forked from OSchip/llvm-project
2269 lines
82 KiB
C++
2269 lines
82 KiB
C++
//===- Parser.cpp - MLIR Parser Implementation ----------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the parser for the MLIR textual form.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Parser.h"
|
|
#include "AsmParserImpl.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/Dialect.h"
|
|
#include "mlir/IR/Verifier.h"
|
|
#include "mlir/Parser.h"
|
|
#include "mlir/Parser/AsmParserState.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/ADT/bit.h"
|
|
#include "llvm/Support/PrettyStackTrace.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include <algorithm>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::detail;
|
|
using llvm::MemoryBuffer;
|
|
using llvm::SourceMgr;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Parser
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Parse a list of comma-separated items with an optional delimiter. If a
|
|
/// delimiter is provided, then an empty list is allowed. If not, then at
|
|
/// least one element will be parsed.
|
|
ParseResult
|
|
Parser::parseCommaSeparatedList(Delimiter delimiter,
|
|
function_ref<ParseResult()> parseElementFn,
|
|
StringRef contextMessage) {
|
|
switch (delimiter) {
|
|
case Delimiter::None:
|
|
break;
|
|
case Delimiter::OptionalParen:
|
|
if (getToken().isNot(Token::l_paren))
|
|
return success();
|
|
LLVM_FALLTHROUGH;
|
|
case Delimiter::Paren:
|
|
if (parseToken(Token::l_paren, "expected '('" + contextMessage))
|
|
return failure();
|
|
// Check for empty list.
|
|
if (consumeIf(Token::r_paren))
|
|
return success();
|
|
break;
|
|
case Delimiter::OptionalLessGreater:
|
|
// Check for absent list.
|
|
if (getToken().isNot(Token::less))
|
|
return success();
|
|
LLVM_FALLTHROUGH;
|
|
case Delimiter::LessGreater:
|
|
if (parseToken(Token::less, "expected '<'" + contextMessage))
|
|
return success();
|
|
// Check for empty list.
|
|
if (consumeIf(Token::greater))
|
|
return success();
|
|
break;
|
|
case Delimiter::OptionalSquare:
|
|
if (getToken().isNot(Token::l_square))
|
|
return success();
|
|
LLVM_FALLTHROUGH;
|
|
case Delimiter::Square:
|
|
if (parseToken(Token::l_square, "expected '['" + contextMessage))
|
|
return failure();
|
|
// Check for empty list.
|
|
if (consumeIf(Token::r_square))
|
|
return success();
|
|
break;
|
|
case Delimiter::OptionalBraces:
|
|
if (getToken().isNot(Token::l_brace))
|
|
return success();
|
|
LLVM_FALLTHROUGH;
|
|
case Delimiter::Braces:
|
|
if (parseToken(Token::l_brace, "expected '{'" + contextMessage))
|
|
return failure();
|
|
// Check for empty list.
|
|
if (consumeIf(Token::r_brace))
|
|
return success();
|
|
break;
|
|
}
|
|
|
|
// Non-empty case starts with an element.
|
|
if (parseElementFn())
|
|
return failure();
|
|
|
|
// Otherwise we have a list of comma separated elements.
|
|
while (consumeIf(Token::comma)) {
|
|
if (parseElementFn())
|
|
return failure();
|
|
}
|
|
|
|
switch (delimiter) {
|
|
case Delimiter::None:
|
|
return success();
|
|
case Delimiter::OptionalParen:
|
|
case Delimiter::Paren:
|
|
return parseToken(Token::r_paren, "expected ')'" + contextMessage);
|
|
case Delimiter::OptionalLessGreater:
|
|
case Delimiter::LessGreater:
|
|
return parseToken(Token::greater, "expected '>'" + contextMessage);
|
|
case Delimiter::OptionalSquare:
|
|
case Delimiter::Square:
|
|
return parseToken(Token::r_square, "expected ']'" + contextMessage);
|
|
case Delimiter::OptionalBraces:
|
|
case Delimiter::Braces:
|
|
return parseToken(Token::r_brace, "expected '}'" + contextMessage);
|
|
}
|
|
llvm_unreachable("Unknown delimiter");
|
|
}
|
|
|
|
/// Parse a comma-separated list of elements, terminated with an arbitrary
|
|
/// token. This allows empty lists if allowEmptyList is true.
|
|
///
|
|
/// abstract-list ::= rightToken // if allowEmptyList == true
|
|
/// abstract-list ::= element (',' element)* rightToken
|
|
///
|
|
ParseResult
|
|
Parser::parseCommaSeparatedListUntil(Token::Kind rightToken,
|
|
function_ref<ParseResult()> parseElement,
|
|
bool allowEmptyList) {
|
|
// Handle the empty case.
|
|
if (getToken().is(rightToken)) {
|
|
if (!allowEmptyList)
|
|
return emitError("expected list element");
|
|
consumeToken(rightToken);
|
|
return success();
|
|
}
|
|
|
|
if (parseCommaSeparatedList(parseElement) ||
|
|
parseToken(rightToken, "expected ',' or '" +
|
|
Token::getTokenSpelling(rightToken) + "'"))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) {
|
|
auto diag = mlir::emitError(getEncodedSourceLocation(loc), message);
|
|
|
|
// If we hit a parse error in response to a lexer error, then the lexer
|
|
// already reported the error.
|
|
if (getToken().is(Token::error))
|
|
diag.abandon();
|
|
return diag;
|
|
}
|
|
|
|
/// Consume the specified token if present and return success. On failure,
|
|
/// output a diagnostic and return failure.
|
|
ParseResult Parser::parseToken(Token::Kind expectedToken,
|
|
const Twine &message) {
|
|
if (consumeIf(expectedToken))
|
|
return success();
|
|
return emitError(message);
|
|
}
|
|
|
|
/// Parse an optional integer value from the stream.
|
|
OptionalParseResult Parser::parseOptionalInteger(APInt &result) {
|
|
Token curToken = getToken();
|
|
if (curToken.isNot(Token::integer, Token::minus))
|
|
return llvm::None;
|
|
|
|
bool negative = consumeIf(Token::minus);
|
|
Token curTok = getToken();
|
|
if (parseToken(Token::integer, "expected integer value"))
|
|
return failure();
|
|
|
|
StringRef spelling = curTok.getSpelling();
|
|
bool isHex = spelling.size() > 1 && spelling[1] == 'x';
|
|
if (spelling.getAsInteger(isHex ? 0 : 10, result))
|
|
return emitError(curTok.getLoc(), "integer value too large");
|
|
|
|
// Make sure we have a zero at the top so we return the right signedness.
|
|
if (result.isNegative())
|
|
result = result.zext(result.getBitWidth() + 1);
|
|
|
|
// Process the negative sign if present.
|
|
if (negative)
|
|
result.negate();
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Parse a floating point value from an integer literal token.
|
|
ParseResult Parser::parseFloatFromIntegerLiteral(
|
|
Optional<APFloat> &result, const Token &tok, bool isNegative,
|
|
const llvm::fltSemantics &semantics, size_t typeSizeInBits) {
|
|
SMLoc loc = tok.getLoc();
|
|
StringRef spelling = tok.getSpelling();
|
|
bool isHex = spelling.size() > 1 && spelling[1] == 'x';
|
|
if (!isHex) {
|
|
return emitError(loc, "unexpected decimal integer literal for a "
|
|
"floating point value")
|
|
.attachNote()
|
|
<< "add a trailing dot to make the literal a float";
|
|
}
|
|
if (isNegative) {
|
|
return emitError(loc, "hexadecimal float literal should not have a "
|
|
"leading minus");
|
|
}
|
|
|
|
Optional<uint64_t> value = tok.getUInt64IntegerValue();
|
|
if (!value.hasValue())
|
|
return emitError(loc, "hexadecimal float constant out of range for type");
|
|
|
|
if (&semantics == &APFloat::IEEEdouble()) {
|
|
result = APFloat(semantics, APInt(typeSizeInBits, *value));
|
|
return success();
|
|
}
|
|
|
|
APInt apInt(typeSizeInBits, *value);
|
|
if (apInt != *value)
|
|
return emitError(loc, "hexadecimal float constant out of range for type");
|
|
result = APFloat(semantics, apInt);
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OperationParser
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class provides support for parsing operations and regions of
|
|
/// operations.
|
|
class OperationParser : public Parser {
|
|
public:
|
|
OperationParser(ParserState &state, ModuleOp topLevelOp);
|
|
~OperationParser();
|
|
|
|
/// After parsing is finished, this function must be called to see if there
|
|
/// are any remaining issues.
|
|
ParseResult finalize();
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// SSA Value Handling
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// This represents a use of an SSA value in the program. The first two
|
|
/// entries in the tuple are the name and result number of a reference. The
|
|
/// third is the location of the reference, which is used in case this ends
|
|
/// up being a use of an undefined value.
|
|
struct SSAUseInfo {
|
|
StringRef name; // Value name, e.g. %42 or %abc
|
|
unsigned number; // Number, specified with #12
|
|
SMLoc loc; // Location of first definition or use.
|
|
};
|
|
|
|
/// Push a new SSA name scope to the parser.
|
|
void pushSSANameScope(bool isIsolated);
|
|
|
|
/// Pop the last SSA name scope from the parser.
|
|
ParseResult popSSANameScope();
|
|
|
|
/// Register a definition of a value with the symbol table.
|
|
ParseResult addDefinition(SSAUseInfo useInfo, Value value);
|
|
|
|
/// Parse an optional list of SSA uses into 'results'.
|
|
ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results);
|
|
|
|
/// Parse a single SSA use into 'result'.
|
|
ParseResult parseSSAUse(SSAUseInfo &result);
|
|
|
|
/// Given a reference to an SSA value and its type, return a reference. This
|
|
/// returns null on failure.
|
|
Value resolveSSAUse(SSAUseInfo useInfo, Type type);
|
|
|
|
ParseResult
|
|
parseSSADefOrUseAndType(function_ref<ParseResult(SSAUseInfo, Type)> action);
|
|
|
|
ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results);
|
|
|
|
/// Return the location of the value identified by its name and number if it
|
|
/// has been already reference.
|
|
Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) {
|
|
auto &values = isolatedNameScopes.back().values;
|
|
if (!values.count(name) || number >= values[name].size())
|
|
return {};
|
|
if (values[name][number].value)
|
|
return values[name][number].loc;
|
|
return {};
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Operation Parsing
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Parse an operation instance.
|
|
ParseResult parseOperation();
|
|
|
|
/// Parse a single operation successor.
|
|
ParseResult parseSuccessor(Block *&dest);
|
|
|
|
/// Parse a comma-separated list of operation successors in brackets.
|
|
ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations);
|
|
|
|
/// Parse an operation instance that is in the generic form.
|
|
Operation *parseGenericOperation();
|
|
|
|
/// Parse different components, viz., use-info of operand(s), successor(s),
|
|
/// region(s), attribute(s) and function-type, of the generic form of an
|
|
/// operation instance and populate the input operation-state 'result' with
|
|
/// those components. If any of the components is explicitly provided, then
|
|
/// skip parsing that component.
