auto parseElement = [&](bool isSymbol) -> ParseResult {
OperandType operand;
if (parseOperand(operand))
return failure();
if (isSymbol)
symOperands.push_back(operand);
else
dimOperands.push_back(operand);
return success();
};
AffineMap map;
if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter))
return failure();
// Add AffineMap attribute.
if (map) {
mapAttr = AffineMapAttr::get(map);
attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr));
}
// Add dim operands before symbol operands in 'operands'.
operands.assign(dimOperands.begin(), dimOperands.end());
operands.append(symOperands.begin(), symOperands.end());
return success();
}
/// Parse an AffineExpr of SSA ids.
ParseResult
parseAffineExprOfSSAIds(SmallVectorImpl<OperandType> &dimOperands,
SmallVectorImpl<OperandType> &symbOperands,
AffineExpr &expr) override {
auto parseElement = [&](bool isSymbol) -> ParseResult {
OperandType operand;
if (parseOperand(operand))
return failure();
if (isSymbol)
symbOperands.push_back(operand);
else
dimOperands.push_back(operand);
return success();
};
return parser.parseAffineExprOfSSAIds(expr, parseElement);
}
//===--------------------------------------------------------------------===//
// Region Parsing
//===--------------------------------------------------------------------===//
/// Parse a region that takes `arguments` of `argTypes` types. This
/// effectively defines the SSA values of `arguments` and assigns their type.
ParseResult parseRegion(Region &region, ArrayRef<OperandType> arguments,
ArrayRef<Type> argTypes,
ArrayRef<Location> argLocations,
bool enableNameShadowing) override {
assert(arguments.size() == argTypes.size() &&
"mismatching number of arguments and types");
SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2>
regionArguments;
for (auto pair : llvm::zip(arguments, argTypes)) {
const OperandType &operand = std::get<0>(pair);
Type type = std::get<1>(pair);
OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
operand.location};
regionArguments.emplace_back(operandInfo, type);
}
// Try to parse the region.
(void)isIsolatedFromAbove;
assert((!enableNameShadowing || isIsolatedFromAbove) &&
"name shadowing is only allowed on isolated regions");
if (parser.parseRegion(region, regionArguments, argLocations,
enableNameShadowing))
return failure();
return success();
}
/// Parses a region if present.
OptionalParseResult parseOptionalRegion(Region &region,
ArrayRef<OperandType> arguments,
ArrayRef<Type> argTypes,
ArrayRef<Location> argLocations,
bool enableNameShadowing) override {
if (parser.getToken().isNot(Token::l_brace))
return llvm::None;
return parseRegion(region, arguments, argTypes, argLocations,
enableNameShadowing);
}
/// Parses a region if present. If the region is present, a new region is
/// allocated and placed in `region`. If no region is present, `region`
/// remains untouched.
OptionalParseResult
parseOptionalRegion(std::unique_ptr<Region> &region,
ArrayRef<OperandType> arguments, ArrayRef<Type> argTypes,
bool enableNameShadowing = false) override {
if (parser.getToken().isNot(Token::l_brace))
return llvm::None;
std::unique_ptr<Region> newRegion = std::make_unique<Region>();
if (parseRegion(*newRegion, arguments, argTypes, /*argLocations=*/{},
enableNameShadowing))
return failure();
region = std::move(newRegion);
return success();
}
/// Parse a region argument. The type of the argument will be resolved later
/// by a call to `parseRegion`.
ParseResult parseRegionArgument(OperandType &argument) override {
return parseOperand(argument);
}
/// Parse a region argument if present.
ParseResult parseOptionalRegionArgument(OperandType &argument) override {
if (parser.getToken().isNot(Token::percent_identifier))
return success();
return parseRegionArgument(argument);
}
ParseResult
parseRegionArgumentList(SmallVectorImpl<OperandType> &result,
int requiredOperandCount = -1,
Delimiter delimiter = Delimiter::None) override {
return parseOperandOrRegionArgList(result, /*isOperandList=*/false,
requiredOperandCount, delimiter);
}
//===--------------------------------------------------------------------===//
// Successor Parsing
//===--------------------------------------------------------------------===//
/// Parse a single operation successor.
