llvm-project/mlir/lib/ExecutionEngine/SparseUtils.cpp

559 lines
21 KiB
C++

//===- SparseUtils.cpp - Sparse Utils for MLIR execution ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a light-weight runtime support library that is useful
// for sparse tensor manipulations. The functionality provided in this library
// is meant to simplify benchmarking, testing, and debugging MLIR code that
// operates on sparse tensors. The provided functionality is **not** part
// of core MLIR, however.
//
//===----------------------------------------------------------------------===//
#include "mlir/ExecutionEngine/CRunnerUtils.h"
#ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cinttypes>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <vector>
//===----------------------------------------------------------------------===//
//
// Internal support for storing and reading sparse tensors.
//
// The following memory-resident sparse storage schemes are supported:
//
// (a) A coordinate scheme for temporarily storing and lexicographically
// sorting a sparse tensor by index.
//
// (b) A "one-size-fits-all" sparse storage scheme defined by per-rank
// sparse/dense annnotations to be used by generated MLIR code.
//
// The following external formats are supported:
//
// (1) Matrix Market Exchange (MME): *.mtx
// https://math.nist.gov/MatrixMarket/formats.html
//
// (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns
// http://frostt.io/tensors/file-formats.html
//
//===----------------------------------------------------------------------===//
namespace {
/// A sparse tensor element in coordinate scheme (value and indices).
/// For example, a rank-1 vector element would look like
/// ({i}, a[i])
/// and a rank-5 tensor element like
/// ({i,j,k,l,m}, a[i,j,k,l,m])
struct Element {
Element(const std::vector<uint64_t> &ind, double val)
: indices(ind), value(val){};
std::vector<uint64_t> indices;
double value;
};
/// A memory-resident sparse tensor in coordinate scheme (collection of
/// elements). This data structure is used to read a sparse tensor from
/// external file format into memory and sort the elements lexicographically
/// by indices before passing it back to the client (most packed storage
/// formats require the elements to appear in lexicographic index order).
struct SparseTensor {
public:
SparseTensor(const std::vector<uint64_t> &szs, uint64_t capacity)
: sizes(szs), pos(0) {
elements.reserve(capacity);
}
/// Adds element as indices and value.
void add(const std::vector<uint64_t> &ind, double val) {
assert(getRank() == ind.size());
for (int64_t r = 0, rank = getRank(); r < rank; r++)
assert(ind[r] < sizes[r]); // within bounds
elements.emplace_back(Element(ind, val));
}
/// Sorts elements lexicographically by index.
void sort() { std::sort(elements.begin(), elements.end(), lexOrder); }
/// Primitive one-time iteration.
const Element &next() { return elements[pos++]; }
/// Returns rank.
uint64_t getRank() const { return sizes.size(); }
/// Getter for sizes array.
const std::vector<uint64_t> &getSizes() const { return sizes; }
/// Getter for elements array.
const std::vector<Element> &getElements() const { return elements; }
private:
/// Returns true if indices of e1 < indices of e2.
static bool lexOrder(const Element &e1, const Element &e2) {
assert(e1.indices.size() == e2.indices.size());
for (int64_t r = 0, rank = e1.indices.size(); r < rank; r++) {
if (e1.indices[r] == e2.indices[r])
continue;
return e1.indices[r] < e2.indices[r];
}
return false;
}
std::vector<uint64_t> sizes; // per-rank dimension sizes
std::vector<Element> elements;
uint64_t pos;
};
/// Abstract base class of sparse tensor storage. Note that we use
/// function overloading to implement "partial" method specialization.
class SparseTensorStorageBase {
public:
enum DimLevelType : uint8_t { kDense = 0, kCompressed = 1, kSingleton = 2 };
virtual uint64_t getDimSize(uint64_t) = 0;
// Overhead storage.
virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); }
virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); }
virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); }
virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); }
virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); }
virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); }
virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); }
virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); }
// Primary storage.
virtual void getValues(std::vector<double> **) { fatal("valf64"); }
virtual void getValues(std::vector<float> **) { fatal("valf32"); }
virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); }
virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); }
virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); }
virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); }
virtual ~SparseTensorStorageBase() {}
private:
void fatal(const char *tp) {
fprintf(stderr, "unsupported %s\n", tp);
exit(1);
}
};
/// A memory-resident sparse tensor using a storage scheme based on per-rank
/// annotations on dense/sparse. This data structure provides a bufferized
/// form of an imaginary SparseTensorType, until such a type becomes a
/// first-class citizen of MLIR. In contrast to generating setup methods for
/// each differently annotated sparse tensor, this method provides a convenient
/// "one-size-fits-all" solution that simply takes an input tensor and
/// annotations to implement all required setup in a general manner.
template <typename P, typename I, typename V>
class SparseTensorStorage : public SparseTensorStorageBase {
public:
/// Constructs sparse tensor storage scheme following the given
/// per-rank dimension dense/sparse annotations.
SparseTensorStorage(SparseTensor *tensor, uint8_t *sparsity)
: sizes(tensor->getSizes()), pointers(getRank()), indices(getRank()) {
// Provide hints on capacity.