|
|
ParseResult parseGenericOperationAfterOpName(
|
|
OperationState &result,
|
|
Optional<ArrayRef<SSAUseInfo>> parsedOperandUseInfo = llvm::None,
|
|
Optional<ArrayRef<Block *>> parsedSuccessors = llvm::None,
|
|
Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions =
|
|
llvm::None,
|
|
Optional<ArrayRef<NamedAttribute>> parsedAttributes = llvm::None,
|
|
Optional<FunctionType> parsedFnType = llvm::None);
|
|
|
|
/// Parse an operation instance that is in the generic form and insert it at
|
|
/// the provided insertion point.
|
|
Operation *parseGenericOperation(Block *insertBlock,
|
|
Block::iterator insertPt);
|
|
|
|
/// This type is used to keep track of things that are either an Operation or
|
|
/// a BlockArgument. We cannot use Value for this, because not all Operations
|
|
/// have results.
|
|
using OpOrArgument = llvm::PointerUnion<Operation *, BlockArgument>;
|
|
|
|
/// Parse an optional trailing location and add it to the specifier Operation
|
|
/// or `OperandType` if present.
|
|
///
|
|
/// trailing-location ::= (`loc` (`(` location `)` | attribute-alias))?
|
|
///
|
|
ParseResult parseTrailingLocationSpecifier(OpOrArgument opOrArgument);
|
|
|
|
/// Parse a location alias, that is a sequence looking like: #loc42
|
|
/// The alias may have already be defined or may be defined later, in which
|
|
/// case an OpaqueLoc is used a placeholder.
|
|
ParseResult parseLocationAlias(LocationAttr &loc);
|
|
|
|
/// This is the structure of a result specifier in the assembly syntax,
|
|
/// including the name, number of results, and location.
|
|
using ResultRecord = std::tuple<StringRef, unsigned, SMLoc>;
|
|
|
|
/// Parse an operation instance that is in the op-defined custom form.
|
|
/// resultInfo specifies information about the "%name =" specifiers.
|
|
Operation *parseCustomOperation(ArrayRef<ResultRecord> resultIDs);
|
|
|
|
/// Parse the name of an operation, in the custom form. On success, return a
|
|
/// an object of type 'OperationName'. Otherwise, failure is returned.
|
|
FailureOr<OperationName> parseCustomOperationName();
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Region Parsing
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Parse a region into 'region' with the provided entry block arguments.
|
|
/// If non-empty, 'argLocations' contains an optional locations for each
|
|
/// argument. 'isIsolatedNameScope' indicates if the naming scope of this
|
|
/// region is isolated from those above.
|
|
ParseResult parseRegion(Region ®ion,
|
|
ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments,
|
|
ArrayRef<Location> argLocations,
|
|
bool isIsolatedNameScope = false);
|
|
|
|
/// Parse a region body into 'region'.
|
|
ParseResult
|
|
parseRegionBody(Region ®ion, SMLoc startLoc,
|
|
ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments,
|
|
ArrayRef<Location> argLocations, bool isIsolatedNameScope);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Block Parsing
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Parse a new block into 'block'.
|
|
ParseResult parseBlock(Block *&block);
|
|
|
|
/// Parse a list of operations into 'block'.
|
|
ParseResult parseBlockBody(Block *block);
|
|
|
|
/// Parse a (possibly empty) list of block arguments.
|
|
ParseResult parseOptionalBlockArgList(Block *owner);
|
|
|
|
/// Get the block with the specified name, creating it if it doesn't
|
|
/// already exist. The location specified is the point of use, which allows
|
|
/// us to diagnose references to blocks that are not defined precisely.
|
|
Block *getBlockNamed(StringRef name, SMLoc loc);
|
|
|
|
/// Define the block with the specified name. Returns the Block* or nullptr in
|
|
/// the case of redefinition.
|
|
Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing);
|
|
|
|
private:
|
|
/// This class represents a definition of a Block.
|
|
struct BlockDefinition {
|
|
/// A pointer to the defined Block.
|
|
Block *block;
|
|
/// The location that the Block was defined at.
|
|
SMLoc loc;
|
|
};
|
|
/// This class represents a definition of a Value.
|
|
struct ValueDefinition {
|
|
/// A pointer to the defined Value.
|
|
Value value;
|
|
/// The location that the Value was defined at.
|
|
SMLoc loc;
|
|
};
|
|
|
|
/// Returns the info for a block at the current scope for the given name.
|
|
BlockDefinition &getBlockInfoByName(StringRef name) {
|
|
return blocksByName.back()[name];
|
|
}
|
|
|
|
/// Insert a new forward reference to the given block.
|
|
void insertForwardRef(Block *block, SMLoc loc) {
|
|
forwardRef.back().try_emplace(block, loc);
|
|
}
|
|
|
|
/// Erase any forward reference to the given block.
|
|
bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); }
|
|
|
|
/// Record that a definition was added at the current scope.
|
|
void recordDefinition(StringRef def);
|
|
|
|
/// Get the value entry for the given SSA name.
|
|
SmallVectorImpl<ValueDefinition> &getSSAValueEntry(StringRef name);
|
|
|
|
/// Create a forward reference placeholder value with the given location and
|
|
/// result type.
|
|
Value createForwardRefPlaceholder(SMLoc loc, Type type);
|
|
|
|
/// Return true if this is a forward reference.
|
|
bool isForwardRefPlaceholder(Value value) {
|
|
return forwardRefPlaceholders.count(value);
|
|
}
|
|
|
|
/// This struct represents an isolated SSA name scope. This scope may contain
|
|
/// other nested non-isolated scopes. These scopes are used for operations
|
|
/// that are known to be isolated to allow for reusing names within their
|
|
/// regions, even if those names are used above.
|
|
struct IsolatedSSANameScope {
|
|
/// Record that a definition was added at the current scope.
|
|
void recordDefinition(StringRef def) {
|
|
definitionsPerScope.back().insert(def);
|
|
}
|
|
|
|
/// Push a nested name scope.
|
|
void pushSSANameScope() { definitionsPerScope.push_back({}); }
|
|
|
|
/// Pop a nested name scope.
|
|
void popSSANameScope() {
|
|
for (auto &def : definitionsPerScope.pop_back_val())
|
|
values.erase(def.getKey());
|
|
}
|
|
|
|
/// This keeps track of all of the SSA values we are tracking for each name
|
|
/// scope, indexed by their name. This has one entry per result number.
|
|
llvm::StringMap<SmallVector<ValueDefinition, 1>> values;
|
|
|
|
/// This keeps track of all of the values defined by a specific name scope.
|
|
SmallVector<llvm::StringSet<>, 2> definitionsPerScope;
|
|
};
|
|
|
|
/// A list of isolated name scopes.
|
|
SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes;
|
|
|
|
/// This keeps track of the block names as well as the location of the first
|
|
/// reference for each nested name scope. This is used to diagnose invalid
|
|
/// block references and memorize them.
|
|
SmallVector<DenseMap<StringRef, BlockDefinition>, 2> blocksByName;
|
|
SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef;
|
|
|
|
/// These are all of the placeholders we've made along with the location of
|
|
/// their first reference, to allow checking for use of undefined values.
|
|
DenseMap<Value, SMLoc> forwardRefPlaceholders;
|
|
|
|
/// Deffered locations: when parsing `loc(#loc42)` we add an entry to this
|
|
/// map. After parsing the definition `#loc42 = ...` we'll patch back users
|
|
/// of this location.
|
|
struct DeferredLocInfo {
|
|
SMLoc loc;
|
|
StringRef identifier;
|
|
};
|
|
std::vector<DeferredLocInfo> deferredLocsReferences;
|
|
|
|
/// The builder used when creating parsed operation instances.
|
|
OpBuilder opBuilder;
|
|
|
|
/// The top level operation that holds all of the parsed operations.
|
|
Operation *topLevelOp;
|
|
};
|
|
} // namespace
|
|
|
|
OperationParser::OperationParser(ParserState &state, ModuleOp topLevelOp)
|
|
: Parser(state), opBuilder(topLevelOp.getRegion()), topLevelOp(topLevelOp) {
|
|
// The top level operation starts a new name scope.
|
|
pushSSANameScope(/*isIsolated=*/true);
|
|
|
|
// If we are populating the parser state, prepare it for parsing.
|
|
if (state.asmState)
|
|
state.asmState->initialize(topLevelOp);
|
|
}
|
|
|
|
OperationParser::~OperationParser() {
|
|
for (auto &fwd : forwardRefPlaceholders) {
|
|
// Drop all uses of undefined forward declared reference and destroy
|
|
// defining operation.
|
|
fwd.first.dropAllUses();
|
|
fwd.first.getDefiningOp()->destroy();
|
|
}
|
|
for (const auto &scope : forwardRef) {
|
|
for (const auto &fwd : scope) {
|
|
// Delete all blocks that were created as forward references but never
|
|
// included into a region.
|
|
fwd.first->dropAllUses();
|
|
delete fwd.first;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// After parsing is finished, this function must be called to see if there are
|
|
/// any remaining issues.
|
|
ParseResult OperationParser::finalize() {
|
|
// Check for any forward references that are left. If we find any, error
|
|
// out.
|
|
if (!forwardRefPlaceholders.empty()) {
|
|
SmallVector<const char *, 4> errors;
|
|
// Iteration over the map isn't deterministic, so sort by source location.
|
|
for (auto entry : forwardRefPlaceholders)
|
|
errors.push_back(entry.second.getPointer());
|
|
llvm::array_pod_sort(errors.begin(), errors.end());
|
|
|
|
for (const char *entry : errors) {
|
|
auto loc = SMLoc::getFromPointer(entry);
|
|
emitError(loc, "use of undeclared SSA value name");
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
// Resolve the locations of any deferred operations.
|
|
auto &attributeAliases = state.symbols.attributeAliasDefinitions;
|
|
auto locID = TypeID::get<DeferredLocInfo *>();
|
|
auto resolveLocation = [&, this](auto &opOrArgument) -> LogicalResult {
|
|
auto fwdLoc = opOrArgument.getLoc().template dyn_cast<OpaqueLoc>();
|
|
if (!fwdLoc || fwdLoc.getUnderlyingTypeID() != locID)
|
|
return success();
|
|
auto locInfo = deferredLocsReferences[fwdLoc.getUnderlyingLocation()];
|
|
Attribute attr = attributeAliases.lookup(locInfo.identifier);
|
|
if (!attr)
|
|
return this->emitError(locInfo.loc)
|
|
<< "operation location alias was never defined";
|
|
auto locAttr = attr.dyn_cast<LocationAttr>();
|
|
if (!locAttr)
|
|
return this->emitError(locInfo.loc)
|
|
<< "expected location, but found '" << attr << "'";
|
|
opOrArgument.setLoc(locAttr);
|
|
return success();
|
|
};
|
|
|
|
auto walkRes = topLevelOp->walk([&](Operation *op) {
|
|
if (failed(resolveLocation(*op)))
|
|
return WalkResult::interrupt();
|
|
for (Region ®ion : op->getRegions())
|
|
for (Block &block : region.getBlocks())
|
|
for (BlockArgument arg : block.getArguments())
|
|
if (failed(resolveLocation(arg)))
|
|
return WalkResult::interrupt();
|
|
return WalkResult::advance();
|
|
});
|
|
if (walkRes.wasInterrupted())
|
|
return failure();
|
|
|
|
// Pop the top level name scope.