ParseResult parseSuccessor(Block *&dest) override {
return parser.parseSuccessor(dest);
}
/// Parse an optional operation successor and its operand list.
OptionalParseResult parseOptionalSuccessor(Block *&dest) override {
if (parser.getToken().isNot(Token::caret_identifier))
return llvm::None;
return parseSuccessor(dest);
}
/// Parse a single operation successor and its operand list.
ParseResult
parseSuccessorAndUseList(Block *&dest,
SmallVectorImpl<Value> &operands) override {
if (parseSuccessor(dest))
return failure();
// Handle optional arguments.
if (succeeded(parseOptionalLParen()) &&
(parser.parseOptionalSSAUseAndTypeList(operands) || parseRParen())) {
return failure();
}
return success();
}
//===--------------------------------------------------------------------===//
// Type Parsing
//===--------------------------------------------------------------------===//
/// Parse a list of assignments of the form
/// (%x1 = %y1, %x2 = %y2, ...).
OptionalParseResult
parseOptionalAssignmentList(SmallVectorImpl<OperandType> &lhs,
SmallVectorImpl<OperandType> &rhs) override {
if (failed(parseOptionalLParen()))
return llvm::None;
auto parseElt = [&]() -> ParseResult {
OperandType regionArg, operand;
if (parseRegionArgument(regionArg) || parseEqual() ||
parseOperand(operand))
return failure();
lhs.push_back(regionArg);
rhs.push_back(operand);
return success();
};
return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt);
}
/// Parse a list of assignments of the form
/// (%x1 = %y1 : type1, %x2 = %y2 : type2, ...).
OptionalParseResult
parseOptionalAssignmentListWithTypes(SmallVectorImpl<OperandType> &lhs,
SmallVectorImpl<OperandType> &rhs,
SmallVectorImpl<Type> &types) override {
if (failed(parseOptionalLParen()))
return llvm::None;
auto parseElt = [&]() -> ParseResult {
OperandType regionArg, operand;
Type type;
if (parseRegionArgument(regionArg) || parseEqual() ||
parseOperand(operand) || parseColon() || parseType(type))
return failure();
lhs.push_back(regionArg);
rhs.push_back(operand);
types.push_back(type);
return success();
};
return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt);
}
/// Parse a loc(...) specifier if present, filling in result if so.
ParseResult
parseOptionalLocationSpecifier(Optional<Location> &result) override {
// If there is a 'loc' we parse a trailing location.
if (!parser.consumeIf(Token::kw_loc))
return success();
LocationAttr directLoc;
if (parser.parseToken(Token::l_paren, "expected '(' in location"))
return failure();
Token tok = parser.getToken();
// Check to see if we are parsing a location alias.
// Otherwise, we parse the location directly.
if (tok.is(Token::hash_identifier)) {
if (parser.parseLocationAlias(directLoc))
return failure();
} else if (parser.parseLocationInstance(directLoc)) {
return failure();
}
if (parser.parseToken(Token::r_paren, "expected ')' in location"))
return failure();
result = directLoc;
return success();
}
private:
/// Information about the result name specifiers.
ArrayRef<OperationParser::ResultRecord> resultIDs;
/// The abstract information of the operation.
function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly;
bool isIsolatedFromAbove;
StringRef opName;
/// The backing operation parser.
OperationParser &parser;
};
} // namespace
FailureOr<OperationName> OperationParser::parseCustomOperationName() {
std::string opName = getTokenSpelling().str();
if (opName.empty())
return (emitError("empty operation name is invalid"), failure());
consumeToken();
Optional<RegisteredOperationName> opInfo =
RegisteredOperationName::lookup(opName, getContext());
StringRef defaultDialect = getState().defaultDialectStack.back();
Dialect *dialect = nullptr;
if (opInfo) {
dialect = &opInfo->getDialect();
} else {
if (StringRef(opName).contains('.')) {
// This op has a dialect, we try to check if we can register it in the
// context on the fly.