|
|
if (failed(popSSANameScope()))
|
|
return failure();
|
|
|
|
// Verify that the parsed operations are valid.
|
|
if (failed(verify(topLevelOp)))
|
|
return failure();
|
|
|
|
// If we are populating the parser state, finalize the top-level operation.
|
|
if (state.asmState)
|
|
state.asmState->finalize(topLevelOp);
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SSA Value Handling
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void OperationParser::pushSSANameScope(bool isIsolated) {
|
|
blocksByName.push_back(DenseMap<StringRef, BlockDefinition>());
|
|
forwardRef.push_back(DenseMap<Block *, SMLoc>());
|
|
|
|
// Push back a new name definition scope.
|
|
if (isIsolated)
|
|
isolatedNameScopes.push_back({});
|
|
isolatedNameScopes.back().pushSSANameScope();
|
|
}
|
|
|
|
ParseResult OperationParser::popSSANameScope() {
|
|
auto forwardRefInCurrentScope = forwardRef.pop_back_val();
|
|
|
|
// Verify that all referenced blocks were defined.
|
|
if (!forwardRefInCurrentScope.empty()) {
|
|
SmallVector<std::pair<const char *, Block *>, 4> errors;
|
|
// Iteration over the map isn't deterministic, so sort by source location.
|
|
for (auto entry : forwardRefInCurrentScope) {
|
|
errors.push_back({entry.second.getPointer(), entry.first});
|
|
// Add this block to the top-level region to allow for automatic cleanup.
|
|
topLevelOp->getRegion(0).push_back(entry.first);
|
|
}
|
|
llvm::array_pod_sort(errors.begin(), errors.end());
|
|
|
|
for (auto entry : errors) {
|
|
auto loc = SMLoc::getFromPointer(entry.first);
|
|
emitError(loc, "reference to an undefined block");
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
// Pop the next nested namescope. If there is only one internal namescope,
|
|
// just pop the isolated scope.
|
|
auto ¤tNameScope = isolatedNameScopes.back();
|
|
if (currentNameScope.definitionsPerScope.size() == 1)
|
|
isolatedNameScopes.pop_back();
|
|
else
|
|
currentNameScope.popSSANameScope();
|
|
|
|
blocksByName.pop_back();
|
|
return success();
|
|
}
|
|
|
|
/// Register a definition of a value with the symbol table.
|
|
ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) {
|
|
auto &entries = getSSAValueEntry(useInfo.name);
|
|
|
|
// Make sure there is a slot for this value.
|
|
if (entries.size() <= useInfo.number)
|
|
entries.resize(useInfo.number + 1);
|
|
|
|
// If we already have an entry for this, check to see if it was a definition
|
|
// or a forward reference.
|
|
if (auto existing = entries[useInfo.number].value) {
|
|
if (!isForwardRefPlaceholder(existing)) {
|
|
return emitError(useInfo.loc)
|
|
.append("redefinition of SSA value '", useInfo.name, "'")
|
|
.attachNote(getEncodedSourceLocation(entries[useInfo.number].loc))
|
|
.append("previously defined here");
|
|
}
|
|
|
|
if (existing.getType() != value.getType()) {
|
|
return emitError(useInfo.loc)
|
|
.append("definition of SSA value '", useInfo.name, "#",
|
|
useInfo.number, "' has type ", value.getType())
|
|
.attachNote(getEncodedSourceLocation(entries[useInfo.number].loc))
|
|
.append("previously used here with type ", existing.getType());
|
|
}
|
|
|
|
// If it was a forward reference, update everything that used it to use
|
|
// the actual definition instead, delete the forward ref, and remove it
|
|
// from our set of forward references we track.
|
|
existing.replaceAllUsesWith(value);
|
|
existing.getDefiningOp()->destroy();
|
|
forwardRefPlaceholders.erase(existing);
|
|
|
|
// If a definition of the value already exists, replace it in the assembly
|
|
// state.
|
|
if (state.asmState)
|
|
state.asmState->refineDefinition(existing, value);
|
|
}
|
|
|
|
/// Record this definition for the current scope.
|
|
entries[useInfo.number] = {value, useInfo.loc};
|
|
recordDefinition(useInfo.name);
|
|
return success();
|
|
}
|
|
|
|
/// Parse a (possibly empty) list of SSA operands.
|
|
///
|
|
/// ssa-use-list ::= ssa-use (`,` ssa-use)*
|
|
/// ssa-use-list-opt ::= ssa-use-list?
|
|
///
|
|
ParseResult
|
|
OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) {
|
|
if (getToken().isNot(Token::percent_identifier))
|
|
return success();
|
|
return parseCommaSeparatedList([&]() -> ParseResult {
|
|
SSAUseInfo result;
|
|
if (parseSSAUse(result))
|
|
return failure();
|
|
results.push_back(result);
|
|
return success();
|
|
});
|
|
}
|
|
|
|
/// Parse a SSA operand for an operation.
|
|
///
|
|
/// ssa-use ::= ssa-id
|
|
///
|
|
ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) {
|
|
result.name = getTokenSpelling();
|
|
result.number = 0;
|
|
result.loc = getToken().getLoc();
|
|
if (parseToken(Token::percent_identifier, "expected SSA operand"))
|
|
return failure();
|
|
|
|
// If we have an attribute ID, it is a result number.
|
|
if (getToken().is(Token::hash_identifier)) {
|
|
if (auto value = getToken().getHashIdentifierNumber())
|
|
result.number = value.getValue();
|
|
else
|
|
return emitError("invalid SSA value result number");
|
|
consumeToken(Token::hash_identifier);
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Given an unbound reference to an SSA value and its type, return the value
|
|
/// it specifies. This returns null on failure.
|
|
Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) {
|
|
auto &entries = getSSAValueEntry(useInfo.name);
|
|
|
|
// Functor used to record the use of the given value if the assembly state
|
|
// field is populated.
|
|
auto maybeRecordUse = [&](Value value) {
|
|
if (state.asmState)
|
|
state.asmState->addUses(value, useInfo.loc);
|
|
return value;
|
|
};
|
|
|
|
// If we have already seen a value of this name, return it.
|
|
if (useInfo.number < entries.size() && entries[useInfo.number].value) {
|
|
Value result = entries[useInfo.number].value;
|
|
// Check that the type matches the other uses.
|
|
if (result.getType() == type)
|
|
return maybeRecordUse(result);
|
|
|
|
emitError(useInfo.loc, "use of value '")
|
|
.append(useInfo.name,
|
|
"' expects different type than prior uses: ", type, " vs ",
|
|
result.getType())
|
|
.attachNote(getEncodedSourceLocation(entries[useInfo.number].loc))
|
|
.append("prior use here");
|
|
return nullptr;
|
|
}
|
|
|
|
// Make sure we have enough slots for this.
|
|
if (entries.size() <= useInfo.number)
|
|
entries.resize(useInfo.number + 1);
|
|
|
|
// If the value has already been defined and this is an overly large result
|
|
// number, diagnose that.
|
|
if (entries[0].value && !isForwardRefPlaceholder(entries[0].value))
|
|
return (emitError(useInfo.loc, "reference to invalid result number"),
|
|
nullptr);
|
|
|
|
// Otherwise, this is a forward reference. Create a placeholder and remember
|
|
// that we did so.
|
|
Value result = createForwardRefPlaceholder(useInfo.loc, type);
|
|
entries[useInfo.number] = {result, useInfo.loc};
|
|
return maybeRecordUse(result);
|
|
}
|
|
|
|
/// Parse an SSA use with an associated type.
|
|
///
|
|
/// ssa-use-and-type ::= ssa-use `:` type
|
|
ParseResult OperationParser::parseSSADefOrUseAndType(
|
|
function_ref<ParseResult(SSAUseInfo, Type)> action) {
|
|
SSAUseInfo useInfo;
|
|
if (parseSSAUse(useInfo) ||
|
|
parseToken(Token::colon, "expected ':' and type for SSA operand"))
|
|
return failure();
|
|
|
|
auto type = parseType();
|
|
if (!type)
|
|
return failure();
|
|
|
|
return action(useInfo, type);
|
|
}
|
|
|
|
/// Parse a (possibly empty) list of SSA operands, followed by a colon, then
|
|
/// followed by a type list.
|
|
///
|
|
/// ssa-use-and-type-list
|
|
/// ::= ssa-use-list ':' type-list-no-parens
|
|
///
|
|
ParseResult OperationParser::parseOptionalSSAUseAndTypeList(
|
|
SmallVectorImpl<Value> &results) {
|
|
SmallVector<SSAUseInfo, 4> valueIDs;
|
|
if (parseOptionalSSAUseList(valueIDs))
|
|
return failure();
|
|
|
|
// If there were no operands, then there is no colon or type lists.
|
|
if (valueIDs.empty())
|
|
return success();
|
|
|
|
SmallVector<Type, 4> types;
|
|
if (parseToken(Token::colon, "expected ':' in operand list") ||
|
|
parseTypeListNoParens(types))
|
|
return failure();
|
|
|
|
if (valueIDs.size() != types.size())
|
|
return emitError("expected ")
|
|
<< valueIDs.size() << " types to match operand list";
|
|
|
|
results.reserve(valueIDs.size());
|
|
for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) {
|
|
if (auto value = resolveSSAUse(valueIDs[i], types[i]))
|
|
results.push_back(value);
|
|
else
|
|
return failure();
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Record that a definition was added at the current scope.
|
|
void OperationParser::recordDefinition(StringRef def) {
|
|
isolatedNameScopes.back().recordDefinition(def);
|
|
}
|
|
|
|
/// Get the value entry for the given SSA name.
|
|
auto OperationParser::getSSAValueEntry(StringRef name)
|
|
-> SmallVectorImpl<ValueDefinition> & {
|
|
return isolatedNameScopes.back().values[name];
|
|
}
|
|
|
|
/// Create and remember a new placeholder for a forward reference.
|
|
Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) {
|
|
// Forward references are always created as operations, because we just need
|
|
// something with a def/use chain.
|
|
//
|
|
// We create these placeholders as having an empty name, which we know
|
|
// cannot be created through normal user input, allowing us to distinguish
|
|
// them.
|
|
auto name = OperationName("builtin.unrealized_conversion_cast", getContext());
|
|
auto *op = Operation::create(
|
|
getEncodedSourceLocation(loc), name, type, /*operands=*/{},
|
|
/*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0);
|
|
forwardRefPlaceholders[op->getResult(0)] = loc;
|
|
return op->getResult(0);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Operation Parsing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Parse an operation.
|
|
///
|
|
/// operation ::= op-result-list?
|
|
/// (generic-operation | custom-operation)
|
|
/// trailing-location?
|
|
/// generic-operation ::= string-literal `(` ssa-use-list? `)`
|
|
/// successor-list? (`(` region-list `)`)?
|
|
/// attribute-dict? `:` function-type
|
|
/// custom-operation ::= bare-id custom-operation-format
|
|
/// op-result-list ::= op-result (`,` op-result)* `=`
|
|
/// op-result ::= ssa-id (`:` integer-literal)
|
|
///
|
|
ParseResult OperationParser::parseOperation() {
|
|
auto loc = getToken().getLoc();
|
|
SmallVector<ResultRecord, 1> resultIDs;
|
|
size_t numExpectedResults = 0;
|
|
if (getToken().is(Token::percent_identifier)) {
|
|
// Parse the group of result ids.
|
|
auto parseNextResult = [&]() -> ParseResult {
|
|
// Parse the next result id.
|
|
if (!getToken().is(Token::percent_identifier))
|
|
return emitError("expected valid ssa identifier");
|
|
|
|
Token nameTok = getToken();
|
|
consumeToken(Token::percent_identifier);
|
|
|
|
// If the next token is a ':', we parse the expected result count.
|
|
size_t expectedSubResults = 1;
|
|
if (consumeIf(Token::colon)) {
|
|
// Check that the next token is an integer.
|
|
if (!getToken().is(Token::integer))
|
|
return emitError("expected integer number of results");
|
|
|
|
// Check that number of results is > 0.
|
|
auto val = getToken().getUInt64IntegerValue();
|
|
if (!val.hasValue() || val.getValue() < 1)
|
|
return emitError("expected named operation to have atleast 1 result");
|
|
consumeToken(Token::integer);
|
|
expectedSubResults = *val;
|
|
}
|
|
|
|
resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults,
|
|
nameTok.getLoc());
|
|
numExpectedResults += expectedSubResults;
|
|
return success();
|
|
};
|
|
if (parseCommaSeparatedList(parseNextResult))
|
|
return failure();
|
|
|
|
if (parseToken(Token::equal, "expected '=' after SSA name"))
|
|
return failure();
|
|
}
|
|
|
|
Operation *op;
|
|
Token nameTok = getToken();
|
|
if (nameTok.is(Token::bare_identifier) || nameTok.isKeyword())
|
|
op = parseCustomOperation(resultIDs);
|
|
else if (nameTok.is(Token::string))
|
|
op = parseGenericOperation();
|
|
else
|
|
return emitError("expected operation name in quotes");
|
|
|
|
// If parsing of the basic operation failed, then this whole thing fails.
|
|
if (!op)
|
|
return failure();
|
|
|
|
// If the operation had a name, register it.
|
|
if (!resultIDs.empty()) {
|
|
if (op->getNumResults() == 0)
|
|
return emitError(loc, "cannot name an operation with no results");
|
|
if (numExpectedResults != op->getNumResults())
|
|
return emitError(loc, "operation defines ")
|
|
<< op->getNumResults() << " results but was provided "
|
|
<< numExpectedResults << " to bind";
|
|
|
|
// Add this operation to the assembly state if it was provided to populate.
|
|
if (state.asmState) {
|
|
unsigned resultIt = 0;
|
|
SmallVector<std::pair<unsigned, SMLoc>> asmResultGroups;
|
|
asmResultGroups.reserve(resultIDs.size());
|
|
for (ResultRecord &record : resultIDs) {
|
|
asmResultGroups.emplace_back(resultIt, std::get<2>(record));
|
|
resultIt += std::get<1>(record);
|
|
}
|
|
state.asmState->finalizeOperationDefinition(
|
|
op, nameTok.getLocRange(), /*endLoc=*/getToken().getLoc(),
|
|
asmResultGroups);
|
|
}
|
|
|
|
// Add definitions for each of the result groups.
|
|
unsigned opResI = 0;
|
|
for (ResultRecord &resIt : resultIDs) {
|
|
for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) {
|
|
if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)},
|
|
op->getResult(opResI++)))
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
// Add this operation to the assembly state if it was provided to populate.
|
|
} else if (state.asmState) {
|
|
state.asmState->finalizeOperationDefinition(op, nameTok.getLocRange(),
|
|
/*endLoc=*/getToken().getLoc());
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Parse a single operation successor.
|
|
///
|
|
/// successor ::= block-id
|
|
///
|
|
ParseResult OperationParser::parseSuccessor(Block *&dest) {
|
|
// Verify branch is identifier and get the matching block.
|
|
if (!getToken().is(Token::caret_identifier))
|
|
return emitError("expected block name");
|
|
dest = getBlockNamed(getTokenSpelling(), getToken().getLoc());
|
|
consumeToken();
|
|
return success();
|
|
}
|
|
|
|
/// Parse a comma-separated list of operation successors in brackets.
|
|
///
|
|
/// successor-list ::= `[` successor (`,` successor )* `]`
|
|
///
|
|
ParseResult
|
|
OperationParser::parseSuccessors(SmallVectorImpl<Block *> &destinations) {
|
|
if (parseToken(Token::l_square, "expected '['"))
|
|
return failure();
|
|
|
|
auto parseElt = [this, &destinations] {
|
|
Block *dest;
|
|
ParseResult res = parseSuccessor(dest);
|
|
destinations.push_back(dest);
|
|
return res;
|
|
};
|
|
return parseCommaSeparatedListUntil(Token::r_square, parseElt,
|
|
/*allowEmptyList=*/false);
|
|
}
|
|
|
|
namespace {
|
|
// RAII-style guard for cleaning up the regions in the operation state before
|
|
// deleting them. Within the parser, regions may get deleted if parsing failed,
|
|
// and other errors may be present, in particular undominated uses. This makes
|
|
// sure such uses are deleted.
|
|
struct CleanupOpStateRegions {
|
|
~CleanupOpStateRegions() {
|
|
SmallVector<Region *, 4> regionsToClean;
|
|
regionsToClean.reserve(state.regions.size());
|
|
for (auto ®ion : state.regions)
|
|
if (region)
|
|
for (auto &block : *region)
|
|
block.dropAllDefinedValueUses();
|
|
}
|
|
OperationState &state;
|
|
};
|
|
} // namespace
|
|
|
|
ParseResult OperationParser::parseGenericOperationAfterOpName(
|
|
OperationState &result, Optional<ArrayRef<SSAUseInfo>> parsedOperandUseInfo,
|
|
Optional<ArrayRef<Block *>> parsedSuccessors,
|
|
Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions,
|
|
Optional<ArrayRef<NamedAttribute>> parsedAttributes,
|
|
Optional<FunctionType> parsedFnType) {
|
|
|
|
// Parse the operand list, if not explicitly provided.
|
|
SmallVector<SSAUseInfo, 8> opInfo;
|
|
if (!parsedOperandUseInfo) {
|
|
if (parseToken(Token::l_paren, "expected '(' to start operand list") ||
|
|
parseOptionalSSAUseList(opInfo) ||
|
|
parseToken(Token::r_paren, "expected ')' to end operand list")) {
|
|
return failure();
|
|
}
|
|
parsedOperandUseInfo = opInfo;
|
|
}
|
|
|
|
// Parse the successor list, if not explicitly provided.
|
|
if (!parsedSuccessors) {
|
|
if (getToken().is(Token::l_square)) {
|
|
// Check if the operation is not a known terminator.
|
|
if (!result.name.mightHaveTrait<OpTrait::IsTerminator>())
|
|
return emitError("successors in non-terminator");
|
|
|
|
SmallVector<Block *, 2> successors;
|
|
if (parseSuccessors(successors))
|
|
return failure();
|
|
result.addSuccessors(successors);
|
|
}
|
|
} else {
|
|
result.addSuccessors(*parsedSuccessors);
|
|
}
|
|
|
|
// Parse the region list, if not explicitly provided.
|
|
if (!parsedRegions) {
|
|
if (consumeIf(Token::l_paren)) {
|
|
do {
|
|
// Create temporary regions with the top level region as parent.
|
|
result.regions.emplace_back(new Region(topLevelOp));
|
|
if (parseRegion(*result.regions.back(), /*entryArguments=*/{},
|
|
/*argLocations=*/{}))
|
|
return failure();
|
|
} while (consumeIf(Token::comma));
|
|
if (parseToken(Token::r_paren, "expected ')' to end region list"))
|
|
return failure();
|
|
}
|
|
} else {
|
|
result.addRegions(*parsedRegions);
|
|
}
|
|
|
|
// Parse the attributes, if not explicitly provided.
|
|
if (!parsedAttributes) {
|
|
if (getToken().is(Token::l_brace)) {
|
|
if (parseAttributeDict(result.attributes))
|
|
return failure();
|
|
}
|
|
} else {
|
|
result.addAttributes(*parsedAttributes);
|
|
}
|
|
|
|
// Parse the operation type, if not explicitly provided.
|
|
Location typeLoc = result.location;
|
|
if (!parsedFnType) {
|
|
if (parseToken(Token::colon, "expected ':' followed by operation type"))
|
|
return failure();
|
|
|
|
typeLoc = getEncodedSourceLocation(getToken().getLoc());
|
|
auto type = parseType();
|
|
if (!type)
|
|
return failure();
|
|
auto fnType = type.dyn_cast<FunctionType>();
|
|
if (!fnType)
|
|
return mlir::emitError(typeLoc, "expected function type");
|
|
|
|
parsedFnType = fnType;
|
|
}
|
|
|
|
result.addTypes(parsedFnType->getResults());
|
|
|
|
// Check that we have the right number of types for the operands.
|
|
ArrayRef<Type> operandTypes = parsedFnType->getInputs();
|
|
if (operandTypes.size() != parsedOperandUseInfo->size()) {
|
|
auto plural = "s"[parsedOperandUseInfo->size() == 1];
|
|
return mlir::emitError(typeLoc, "expected ")
|
|
<< parsedOperandUseInfo->size() << " operand type" << plural
|
|
<< " but had " << operandTypes.size();
|
|
}
|
|
|
|
// Resolve all of the operands.
|
|
for (unsigned i = 0, e = parsedOperandUseInfo->size(); i != e; ++i) {
|
|
result.operands.push_back(
|
|
resolveSSAUse((*parsedOperandUseInfo)[i], operandTypes[i]));
|
|
if (!result.operands.back())
|
|
return failure();
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
Operation *OperationParser::parseGenericOperation() {
|
|
// Get location information for the operation.
|
|
auto srcLocation = getEncodedSourceLocation(getToken().getLoc());
|
|
|
|
std::string name = getToken().getStringValue();
|
|
if (name.empty())
|
|
return (emitError("empty operation name is invalid"), nullptr);
|
|
if (name.find('\0') != StringRef::npos)
|
|
return (emitError("null character not allowed in operation name"), nullptr);
|
|
|
|
consumeToken(Token::string);
|
|
|
|
OperationState result(srcLocation, name);
|
|
CleanupOpStateRegions guard{result};
|
|
|
|
// Lazy load dialects in the context as needed.
|
|
if (!result.name.isRegistered()) {
|
|
StringRef dialectName = StringRef(name).split('.').first;
|
|
if (!getContext()->getLoadedDialect(dialectName) &&
|
|
!getContext()->getOrLoadDialect(dialectName) &&
|
|
!getContext()->allowsUnregisteredDialects()) {
|
|
// Emit an error if the dialect couldn't be loaded (i.e., it was not
|
|
// registered) and unregistered dialects aren't allowed.
|
|
emitError("operation being parsed with an unregistered dialect. If "
|
|
"this is intended, please use -allow-unregistered-dialect "
|
|
"with the MLIR tool used");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// If we are populating the parser state, start a new operation definition.