StringRef dialectName = StringRef(opName).split('.').first;
dialect = getContext()->getLoadedDialect(dialectName);
if (!dialect && (dialect = getContext()->getOrLoadDialect(dialectName)))
opInfo = RegisteredOperationName::lookup(opName, getContext());
} else {
// If the operation name has no namespace prefix we lookup the current
// default dialect (set through OpAsmOpInterface).
opInfo = RegisteredOperationName::lookup(
Twine(defaultDialect + "." + opName).str(), getContext());
if (!opInfo && getContext()->getOrLoadDialect("std")) {
opInfo = RegisteredOperationName::lookup(Twine("std." + opName).str(),
getContext());
}
if (opInfo) {
dialect = &opInfo->getDialect();
opName = opInfo->getStringRef().str();
} else if (!defaultDialect.empty()) {
dialect = getContext()->getOrLoadDialect(defaultDialect);
opName = (defaultDialect + "." + opName).str();
}
}
}
return OperationName(opName, getContext());
}
Operation *
OperationParser::parseCustomOperation(ArrayRef<ResultRecord> resultIDs) {
SMLoc opLoc = getToken().getLoc();
FailureOr<OperationName> opNameInfo = parseCustomOperationName();
if (failed(opNameInfo))
return nullptr;
StringRef opName = opNameInfo->getStringRef();
Dialect *dialect = opNameInfo->getDialect();
Optional<RegisteredOperationName> opInfo = opNameInfo->getRegisteredInfo();
// This is the actual hook for the custom op parsing, usually implemented by
// the op itself (`Op::parse()`). We retrieve it either from the
// RegisteredOperationName or from the Dialect.
function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssemblyFn;
bool isIsolatedFromAbove = false;
StringRef defaultDialect = "";
if (opInfo) {
parseAssemblyFn = opInfo->getParseAssemblyFn();
isIsolatedFromAbove = opInfo->hasTrait<OpTrait::IsIsolatedFromAbove>();
auto *iface = opInfo->getInterface<OpAsmOpInterface>();
if (iface && !iface->getDefaultDialect().empty())
defaultDialect = iface->getDefaultDialect();
} else {
Optional<Dialect::ParseOpHook> dialectHook;
if (dialect)
dialectHook = dialect->getParseOperationHook(opName);
if (!dialectHook.hasValue()) {
emitError(opLoc) << "custom op '" << opName << "' is unknown";
return nullptr;
}
parseAssemblyFn = *dialectHook;
}
getState().defaultDialectStack.push_back(defaultDialect);
auto restoreDefaultDialect = llvm::make_scope_exit(
[&]() { getState().defaultDialectStack.pop_back(); });
// If the custom op parser crashes, produce some indication to help
// debugging.
llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'",
opNameInfo->getIdentifier().data());
// Get location information for the operation.
auto srcLocation = getEncodedSourceLocation(opLoc);
OperationState opState(srcLocation, *opNameInfo);
// If we are populating the parser state, start a new operation definition.
if (state.asmState)
state.asmState->startOperationDefinition(opState.name);
// Have the op implementation take a crack and parsing this.
CleanupOpStateRegions guard{opState};
CustomOpAsmParser opAsmParser(opLoc, resultIDs, parseAssemblyFn,
isIsolatedFromAbove, opName, *this);
if (opAsmParser.parseOperation(opState))
return nullptr;
// If it emitted an error, we failed.
if (opAsmParser.didEmitError())
return nullptr;
// Otherwise, create the operation and try to parse a location for it.