|
|
if (state.asmState)
|
|
state.asmState->startOperationDefinition(result.name);
|
|
|
|
if (parseGenericOperationAfterOpName(result))
|
|
return nullptr;
|
|
|
|
// Create the operation and try to parse a location for it.
|
|
Operation *op = opBuilder.createOperation(result);
|
|
if (parseTrailingLocationSpecifier(op))
|
|
return nullptr;
|
|
return op;
|
|
}
|
|
|
|
Operation *OperationParser::parseGenericOperation(Block *insertBlock,
|
|
Block::iterator insertPt) {
|
|
Token nameToken = getToken();
|
|
|
|
OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder);
|
|
opBuilder.setInsertionPoint(insertBlock, insertPt);
|
|
Operation *op = parseGenericOperation();
|
|
if (!op)
|
|
return nullptr;
|
|
|
|
// If we are populating the parser asm state, finalize this operation
|
|
// definition.
|
|
if (state.asmState)
|
|
state.asmState->finalizeOperationDefinition(op, nameToken.getLocRange(),
|
|
/*endLoc=*/getToken().getLoc());
|
|
return op;
|
|
}
|
|
|
|
namespace {
|
|
class CustomOpAsmParser : public AsmParserImpl<OpAsmParser> {
|
|
public:
|
|
CustomOpAsmParser(
|
|
SMLoc nameLoc, ArrayRef<OperationParser::ResultRecord> resultIDs,
|
|
function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly,
|
|
bool isIsolatedFromAbove, StringRef opName, OperationParser &parser)
|
|
: AsmParserImpl<OpAsmParser>(nameLoc, parser), resultIDs(resultIDs),
|
|
parseAssembly(parseAssembly), isIsolatedFromAbove(isIsolatedFromAbove),
|
|
opName(opName), parser(parser) {
|
|
(void)isIsolatedFromAbove; // Only used in assert, silence unused warning.
|
|
}
|
|
|
|
/// Parse an instance of the operation described by 'opDefinition' into the
|
|
/// provided operation state.
|
|
ParseResult parseOperation(OperationState &opState) {
|
|
if (parseAssembly(*this, opState))
|
|
return failure();
|
|
// Verify that the parsed attributes does not have duplicate attributes.
|
|
// This can happen if an attribute set during parsing is also specified in
|
|
// the attribute dictionary in the assembly, or the attribute is set
|
|
// multiple during parsing.
|
|
Optional<NamedAttribute> duplicate = opState.attributes.findDuplicate();
|
|
if (duplicate)
|
|
return emitError(getNameLoc(), "attribute '")
|
|
<< duplicate->getName().getValue()
|
|
<< "' occurs more than once in the attribute list";
|
|
return success();
|
|
}
|
|
|
|
Operation *parseGenericOperation(Block *insertBlock,
|
|
Block::iterator insertPt) final {
|
|
return parser.parseGenericOperation(insertBlock, insertPt);
|
|
}
|
|
|
|
FailureOr<OperationName> parseCustomOperationName() final {
|
|
return parser.parseCustomOperationName();
|
|
}
|
|
|
|
ParseResult parseGenericOperationAfterOpName(
|
|
OperationState &result,
|
|
Optional<ArrayRef<OperandType>> parsedOperandTypes,
|
|
Optional<ArrayRef<Block *>> parsedSuccessors,
|
|
Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions,
|
|
Optional<ArrayRef<NamedAttribute>> parsedAttributes,
|
|
Optional<FunctionType> parsedFnType) final {
|
|
|
|
// TODO: The types, OperandType and SSAUseInfo, both share the same members
|
|
// but in different order. It would be cleaner to make one alias of the
|
|
// other, making the following code redundant.
|
|
SmallVector<OperationParser::SSAUseInfo> parsedOperandUseInfo;
|
|
if (parsedOperandTypes) {
|
|
for (const OperandType &parsedOperandType : *parsedOperandTypes)
|
|
parsedOperandUseInfo.push_back({
|
|
parsedOperandType.name,
|
|
parsedOperandType.number,
|
|
parsedOperandType.location,
|
|
});
|
|
}
|
|
|
|
return parser.parseGenericOperationAfterOpName(
|
|
result,
|
|
parsedOperandTypes ? llvm::makeArrayRef(parsedOperandUseInfo)
|
|
: llvm::None,
|
|
parsedSuccessors, parsedRegions, parsedAttributes, parsedFnType);
|
|
}
|
|
//===--------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Return the name of the specified result in the specified syntax, as well
|
|
/// as the subelement in the name. For example, in this operation:
|
|
///
|
|
/// %x, %y:2, %z = foo.op
|
|
///
|
|
/// getResultName(0) == {"x", 0 }
|
|
/// getResultName(1) == {"y", 0 }
|
|
/// getResultName(2) == {"y", 1 }
|
|
/// getResultName(3) == {"z", 0 }
|
|
std::pair<StringRef, unsigned>
|
|
getResultName(unsigned resultNo) const override {
|
|
// Scan for the resultID that contains this result number.
|
|
for (const auto &entry : resultIDs) {
|
|
if (resultNo < std::get<1>(entry)) {
|
|
// Don't pass on the leading %.
|
|
StringRef name = std::get<0>(entry).drop_front();
|
|
return {name, resultNo};
|
|
}
|
|
resultNo -= std::get<1>(entry);
|
|
}
|
|
|
|
// Invalid result number.
|
|
return {"", ~0U};
|
|
}
|
|
|
|
/// Return the number of declared SSA results. This returns 4 for the foo.op
|
|
/// example in the comment for getResultName.
|
|
size_t getNumResults() const override {
|
|
size_t count = 0;
|
|
for (auto &entry : resultIDs)
|
|
count += std::get<1>(entry);
|
|
return count;
|
|
}
|
|
|
|
/// Emit a diagnostic at the specified location and return failure.
|
|
InFlightDiagnostic emitError(SMLoc loc, const Twine &message) override {
|
|
return AsmParserImpl<OpAsmParser>::emitError(loc, "custom op '" + opName +
|
|
"' " + message);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Operand Parsing
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Parse a single operand.
|
|
ParseResult parseOperand(OperandType &result) override {
|
|
OperationParser::SSAUseInfo useInfo;
|
|
if (parser.parseSSAUse(useInfo))
|
|
return failure();
|
|
|
|
result = {useInfo.loc, useInfo.name, useInfo.number};
|
|
return success();
|
|
}
|
|
|
|
/// Parse a single operand if present.
|
|
OptionalParseResult parseOptionalOperand(OperandType &result) override {
|
|
if (parser.getToken().is(Token::percent_identifier))
|
|
return parseOperand(result);
|
|
return llvm::None;
|
|
}
|
|
|
|
/// Parse zero or more SSA comma-separated operand references with a specified
|
|
/// surrounding delimiter, and an optional required operand count.
|
|
ParseResult parseOperandList(SmallVectorImpl<OperandType> &result,
|
|
int requiredOperandCount = -1,
|
|
Delimiter delimiter = Delimiter::None) override {
|
|
return parseOperandOrRegionArgList(result, /*isOperandList=*/true,
|
|
requiredOperandCount, delimiter);
|
|
}
|
|
|
|
/// Parse zero or more SSA comma-separated operand or region arguments with
|
|
/// optional surrounding delimiter and required operand count.
|
|
ParseResult
|
|
parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result,
|
|
bool isOperandList, int requiredOperandCount = -1,
|
|
Delimiter delimiter = Delimiter::None) {
|
|
auto startLoc = parser.getToken().getLoc();
|
|
|
|
// The no-delimiter case has some special handling for better diagnostics.
|
|
if (delimiter == Delimiter::None) {
|
|
// parseCommaSeparatedList doesn't handle the missing case for "none",
|
|
// so we handle it custom here.
|
|
if (parser.getToken().isNot(Token::percent_identifier)) {
|
|
// If we didn't require any operands or required exactly zero (weird)
|
|
// then this is success.
|
|
if (requiredOperandCount == -1 || requiredOperandCount == 0)
|
|
return success();
|
|
|
|
// Otherwise, try to produce a nice error message.
|
|
if (parser.getToken().is(Token::l_paren) ||
|
|
parser.getToken().is(Token::l_square))
|
|
return emitError(startLoc, "unexpected delimiter");
|
|
return emitError(startLoc, "invalid operand");
|
|
}
|
|
}
|
|
|
|
auto parseOneOperand = [&]() -> ParseResult {
|
|
OperandType operandOrArg;
|
|
if (isOperandList ? parseOperand(operandOrArg)
|
|
: parseRegionArgument(operandOrArg))
|
|
return failure();
|
|
result.push_back(operandOrArg);
|
|
return success();
|
|
};
|
|
|
|
if (parseCommaSeparatedList(delimiter, parseOneOperand, " in operand list"))
|
|
return failure();
|
|
|
|
// Check that we got the expected # of elements.
|
|
if (requiredOperandCount != -1 &&
|
|
result.size() != static_cast<size_t>(requiredOperandCount))
|
|
return emitError(startLoc, "expected ")
|
|
<< requiredOperandCount << " operands";
|
|
return success();
|
|
}
|
|
|
|
/// Parse zero or more trailing SSA comma-separated trailing operand
|
|
/// references with a specified surrounding delimiter, and an optional
|
|
/// required operand count. A leading comma is expected before the operands.
|
|
ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result,
|
|
int requiredOperandCount,
|
|
Delimiter delimiter) override {
|
|
if (parser.getToken().is(Token::comma)) {
|
|
parseComma();
|
|
return parseOperandList(result, requiredOperandCount, delimiter);
|
|
}
|
|
if (requiredOperandCount != -1)
|
|
return emitError(parser.getToken().getLoc(), "expected ")
|
|
<< requiredOperandCount << " operands";
|
|
return success();
|
|
}
|
|
|
|
/// Resolve an operand to an SSA value, emitting an error on failure.
|
|
ParseResult resolveOperand(const OperandType &operand, Type type,
|
|
SmallVectorImpl<Value> &result) override {
|
|
OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
|
|
operand.location};
|
|
if (auto value = parser.resolveSSAUse(operandInfo, type)) {
|
|
result.push_back(value);
|
|
return success();
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
/// Parse an AffineMap of SSA ids.
|
|
ParseResult parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands,
|
|
Attribute &mapAttr, StringRef attrName,
|
|
NamedAttrList &attrs,
|
|
Delimiter delimiter) override {
|
|
SmallVector<OperandType, 2> dimOperands;
|
|
SmallVector<OperandType, 1> symOperands;
|
|
|
|
auto parseElement = [&](bool isSymbol) -> ParseResult {
|
|
OperandType operand;
|
|
if (parseOperand(operand))
|
|
return failure();
|
|
if (isSymbol)
|
|
symOperands.push_back(operand);
|
|
else
|
|
dimOperands.push_back(operand);
|
|
return success();
|
|
};
|
|
|
|
AffineMap map;
|
|
if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter))
|
|
return failure();
|
|
// Add AffineMap attribute.
|
|
if (map) {
|
|
mapAttr = AffineMapAttr::get(map);
|
|
attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr));
|
|
}
|
|
|
|
// Add dim operands before symbol operands in 'operands'.
|
|
operands.assign(dimOperands.begin(), dimOperands.end());
|
|
operands.append(symOperands.begin(), symOperands.end());
|
|
return success();
|
|
}
|
|
|
|
/// Parse an AffineExpr of SSA ids.
|
|
ParseResult
|
|
parseAffineExprOfSSAIds(SmallVectorImpl<OperandType> &dimOperands,
|
|
SmallVectorImpl<OperandType> &symbOperands,
|
|
AffineExpr &expr) override {
|
|
auto parseElement = [&](bool isSymbol) -> ParseResult {
|
|
OperandType operand;
|
|
if (parseOperand(operand))
|
|
return failure();
|
|
if (isSymbol)
|
|
symbOperands.push_back(operand);
|
|
else
|
|
dimOperands.push_back(operand);
|
|
return success();
|
|
};
|
|
|
|
return parser.parseAffineExprOfSSAIds(expr, parseElement);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Region Parsing
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Parse a region that takes `arguments` of `argTypes` types. This
|
|
/// effectively defines the SSA values of `arguments` and assigns their type.
|
|
ParseResult parseRegion(Region ®ion, ArrayRef<OperandType> arguments,
|
|
ArrayRef<Type> argTypes,
|
|
ArrayRef<Location> argLocations,
|
|
bool enableNameShadowing) override {
|
|
assert(arguments.size() == argTypes.size() &&
|
|
"mismatching number of arguments and types");
|
|
|
|
SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2>
|
|
regionArguments;
|
|
for (auto pair : llvm::zip(arguments, argTypes)) {
|
|
const OperandType &operand = std::get<0>(pair);
|
|
Type type = std::get<1>(pair);
|
|
OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
|
|
operand.location};
|
|
regionArguments.emplace_back(operandInfo, type);
|
|
}
|
|
|
|
// Try to parse the region.
|
|
(void)isIsolatedFromAbove;
|
|
assert((!enableNameShadowing || isIsolatedFromAbove) &&
|
|
"name shadowing is only allowed on isolated regions");
|
|
if (parser.parseRegion(region, regionArguments, argLocations,
|
|
enableNameShadowing))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
/// Parses a region if present.
|
|
OptionalParseResult parseOptionalRegion(Region ®ion,
|
|
ArrayRef<OperandType> arguments,
|
|
ArrayRef<Type> argTypes,
|
|
ArrayRef<Location> argLocations,
|
|
bool enableNameShadowing) override {
|
|
if (parser.getToken().isNot(Token::l_brace))
|
|
return llvm::None;
|
|
return parseRegion(region, arguments, argTypes, argLocations,
|
|
enableNameShadowing);
|
|
}
|
|
|
|
/// Parses a region if present. If the region is present, a new region is
|
|
/// allocated and placed in `region`. If no region is present, `region`
|
|
/// remains untouched.
|
|
OptionalParseResult
|
|
parseOptionalRegion(std::unique_ptr<Region> ®ion,
|
|
ArrayRef<OperandType> arguments, ArrayRef<Type> argTypes,
|
|
bool enableNameShadowing = false) override {
|
|
if (parser.getToken().isNot(Token::l_brace))
|
|
return llvm::None;
|
|
std::unique_ptr<Region> newRegion = std::make_unique<Region>();
|
|
if (parseRegion(*newRegion, arguments, argTypes, /*argLocations=*/{},
|
|
enableNameShadowing))
|
|
return failure();
|
|
|
|
region = std::move(newRegion);
|
|
return success();
|
|
}
|
|
|
|
/// Parse a region argument. The type of the argument will be resolved later
|
|
/// by a call to `parseRegion`.
|
|
ParseResult parseRegionArgument(OperandType &argument) override {
|
|
return parseOperand(argument);
|
|
}
|
|
|
|
/// Parse a region argument if present.
|
|
ParseResult parseOptionalRegionArgument(OperandType &argument) override {
|
|
if (parser.getToken().isNot(Token::percent_identifier))
|
|
return success();
|
|
return parseRegionArgument(argument);
|
|
}
|
|
|
|
ParseResult
|
|
parseRegionArgumentList(SmallVectorImpl<OperandType> &result,
|
|
int requiredOperandCount = -1,
|
|
Delimiter delimiter = Delimiter::None) override {
|
|
return parseOperandOrRegionArgList(result, /*isOperandList=*/false,
|
|
requiredOperandCount, delimiter);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Successor Parsing
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Parse a single operation successor.
|
|
ParseResult parseSuccessor(Block *&dest) override {
|
|
return parser.parseSuccessor(dest);
|
|
}
|
|
|
|
/// Parse an optional operation successor and its operand list.
|
|
OptionalParseResult parseOptionalSuccessor(Block *&dest) override {
|
|
if (parser.getToken().isNot(Token::caret_identifier))
|
|
return llvm::None;
|
|
return parseSuccessor(dest);
|
|
}
|
|
|
|
/// Parse a single operation successor and its operand list.
|
|
ParseResult
|
|
parseSuccessorAndUseList(Block *&dest,
|
|
SmallVectorImpl<Value> &operands) override {
|
|
if (parseSuccessor(dest))
|
|
return failure();
|
|
|
|
// Handle optional arguments.
|
|
if (succeeded(parseOptionalLParen()) &&
|
|
(parser.parseOptionalSSAUseAndTypeList(operands) || parseRParen())) {
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type Parsing
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Parse a list of assignments of the form
|
|
/// (%x1 = %y1, %x2 = %y2, ...).
|
|
OptionalParseResult
|
|
parseOptionalAssignmentList(SmallVectorImpl<OperandType> &lhs,
|
|
SmallVectorImpl<OperandType> &rhs) override {
|
|
if (failed(parseOptionalLParen()))
|
|
return llvm::None;
|
|
|
|
auto parseElt = [&]() -> ParseResult {
|
|
OperandType regionArg, operand;
|
|
if (parseRegionArgument(regionArg) || parseEqual() ||
|
|
parseOperand(operand))
|
|
return failure();
|
|
lhs.push_back(regionArg);
|
|
rhs.push_back(operand);
|
|
return success();
|
|
};
|
|
return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt);
|
|
}
|
|
|
|
/// Parse a list of assignments of the form
|
|
/// (%x1 = %y1 : type1, %x2 = %y2 : type2, ...).
|
|
OptionalParseResult
|
|
parseOptionalAssignmentListWithTypes(SmallVectorImpl<OperandType> &lhs,
|
|
SmallVectorImpl<OperandType> &rhs,
|
|
SmallVectorImpl<Type> &types) override {
|
|
if (failed(parseOptionalLParen()))
|
|
return llvm::None;
|
|
|
|
auto parseElt = [&]() -> ParseResult {
|
|
OperandType regionArg, operand;
|
|
Type type;
|
|
if (parseRegionArgument(regionArg) || parseEqual() ||
|
|
parseOperand(operand) || parseColon() || parseType(type))
|
|
return failure();
|
|
lhs.push_back(regionArg);
|
|
rhs.push_back(operand);
|
|
types.push_back(type);
|
|
return success();
|
|
};
|
|
return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt);
|
|
}
|
|
|
|
/// Parse a loc(...) specifier if present, filling in result if so.
|
|
ParseResult
|
|
parseOptionalLocationSpecifier(Optional<Location> &result) override {
|
|
// If there is a 'loc' we parse a trailing location.
|
|
if (!parser.consumeIf(Token::kw_loc))
|
|
return success();
|
|
LocationAttr directLoc;
|
|
if (parser.parseToken(Token::l_paren, "expected '(' in location"))
|
|
return failure();
|
|
|
|
Token tok = parser.getToken();
|
|
|
|
// Check to see if we are parsing a location alias.
|
|
// Otherwise, we parse the location directly.
|
|
if (tok.is(Token::hash_identifier)) {
|
|
if (parser.parseLocationAlias(directLoc))
|
|
return failure();
|
|
} else if (parser.parseLocationInstance(directLoc)) {
|
|
return failure();
|
|
}
|
|
|
|
if (parser.parseToken(Token::r_paren, "expected ')' in location"))
|
|
return failure();
|
|
|
|
result = directLoc;
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
/// Information about the result name specifiers.
|
|
ArrayRef<OperationParser::ResultRecord> resultIDs;
|
|
|
|
/// The abstract information of the operation.
|
|
function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly;
|
|
bool isIsolatedFromAbove;
|
|
StringRef opName;
|
|
|
|
/// The backing operation parser.
|
|
OperationParser &parser;
|
|
};
|
|
} // namespace
|
|
|
|
FailureOr<OperationName> OperationParser::parseCustomOperationName() {
|
|
std::string opName = getTokenSpelling().str();
|
|
if (opName.empty())
|
|
return (emitError("empty operation name is invalid"), failure());
|
|
|
|
consumeToken();
|
|
|
|
Optional<RegisteredOperationName> opInfo =
|
|
RegisteredOperationName::lookup(opName, getContext());
|
|
StringRef defaultDialect = getState().defaultDialectStack.back();
|
|
Dialect *dialect = nullptr;
|
|
if (opInfo) {
|
|
dialect = &opInfo->getDialect();
|
|
} else {
|
|
if (StringRef(opName).contains('.')) {
|
|
// This op has a dialect, we try to check if we can register it in the
|
|
// context on the fly.
|
|
StringRef dialectName = StringRef(opName).split('.').first;
|
|
dialect = getContext()->getLoadedDialect(dialectName);
|
|
if (!dialect && (dialect = getContext()->getOrLoadDialect(dialectName)))
|
|
opInfo = RegisteredOperationName::lookup(opName, getContext());
|
|
} else {
|
|
// If the operation name has no namespace prefix we lookup the current
|
|
// default dialect (set through OpAsmOpInterface).
|
|
opInfo = RegisteredOperationName::lookup(
|
|
Twine(defaultDialect + "." + opName).str(), getContext());
|
|
if (!opInfo && getContext()->getOrLoadDialect("std")) {
|
|
opInfo = RegisteredOperationName::lookup(Twine("std." + opName).str(),
|
|
getContext());
|
|
}
|
|
if (opInfo) {
|
|
dialect = &opInfo->getDialect();
|
|
opName = opInfo->getStringRef().str();
|
|
} else if (!defaultDialect.empty()) {
|
|
dialect = getContext()->getOrLoadDialect(defaultDialect);
|
|
opName = (defaultDialect + "." + opName).str();
|
|
}
|
|
}
|
|
}
|
|
|
|
return OperationName(opName, getContext());
|
|
}
|
|
|
|
Operation *
|
|
OperationParser::parseCustomOperation(ArrayRef<ResultRecord> resultIDs) {
|
|
SMLoc opLoc = getToken().getLoc();
|
|
|
|
FailureOr<OperationName> opNameInfo = parseCustomOperationName();
|
|
if (failed(opNameInfo))
|
|
return nullptr;
|
|
|
|
StringRef opName = opNameInfo->getStringRef();
|
|
Dialect *dialect = opNameInfo->getDialect();
|
|
Optional<RegisteredOperationName> opInfo = opNameInfo->getRegisteredInfo();
|
|
|
|
// This is the actual hook for the custom op parsing, usually implemented by
|
|
// the op itself (`Op::parse()`). We retrieve it either from the
|
|
// RegisteredOperationName or from the Dialect.