Operation *op = opBuilder.createOperation(opState);
if (parseTrailingLocationSpecifier(op))
return nullptr;
return op;
}
ParseResult OperationParser::parseLocationAlias(LocationAttr &loc) {
Token tok = getToken();
consumeToken(Token::hash_identifier);
StringRef identifier = tok.getSpelling().drop_front();
if (identifier.contains('.')) {
return emitError(tok.getLoc())
<< "expected location, but found dialect attribute: '#" << identifier
<< "'";
}
// If this alias can be resolved, do it now.
Attribute attr = state.symbols.attributeAliasDefinitions.lookup(identifier);
if (attr) {
if (!(loc = attr.dyn_cast<LocationAttr>()))
return emitError(tok.getLoc())
<< "expected location, but found '" << attr << "'";
} else {
// Otherwise, remember this operation and resolve its location later.
// In the meantime, use a special OpaqueLoc as a marker.
loc = OpaqueLoc::get(deferredLocsReferences.size(),
TypeID::get<DeferredLocInfo *>(),
UnknownLoc::get(getContext()));
deferredLocsReferences.push_back(DeferredLocInfo{tok.getLoc(), identifier});
}
return success();
}
ParseResult
OperationParser::parseTrailingLocationSpecifier(OpOrArgument opOrArgument) {
// If there is a 'loc' we parse a trailing location.
if (!consumeIf(Token::kw_loc))
return success();
if (parseToken(Token::l_paren, "expected '(' in location"))
return failure();
Token tok = getToken();
// Check to see if we are parsing a location alias.
// Otherwise, we parse the location directly.
LocationAttr directLoc;
if (tok.is(Token::hash_identifier)) {
if (parseLocationAlias(directLoc))
return failure();
} else if (parseLocationInstance(directLoc)) {
return failure();
}
if (parseToken(Token::r_paren, "expected ')' in location"))
return failure();
if (auto *op = opOrArgument.dyn_cast<Operation *>())
op->setLoc(directLoc);
else
opOrArgument.get<BlockArgument>().setLoc(directLoc);
return success();
}
//===----------------------------------------------------------------------===//
// Region Parsing
//===----------------------------------------------------------------------===//
ParseResult OperationParser::parseRegion(
Region &region,
ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments,
ArrayRef<Location> argLocations, bool isIsolatedNameScope) {
// Parse the '{'.
Token lBraceTok = getToken();
if (parseToken(Token::l_brace, "expected '{' to begin a region"))
return failure();
// If we are populating the parser state, start a new region definition.
if (state.asmState)
state.asmState->startRegionDefinition();
// Parse the region body.
if ((!entryArguments.empty() || getToken().isNot(Token::r_brace)) &&
parseRegionBody(region, lBraceTok.getLoc(), entryArguments, argLocations,
isIsolatedNameScope)) {
return failure();
}
consumeToken(Token::r_brace);
// If we are populating the parser state, finalize this region.
if (state.asmState)
state.asmState->finalizeRegionDefinition();
return success();
}
ParseResult OperationParser::parseRegionBody(
Region &region, SMLoc startLoc,
ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments,
ArrayRef<Location> argLocations, bool isIsolatedNameScope) {
assert(argLocations.empty() || argLocations.size() == entryArguments.size());
auto currentPt = opBuilder.saveInsertionPoint();
// Push a new named value scope.
pushSSANameScope(isIsolatedNameScope);
// Parse the first block directly to allow for it to be unnamed.
auto owningBlock = std::make_unique<Block>();
Block *block = owningBlock.get();
// If this block is not defined in the source file, add a definition for it
// now in the assembly state. Blocks with a name will be defined when the name
// is parsed.
if (state.asmState && getToken().isNot(Token::caret_identifier))
state.asmState->addDefinition(block, startLoc);
// Add arguments to the entry block.
if (!entryArguments.empty()) {
// If we had named arguments, then don't allow a block name.
if (getToken().is(Token::caret_identifier))
return emitError("invalid block name in region with named arguments");
for (const auto &it : llvm::enumerate(entryArguments)) {
size_t argIndex = it.index();
auto &placeholderArgPair = it.value();
auto &argInfo = placeholderArgPair.first;
// Ensure that the argument was not already defined.