|
|
function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssemblyFn;
|
|
bool isIsolatedFromAbove = false;
|
|
|
|
StringRef defaultDialect = "";
|
|
if (opInfo) {
|
|
parseAssemblyFn = opInfo->getParseAssemblyFn();
|
|
isIsolatedFromAbove = opInfo->hasTrait<OpTrait::IsIsolatedFromAbove>();
|
|
auto *iface = opInfo->getInterface<OpAsmOpInterface>();
|
|
if (iface && !iface->getDefaultDialect().empty())
|
|
defaultDialect = iface->getDefaultDialect();
|
|
} else {
|
|
Optional<Dialect::ParseOpHook> dialectHook;
|
|
if (dialect)
|
|
dialectHook = dialect->getParseOperationHook(opName);
|
|
if (!dialectHook.hasValue()) {
|
|
emitError(opLoc) << "custom op '" << opName << "' is unknown";
|
|
return nullptr;
|
|
}
|
|
parseAssemblyFn = *dialectHook;
|
|
}
|
|
getState().defaultDialectStack.push_back(defaultDialect);
|
|
auto restoreDefaultDialect = llvm::make_scope_exit(
|
|
[&]() { getState().defaultDialectStack.pop_back(); });
|
|
|
|
// If the custom op parser crashes, produce some indication to help
|
|
// debugging.
|
|
llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'",
|
|
opNameInfo->getIdentifier().data());
|
|
|
|
// Get location information for the operation.
|
|
auto srcLocation = getEncodedSourceLocation(opLoc);
|
|
OperationState opState(srcLocation, *opNameInfo);
|
|
|
|
// If we are populating the parser state, start a new operation definition.
|
|
if (state.asmState)
|
|
state.asmState->startOperationDefinition(opState.name);
|
|
|
|
// Have the op implementation take a crack and parsing this.
|
|
CleanupOpStateRegions guard{opState};
|
|
CustomOpAsmParser opAsmParser(opLoc, resultIDs, parseAssemblyFn,
|
|
isIsolatedFromAbove, opName, *this);
|
|
if (opAsmParser.parseOperation(opState))
|
|
return nullptr;
|
|
|
|
// If it emitted an error, we failed.
|
|
if (opAsmParser.didEmitError())
|
|
return nullptr;
|
|
|
|
// Otherwise, create the operation and try to parse a location for it.
|
|
Operation *op = opBuilder.createOperation(opState);
|
|
if (parseTrailingLocationSpecifier(op))
|
|
return nullptr;
|
|
return op;
|
|
}
|
|
|
|
ParseResult OperationParser::parseLocationAlias(LocationAttr &loc) {
|
|
Token tok = getToken();
|
|
consumeToken(Token::hash_identifier);
|
|
StringRef identifier = tok.getSpelling().drop_front();
|
|
if (identifier.contains('.')) {
|
|
return emitError(tok.getLoc())
|
|
<< "expected location, but found dialect attribute: '#" << identifier
|
|
<< "'";
|
|
}
|
|
|
|
// If this alias can be resolved, do it now.
|
|
Attribute attr = state.symbols.attributeAliasDefinitions.lookup(identifier);
|
|
if (attr) {
|
|
if (!(loc = attr.dyn_cast<LocationAttr>()))
|
|
return emitError(tok.getLoc())
|
|
<< "expected location, but found '" << attr << "'";
|
|
} else {
|
|
// Otherwise, remember this operation and resolve its location later.
|
|
// In the meantime, use a special OpaqueLoc as a marker.
|
|
loc = OpaqueLoc::get(deferredLocsReferences.size(),
|
|
TypeID::get<DeferredLocInfo *>(),
|
|
UnknownLoc::get(getContext()));
|
|
deferredLocsReferences.push_back(DeferredLocInfo{tok.getLoc(), identifier});
|
|
}
|
|
return success();
|
|
}
|
|
|
|
ParseResult
|
|
OperationParser::parseTrailingLocationSpecifier(OpOrArgument opOrArgument) {
|
|
// If there is a 'loc' we parse a trailing location.
|
|
if (!consumeIf(Token::kw_loc))
|
|
return success();
|
|
if (parseToken(Token::l_paren, "expected '(' in location"))
|
|
return failure();
|
|
Token tok = getToken();
|
|
|
|
// Check to see if we are parsing a location alias.
|
|
// Otherwise, we parse the location directly.
|
|
LocationAttr directLoc;
|
|
if (tok.is(Token::hash_identifier)) {
|
|
if (parseLocationAlias(directLoc))
|
|
return failure();
|
|
} else if (parseLocationInstance(directLoc)) {
|
|
return failure();
|
|
}
|
|
|
|
if (parseToken(Token::r_paren, "expected ')' in location"))
|
|
return failure();
|
|
|
|
if (auto *op = opOrArgument.dyn_cast<Operation *>())
|
|
op->setLoc(directLoc);
|
|
else
|
|
opOrArgument.get<BlockArgument>().setLoc(directLoc);
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Region Parsing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ParseResult OperationParser::parseRegion(
|
|
Region ®ion,
|
|
ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments,
|
|
ArrayRef<Location> argLocations, bool isIsolatedNameScope) {
|
|
// Parse the '{'.
|
|
Token lBraceTok = getToken();
|
|
if (parseToken(Token::l_brace, "expected '{' to begin a region"))
|
|
return failure();
|
|
|
|
// If we are populating the parser state, start a new region definition.
|
|
if (state.asmState)
|
|
state.asmState->startRegionDefinition();
|
|
|
|
// Parse the region body.
|
|
if ((!entryArguments.empty() || getToken().isNot(Token::r_brace)) &&
|
|
parseRegionBody(region, lBraceTok.getLoc(), entryArguments, argLocations,
|
|
isIsolatedNameScope)) {
|
|
return failure();
|
|
}
|
|
consumeToken(Token::r_brace);
|
|
|
|
// If we are populating the parser state, finalize this region.
|
|
if (state.asmState)
|
|
state.asmState->finalizeRegionDefinition();
|
|
|
|
return success();
|
|
}
|
|
|
|
ParseResult OperationParser::parseRegionBody(
|
|
Region ®ion, SMLoc startLoc,
|
|
ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments,
|
|
ArrayRef<Location> argLocations, bool isIsolatedNameScope) {
|
|
assert(argLocations.empty() || argLocations.size() == entryArguments.size());
|
|
auto currentPt = opBuilder.saveInsertionPoint();
|
|
|
|
// Push a new named value scope.
|
|
pushSSANameScope(isIsolatedNameScope);
|
|
|
|
// Parse the first block directly to allow for it to be unnamed.
|
|
auto owningBlock = std::make_unique<Block>();
|
|
Block *block = owningBlock.get();
|
|
|
|
// If this block is not defined in the source file, add a definition for it
|
|
// now in the assembly state. Blocks with a name will be defined when the name
|
|
// is parsed.
|
|
if (state.asmState && getToken().isNot(Token::caret_identifier))
|
|
state.asmState->addDefinition(block, startLoc);
|
|
|
|
// Add arguments to the entry block.
|
|
if (!entryArguments.empty()) {
|
|
// If we had named arguments, then don't allow a block name.
|
|
if (getToken().is(Token::caret_identifier))
|
|
return emitError("invalid block name in region with named arguments");
|
|
|
|
for (const auto &it : llvm::enumerate(entryArguments)) {
|
|
size_t argIndex = it.index();
|
|
auto &placeholderArgPair = it.value();
|
|
auto &argInfo = placeholderArgPair.first;
|
|
|
|
// Ensure that the argument was not already defined.
|
|
if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) {
|
|
return emitError(argInfo.loc, "region entry argument '" + argInfo.name +
|
|
"' is already in use")
|
|
.attachNote(getEncodedSourceLocation(*defLoc))
|
|
<< "previously referenced here";
|
|
}
|
|
BlockArgument arg = block->addArgument(
|
|
placeholderArgPair.second,
|
|
argLocations.empty()
|
|
? getEncodedSourceLocation(placeholderArgPair.first.loc)
|
|
: argLocations[argIndex]);
|
|
|
|
// Add a definition of this arg to the assembly state if provided.
|
|
if (state.asmState)
|
|
state.asmState->addDefinition(arg, argInfo.loc);
|
|
|
|
// Record the definition for this argument.
|
|
if (addDefinition(argInfo, arg))
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
if (parseBlock(block))
|
|
return failure();
|
|
|
|
// Verify that no other arguments were parsed.
|
|
if (!entryArguments.empty() &&
|
|
block->getNumArguments() > entryArguments.size()) {
|
|
return emitError("entry block arguments were already defined");
|
|
}
|
|
|
|
// Parse the rest of the region.
|
|
region.push_back(owningBlock.release());
|
|
while (getToken().isNot(Token::r_brace)) {
|
|
Block *newBlock = nullptr;
|
|
if (parseBlock(newBlock))
|
|
return failure();
|
|
region.push_back(newBlock);
|
|
}
|
|
|
|
// Pop the SSA value scope for this region.
|
|
if (popSSANameScope())
|
|
return failure();
|
|
|
|
// Reset the original insertion point.
|
|
opBuilder.restoreInsertionPoint(currentPt);
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Block Parsing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Block declaration.
|
|
///
|
|
/// block ::= block-label? operation*
|
|
/// block-label ::= block-id block-arg-list? `:`
|
|
/// block-id ::= caret-id
|
|
/// block-arg-list ::= `(` ssa-id-and-type-list? `)`
|
|
///
|
|
ParseResult OperationParser::parseBlock(Block *&block) {
|
|
// The first block of a region may already exist, if it does the caret
|
|
// identifier is optional.
|
|
if (block && getToken().isNot(Token::caret_identifier))
|
|
return parseBlockBody(block);
|
|
|
|
SMLoc nameLoc = getToken().getLoc();
|
|
auto name = getTokenSpelling();
|
|
if (parseToken(Token::caret_identifier, "expected block name"))
|
|
return failure();
|
|
|
|
block = defineBlockNamed(name, nameLoc, block);
|
|
|
|
// Fail if the block was already defined.
|
|
if (!block)
|
|
return emitError(nameLoc, "redefinition of block '") << name << "'";
|
|
|
|
// If an argument list is present, parse it.
|
|
if (consumeIf(Token::l_paren)) {
|
|
if (parseOptionalBlockArgList(block) ||
|
|
parseToken(Token::r_paren, "expected ')' to end argument list"))
|
|
return failure();
|
|
}
|
|
|
|
if (parseToken(Token::colon, "expected ':' after block name"))
|
|
return failure();
|
|
|
|
return parseBlockBody(block);
|
|
}
|
|
|
|
ParseResult OperationParser::parseBlockBody(Block *block) {
|
|
// Set the insertion point to the end of the block to parse.
|
|
opBuilder.setInsertionPointToEnd(block);
|
|
|
|
// Parse the list of operations that make up the body of the block.
|
|
while (getToken().isNot(Token::caret_identifier, Token::r_brace))
|
|
if (parseOperation())
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Get the block with the specified name, creating it if it doesn't already
|
|
/// exist. The location specified is the point of use, which allows
|
|
/// us to diagnose references to blocks that are not defined precisely.
|
|
Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) {
|
|
BlockDefinition &blockDef = getBlockInfoByName(name);
|
|
if (!blockDef.block) {
|
|
blockDef = {new Block(), loc};
|
|
insertForwardRef(blockDef.block, blockDef.loc);
|
|
}
|
|
|
|
// Populate the high level assembly state if necessary.
|
|
if (state.asmState)
|
|
state.asmState->addUses(blockDef.block, loc);
|
|
|
|
return blockDef.block;
|
|
}
|
|
|
|
/// Define the block with the specified name. Returns the Block* or nullptr in
|
|
/// the case of redefinition.
|
|
Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc,
|
|
Block *existing) {
|
|
auto &blockAndLoc = getBlockInfoByName(name);
|
|
blockAndLoc.loc = loc;
|
|
|
|
// If a block has yet to be set, this is a new definition. If the caller
|
|
// provided a block, use it. Otherwise create a new one.
|
|
if (!blockAndLoc.block) {
|
|
blockAndLoc.block = existing ? existing : new Block();
|
|
|
|
// Otherwise, the block has a forward declaration. Forward declarations are
|
|
// removed once defined, so if we are defining a existing block and it is
|
|
// not a forward declaration, then it is a redeclaration.
|
|
} else if (!eraseForwardRef(blockAndLoc.block)) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Populate the high level assembly state if necessary.
|
|
if (state.asmState)
|
|
state.asmState->addDefinition(blockAndLoc.block, loc);
|
|
|
|
return blockAndLoc.block;
|
|
}
|
|
|
|
/// Parse a (possibly empty) list of SSA operands with types as block arguments.
|
|
///
|
|
/// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)*
|
|
///
|
|
ParseResult OperationParser::parseOptionalBlockArgList(Block *owner) {
|
|
if (getToken().is(Token::r_brace))
|
|
return success();
|
|
|
|
// If the block already has arguments, then we're handling the entry block.
|
|
// Parse and register the names for the arguments, but do not add them.
|
|
bool definingExistingArgs = owner->getNumArguments() != 0;
|
|
unsigned nextArgument = 0;
|
|
|
|
return parseCommaSeparatedList([&]() -> ParseResult {
|
|
return parseSSADefOrUseAndType(
|
|
[&](SSAUseInfo useInfo, Type type) -> ParseResult {
|
|
BlockArgument arg;
|
|
|
|
// If we are defining existing arguments, ensure that the argument
|
|
// has already been created with the right type.
|
|
if (definingExistingArgs) {
|
|
// Otherwise, ensure that this argument has already been created.
|
|
if (nextArgument >= owner->getNumArguments())
|
|
return emitError("too many arguments specified in argument list");
|
|
|
|
// Finally, make sure the existing argument has the correct type.
|
|
arg = owner->getArgument(nextArgument++);
|
|
if (arg.getType() != type)
|
|
return emitError("argument and block argument type mismatch");
|
|
} else {
|
|
auto loc = getEncodedSourceLocation(useInfo.loc);
|
|
arg = owner->addArgument(type, loc);
|
|
}
|
|
|
|
// If the argument has an explicit loc(...) specifier, parse and apply
|
|
// it.
|
|
if (parseTrailingLocationSpecifier(arg))
|
|
return failure();
|
|
|
|
// Mark this block argument definition in the parser state if it was
|
|
// provided.
|
|
if (state.asmState)
|
|
state.asmState->addDefinition(arg, useInfo.loc);
|
|
|
|
return addDefinition(useInfo, arg);
|
|
});
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-level entity parsing.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This parser handles entities that are only valid at the top level of the
|
|
/// file.
|
|
class TopLevelOperationParser : public Parser {
|
|
public:
|
|
explicit TopLevelOperationParser(ParserState &state) : Parser(state) {}
|
|
|
|
/// Parse a set of operations into the end of the given Block.
|
|
ParseResult parse(Block *topLevelBlock, Location parserLoc);
|
|
|
|
private:
|
|
/// Parse an attribute alias declaration.
|
|
ParseResult parseAttributeAliasDef();
|
|
|
|
/// Parse an attribute alias declaration.
|
|
ParseResult parseTypeAliasDef();
|
|
};
|
|
} // namespace
|
|
|
|
/// Parses an attribute alias declaration.
|
|
///
|
|
/// attribute-alias-def ::= '#' alias-name `=` attribute-value
|
|
///
|
|
ParseResult TopLevelOperationParser::parseAttributeAliasDef() {
|
|
assert(getToken().is(Token::hash_identifier));
|
|
StringRef aliasName = getTokenSpelling().drop_front();
|
|
|
|
// Check for redefinitions.
|
|
if (state.symbols.attributeAliasDefinitions.count(aliasName) > 0)
|
|
return emitError("redefinition of attribute alias id '" + aliasName + "'");
|
|
|
|
// Make sure this isn't invading the dialect attribute namespace.
|
|
if (aliasName.contains('.'))
|
|
return emitError("attribute names with a '.' are reserved for "
|
|
"dialect-defined names");
|
|
|
|
consumeToken(Token::hash_identifier);
|
|
|
|
// Parse the '='.
|
|
if (parseToken(Token::equal, "expected '=' in attribute alias definition"))
|
|
return failure();
|
|
|
|
// Parse the attribute value.
|
|
Attribute attr = parseAttribute();
|
|
if (!attr)
|
|
return failure();
|
|
|
|
state.symbols.attributeAliasDefinitions[aliasName] = attr;
|
|
return success();
|
|
}
|
|
|
|
/// Parse a type alias declaration.
|
|
///
|
|
/// type-alias-def ::= '!' alias-name `=` 'type' type
|
|
///
|
|
ParseResult TopLevelOperationParser::parseTypeAliasDef() {
|
|
assert(getToken().is(Token::exclamation_identifier));
|
|
StringRef aliasName = getTokenSpelling().drop_front();
|
|
|
|
// Check for redefinitions.
|
|
if (state.symbols.typeAliasDefinitions.count(aliasName) > 0)
|
|
return emitError("redefinition of type alias id '" + aliasName + "'");
|
|
|
|
// Make sure this isn't invading the dialect type namespace.
|
|
if (aliasName.contains('.'))
|
|
return emitError("type names with a '.' are reserved for "
|
|
"dialect-defined names");
|
|
|
|
consumeToken(Token::exclamation_identifier);
|
|
|
|
// Parse the '=' and 'type'.
|
|
if (parseToken(Token::equal, "expected '=' in type alias definition") ||
|
|
parseToken(Token::kw_type, "expected 'type' in type alias definition"))
|
|
return failure();
|
|
|
|
// Parse the type.
|
|
Type aliasedType = parseType();
|
|
if (!aliasedType)
|
|
return failure();
|
|
|
|
// Register this alias with the parser state.
|
|
state.symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType);
|
|
return success();
|
|
}
|
|
|
|
ParseResult TopLevelOperationParser::parse(Block *topLevelBlock,
|
|
Location parserLoc) {
|
|
// Create a top-level operation to contain the parsed state.
|
|
OwningOpRef<ModuleOp> topLevelOp(ModuleOp::create(parserLoc));
|
|
OperationParser opParser(state, topLevelOp.get());
|
|
while (true) {
|
|
switch (getToken().getKind()) {
|
|
default:
|
|
// Parse a top-level operation.
|
|
if (opParser.parseOperation())
|
|
return failure();
|
|
break;
|
|
|
|
// If we got to the end of the file, then we're done.
|
|
case Token::eof: {
|
|
if (opParser.finalize())
|
|
return failure();
|
|
|
|
// Splice the blocks of the parsed operation over to the provided
|
|
// top-level block.
|
|
auto &parsedOps = topLevelOp->getBody()->getOperations();
|
|
auto &destOps = topLevelBlock->getOperations();
|
|
destOps.splice(destOps.empty() ? destOps.end() : std::prev(destOps.end()),
|
|
parsedOps, parsedOps.begin(), parsedOps.end());
|
|
return success();
|
|
}
|
|
|
|
// If we got an error token, then the lexer already emitted an error, just
|
|
// stop. Someday we could introduce error recovery if there was demand
|
|
// for it.
|
|
case Token::error:
|
|
return failure();
|
|
|
|
// Parse an attribute alias.
|
|
case Token::hash_identifier:
|
|
if (parseAttributeAliasDef())
|
|
return failure();
|
|
break;
|
|
|
|
// Parse a type alias.
|
|
case Token::exclamation_identifier:
|
|
if (parseTypeAliasDef())
|
|
return failure();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr,
|
|
Block *block, MLIRContext *context,
|
|
LocationAttr *sourceFileLoc,
|
|
AsmParserState *asmState) {
|
|
const auto *sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID());
|
|
|
|
Location parserLoc = FileLineColLoc::get(
|
|
context, sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0);
|
|
if (sourceFileLoc)
|
|
*sourceFileLoc = parserLoc;
|
|
|
|
SymbolState aliasState;
|
|
ParserState state(sourceMgr, context, aliasState, asmState);
|
|
return TopLevelOperationParser(state).parse(block, parserLoc);
|
|
}
|
|
|
|
LogicalResult mlir::parseSourceFile(llvm::StringRef filename, Block *block,
|
|
MLIRContext *context,
|
|
LocationAttr *sourceFileLoc) {
|
|
llvm::SourceMgr sourceMgr;
|
|
return parseSourceFile(filename, sourceMgr, block, context, sourceFileLoc);
|
|
}
|
|
|
|
LogicalResult mlir::parseSourceFile(llvm::StringRef filename,
|
|
llvm::SourceMgr &sourceMgr, Block *block,
|
|
MLIRContext *context,
|
|
LocationAttr *sourceFileLoc,
|
|
AsmParserState *asmState) {
|
|
if (sourceMgr.getNumBuffers() != 0) {
|
|
// TODO: Extend to support multiple buffers.
|
|
return emitError(mlir::UnknownLoc::get(context),
|
|
"only main buffer parsed at the moment");
|
|
}
|
|
auto fileOrErr = llvm::MemoryBuffer::getFileOrSTDIN(filename);
|
|
if (std::error_code error = fileOrErr.getError())
|
|
return emitError(mlir::UnknownLoc::get(context),
|
|
"could not open input file " + filename);
|
|
|
|
// Load the MLIR source file.
|
|
sourceMgr.AddNewSourceBuffer(std::move(*fileOrErr), SMLoc());
|
|
return parseSourceFile(sourceMgr, block, context, sourceFileLoc, asmState);
|
|
}
|
|
|
|
LogicalResult mlir::parseSourceString(llvm::StringRef sourceStr, Block *block,
|
|
MLIRContext *context,
|
|
LocationAttr *sourceFileLoc) {
|
|
auto memBuffer = MemoryBuffer::getMemBuffer(sourceStr);
|
|
if (!memBuffer)
|
|
return failure();
|
|
|
|
SourceMgr sourceMgr;
|
|
sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
|
|
return parseSourceFile(sourceMgr, block, context, sourceFileLoc);
|
|
}
|