if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) {
return emitError(argInfo.loc, "region entry argument '" + argInfo.name +
"' is already in use")
.attachNote(getEncodedSourceLocation(*defLoc))
<< "previously referenced here";
}
BlockArgument arg = block->addArgument(
placeholderArgPair.second,
argLocations.empty()
? getEncodedSourceLocation(placeholderArgPair.first.loc)
: argLocations[argIndex]);
// Add a definition of this arg to the assembly state if provided.
if (state.asmState)
state.asmState->addDefinition(arg, argInfo.loc);
// Record the definition for this argument.
if (addDefinition(argInfo, arg))
return failure();
}
}
if (parseBlock(block))
return failure();
// Verify that no other arguments were parsed.
if (!entryArguments.empty() &&
block->getNumArguments() > entryArguments.size()) {
return emitError("entry block arguments were already defined");
}
// Parse the rest of the region.
region.push_back(owningBlock.release());
while (getToken().isNot(Token::r_brace)) {
Block *newBlock = nullptr;
if (parseBlock(newBlock))
return failure();
region.push_back(newBlock);
}
// Pop the SSA value scope for this region.
if (popSSANameScope())
return failure();
// Reset the original insertion point.
opBuilder.restoreInsertionPoint(currentPt);
return success();
}
//===----------------------------------------------------------------------===//
// Block Parsing
//===----------------------------------------------------------------------===//
/// Block declaration.
///
/// block ::= block-label? operation*
/// block-label ::= block-id block-arg-list? `:`
/// block-id ::= caret-id
/// block-arg-list ::= `(` ssa-id-and-type-list? `)`
///
ParseResult OperationParser::parseBlock(Block *&block) {
// The first block of a region may already exist, if it does the caret
// identifier is optional.
if (block && getToken().isNot(Token::caret_identifier))
return parseBlockBody(block);
SMLoc nameLoc = getToken().getLoc();
auto name = getTokenSpelling();
if (parseToken(Token::caret_identifier, "expected block name"))
return failure();
block = defineBlockNamed(name, nameLoc, block);
// Fail if the block was already defined.
if (!block)
return emitError(nameLoc, "redefinition of block '") << name << "'";
// If an argument list is present, parse it.
if (consumeIf(Token::l_paren)) {
if (parseOptionalBlockArgList(block) ||
parseToken(Token::r_paren, "expected ')' to end argument list"))
return failure();
}
if (parseToken(Token::colon, "expected ':' after block name"))
return failure();
return parseBlockBody(block);
}
ParseResult OperationParser::parseBlockBody(Block *block) {
// Set the insertion point to the end of the block to parse.
opBuilder.setInsertionPointToEnd(block);
// Parse the list of operations that make up the body of the block.
while (getToken().isNot(Token::caret_identifier, Token::r_brace))
if (parseOperation())
return failure();
return success();
}
/// Get the block with the specified name, creating it if it doesn't already
/// exist. The location specified is the point of use, which allows
/// us to diagnose references to blocks that are not defined precisely.
Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) {
BlockDefinition &blockDef = getBlockInfoByName(name);
if (!blockDef.block) {
blockDef = {new Block(), loc};
insertForwardRef(blockDef.block, blockDef.loc);
}
// Populate the high level assembly state if necessary.
if (state.asmState)
state.asmState->addUses(blockDef.block, loc);
return blockDef.block;
}
/// Define the block with the specified name. Returns the Block* or nullptr in
/// the case of redefinition.
Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc,
Block *existing) {
auto &blockAndLoc = getBlockInfoByName(name);
blockAndLoc.loc = loc;
// If a block has yet to be set, this is a new definition. If the caller
// provided a block, use it. Otherwise create a new one.
if (!blockAndLoc.block) {
blockAndLoc.block = existing ? existing : new Block();
// Otherwise, the block has a forward declaration. Forward declarations are
// removed once defined, so if we are defining a existing block and it is
// not a forward declaration, then it is a redeclaration.
} else if (!eraseForwardRef(blockAndLoc.block)) {
return nullptr;
}
// Populate the high level assembly state if necessary.
if (state.asmState)
state.asmState->addDefinition(blockAndLoc.block, loc);
return blockAndLoc.block;
}
/// Parse a (possibly empty) list of SSA operands with types as block arguments.
///
/// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)*
///
ParseResult OperationParser::parseOptionalBlockArgList(Block *owner) {
if (getToken().is(Token::r_brace))
return success();
// If the block already has arguments, then we're handling the entry block.
// Parse and register the names for the arguments, but do not add them.
bool definingExistingArgs = owner->getNumArguments() != 0;
unsigned nextArgument = 0;
return parseCommaSeparatedList([&]() -> ParseResult {
return parseSSADefOrUseAndType(
[&](SSAUseInfo useInfo, Type type) -> ParseResult {
BlockArgument arg;
// If we are defining existing arguments, ensure that the argument
// has already been created with the right type.
if (definingExistingArgs) {
// Otherwise, ensure that this argument has already been created.
if (nextArgument >= owner->getNumArguments())
return emitError("too many arguments specified in argument list");
// Finally, make sure the existing argument has the correct type.
arg = owner->getArgument(nextArgument++);
if (arg.getType() != type)
return emitError("argument and block argument type mismatch");
} else {
auto loc = getEncodedSourceLocation(useInfo.loc);
arg = owner->addArgument(type, loc);
}
// If the argument has an explicit loc(...) specifier, parse and apply
// it.
if (parseTrailingLocationSpecifier(arg))
return failure();
// Mark this block argument definition in the parser state if it was
// provided.
if (state.asmState)
state.asmState->addDefinition(arg, useInfo.loc);
return addDefinition(useInfo, arg);
});
});
}
//===----------------------------------------------------------------------===//
// Top-level entity parsing.
//===----------------------------------------------------------------------===//
namespace {
/// This parser handles entities that are only valid at the top level of the
/// file.
class TopLevelOperationParser : public Parser {
public:
explicit TopLevelOperationParser(ParserState &state) : Parser(state) {}
/// Parse a set of operations into the end of the given Block.
ParseResult parse(Block *topLevelBlock, Location parserLoc);
private:
/// Parse an attribute alias declaration.
ParseResult parseAttributeAliasDef();
/// Parse an attribute alias declaration.
ParseResult parseTypeAliasDef();
};
} // namespace
/// Parses an attribute alias declaration.
///
/// attribute-alias-def ::= '#' alias-name `=` attribute-value
///
ParseResult TopLevelOperationParser::parseAttributeAliasDef() {
assert(getToken().is(Token::hash_identifier));
StringRef aliasName = getTokenSpelling().drop_front();
// Check for redefinitions.
if (state.symbols.attributeAliasDefinitions.count(aliasName) > 0)
return emitError("redefinition of attribute alias id '" + aliasName + "'");
// Make sure this isn't invading the dialect attribute namespace.
if (aliasName.contains('.'))
return emitError("attribute names with a '.' are reserved for "
"dialect-defined names");
consumeToken(Token::hash_identifier);
// Parse the '='.
if (parseToken(Token::equal, "expected '=' in attribute alias definition"))
return failure();
// Parse the attribute value.
Attribute attr = parseAttribute();
if (!attr)
return failure();
state.symbols.attributeAliasDefinitions[aliasName] = attr;
return success();
}
/// Parse a type alias declaration.
///
/// type-alias-def ::= '!' alias-name `=` 'type' type
///
ParseResult TopLevelOperationParser::parseTypeAliasDef() {
assert(getToken().is(Token::exclamation_identifier));
StringRef aliasName = getTokenSpelling().drop_front();
// Check for redefinitions.
if (state.symbols.typeAliasDefinitions.count(aliasName) > 0)
return emitError("redefinition of type alias id '" + aliasName + "'");
// Make sure this isn't invading the dialect type namespace.
if (aliasName.contains('.'))
return emitError("type names with a '.' are reserved for "
"dialect-defined names");
consumeToken(Token::exclamation_identifier);
// Parse the '=' and 'type'.
if (parseToken(Token::equal, "expected '=' in type alias definition") ||
parseToken(Token::kw_type, "expected 'type' in type alias definition"))
return failure();
// Parse the type.
Type aliasedType = parseType();
if (!aliasedType)
return failure();
// Register this alias with the parser state.
state.symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType);
return success();
}
ParseResult TopLevelOperationParser::parse(Block *topLevelBlock,
Location parserLoc) {
// Create a top-level operation to contain the parsed state.
OwningOpRef<ModuleOp> topLevelOp(ModuleOp::create(parserLoc));
OperationParser opParser(state, topLevelOp.get());
while (true) {
switch (getToken().getKind()) {
default:
// Parse a top-level operation.
if (opParser.parseOperation())
return failure();
break;
// If we got to the end of the file, then we're done.
case Token::eof: {
if (opParser.finalize())
return failure();
// Splice the blocks of the parsed operation over to the provided
// top-level block.
auto &parsedOps = topLevelOp->getBody()->getOperations();
auto &destOps = topLevelBlock->getOperations();
destOps.splice(destOps.empty() ? destOps.end() : std::prev(destOps.end()),
parsedOps, parsedOps.begin(), parsedOps.end());
return success();
}
// If we got an error token, then the lexer already emitted an error, just
// stop. Someday we could introduce error recovery if there was demand
// for it.
case Token::error:
return failure();
// Parse an attribute alias.
case Token::hash_identifier:
if (parseAttributeAliasDef())
return failure();
break;
// Parse a type alias.
case Token::exclamation_identifier:
if (parseTypeAliasDef())
return failure();
break;
}
}
}
//===----------------------------------------------------------------------===//
LogicalResult mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr,
Block *block, MLIRContext *context,
LocationAttr *sourceFileLoc,
AsmParserState *asmState) {
const auto *sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID());
Location parserLoc = FileLineColLoc::get(
context, sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0);
if (sourceFileLoc)
*sourceFileLoc = parserLoc;
SymbolState aliasState;
ParserState state(sourceMgr, context, aliasState, asmState);
return TopLevelOperationParser(state).parse(block, parserLoc);
}
LogicalResult mlir::parseSourceFile(llvm::StringRef filename, Block *block,
MLIRContext *context,
LocationAttr *sourceFileLoc) {
llvm::SourceMgr sourceMgr;
return parseSourceFile(filename, sourceMgr, block, context, sourceFileLoc);
}
LogicalResult mlir::parseSourceFile(llvm::StringRef filename,
llvm::SourceMgr &sourceMgr, Block *block,
MLIRContext *context,
LocationAttr *sourceFileLoc,
AsmParserState *asmState) {
if (sourceMgr.getNumBuffers() != 0) {
// TODO: Extend to support multiple buffers.
return emitError(mlir::UnknownLoc::get(context),
"only main buffer parsed at the moment");
}
auto fileOrErr = llvm::MemoryBuffer::getFileOrSTDIN(filename);
if (std::error_code error = fileOrErr.getError())
return emitError(mlir::UnknownLoc::get(context),
"could not open input file " + filename);
// Load the MLIR source file.
sourceMgr.AddNewSourceBuffer(std::move(*fileOrErr), SMLoc());
return parseSourceFile(sourceMgr, block, context, sourceFileLoc, asmState);
}
LogicalResult mlir::parseSourceString(llvm::StringRef sourceStr, Block *block,
MLIRContext *context,
LocationAttr *sourceFileLoc) {
auto memBuffer = MemoryBuffer::getMemBuffer(sourceStr);
if (!memBuffer)
return failure();
SourceMgr sourceMgr;
sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
return parseSourceFile(sourceMgr, block, context, sourceFileLoc);
}