// TODO: needs fine-tuning based on sparsity
uint64_t nnz = tensor->getElements().size();
values.reserve(nnz);
for (uint64_t d = 0, s = 1, rank = getRank(); d < rank; d++) {
s *= sizes[d];
if (sparsity[d] == kCompressed) {
pointers[d].reserve(s + 1);
indices[d].reserve(s);
s = 1;
} else {
assert(sparsity[d] == kDense && "singleton not yet supported");
}
}
// Then setup the tensor.
traverse(tensor, sparsity, 0, nnz, 0);
}
virtual ~SparseTensorStorage() {}
uint64_t getRank() const { return sizes.size(); }
uint64_t getDimSize(uint64_t d) override { return sizes[d]; }
// Partially specialize these three methods based on template types.
void getPointers(std::vector<P> **out, uint64_t d) override {
*out = &pointers[d];
}
void getIndices(std::vector<I> **out, uint64_t d) override {
*out = &indices[d];
}
void getValues(std::vector<V> **out) override { *out = &values; }
private:
/// Initializes sparse tensor storage scheme from a memory-resident
/// representation of an external sparse tensor. This method prepares
/// the pointers and indices arrays under the given per-rank dimension
/// dense/sparse annotations.
void traverse(SparseTensor *tensor, uint8_t *sparsity, uint64_t lo,
uint64_t hi, uint64_t d) {
const std::vector<Element> &elements = tensor->getElements();
// Once dimensions are exhausted, insert the numerical values.
if (d == getRank()) {
values.push_back(lo < hi ? elements[lo].value : 0.0);
return;
}
// Prepare a sparse pointer structure at this dimension.
if (sparsity[d] == kCompressed && pointers[d].empty())
pointers[d].push_back(0);
// Visit all elements in this interval.
uint64_t full = 0;
while (lo < hi) {
// Find segment in interval with same index elements in this dimension.
unsigned idx = elements[lo].indices[d];
unsigned seg = lo + 1;
while (seg < hi && elements[seg].indices[d] == idx)
seg++;
// Handle segment in interval for sparse or dense dimension.
if (sparsity[d] == kCompressed) {
indices[d].push_back(idx);
} else {
for (; full < idx; full++)
traverse(tensor, sparsity, 0, 0, d + 1); // pass empty
full++;
}
traverse(tensor, sparsity, lo, seg, d + 1);
// And move on to next segment in interval.
lo = seg;
}
// Finalize the sparse pointer structure at this dimension.
if (sparsity[d] == kCompressed) {
pointers[d].push_back(indices[d].size());
} else {
for (uint64_t sz = tensor->getSizes()[d]; full < sz; full++)
traverse(tensor, sparsity, 0, 0, d + 1); // pass empty
}
}
private:
std::vector<uint64_t> sizes; // per-rank dimension sizes
std::vector<std::vector<P>> pointers;
std::vector<std::vector<I>> indices;
std::vector<V> values;
};
/// Helper to convert string to lower case.
static char *toLower(char *token) {
for (char *c = token; *c; c++)
*c = tolower(*c);
return token;
}
/// Read the MME header of a general sparse matrix of type real.
static void readMMEHeader(FILE *file, char *name, uint64_t *idata) {
char line[1025];
char header[64];
char object[64];
char format[64];
char field[64];
char symmetry[64];
// Read header line.
if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field,
symmetry) != 5) {
fprintf(stderr, "Corrupt header in %s\n", name);
exit(1);
}
// Make sure this is a general sparse matrix.
if (strcmp(toLower(header), "%%matrixmarket") ||
strcmp(toLower(object), "matrix") ||
strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") ||
strcmp(toLower(symmetry), "general")) {
fprintf(stderr,
"Cannot find a general sparse matrix with type real in %s\n", name);
exit(1);
}
// Skip comments.
while (1) {
if (!fgets(line, 1025, file)) {
fprintf(stderr, "Cannot find data in %s\n", name);
exit(1);
}
if (line[0] != '%')
break;
}
// Next line contains M N NNZ.
idata[0] = 2; // rank
if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3,
idata + 1) != 3) {
fprintf(stderr, "Cannot find size in %s\n", name);
exit(1);
}
}
/// Read the "extended" FROSTT header. Although not part of the documented
/// format, we assume that the file starts with optional comments followed
/// by two lines that define the rank, the number of nonzeros, and the
/// dimensions sizes (one per rank) of the sparse tensor.
static void readExtFROSTTHeader(FILE *file, char *name, uint64_t *idata) {
char line[1025];
// Skip comments.
while (1) {
if (!fgets(line, 1025, file)) {
fprintf(stderr, "Cannot find data in %s\n", name);
exit(1);
}
if (line[0] != '#')
break;
}
// Next line contains RANK and NNZ.
if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) {
fprintf(stderr, "Cannot find metadata in %s\n", name);
exit(1);
}
// Followed by a line with the dimension sizes (one per rank).
for (uint64_t r = 0; r < idata[0]; r++) {
if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) {
fprintf(stderr, "Cannot find dimension size %s\n", name);
exit(1);
}
}
}
/// Reads a sparse tensor with the given filename into a memory-resident
/// sparse tensor in coordinate scheme.
static SparseTensor *openTensor(char *filename, uint64_t *perm) {
// Open the file.
FILE *file = fopen(filename, "r");
if (!file) {
fprintf(stderr, "Cannot find %s\n", filename);
exit(1);
}
// Perform some file format dependent set up.
uint64_t idata[512];
if (strstr(filename, ".mtx")) {
readMMEHeader(file, filename, idata);
} else if (strstr(filename, ".tns")) {
readExtFROSTTHeader(file, filename, idata);
} else {
fprintf(stderr, "Unknown format %s\n", filename);
exit(1);
}
// Prepare sparse tensor object with per-rank dimension sizes
// and the number of nonzeros as initial capacity.
uint64_t rank = idata[0];
uint64_t nnz = idata[1];
std::vector<uint64_t> indices(rank);
for (uint64_t r = 0; r < rank; r++)
indices[perm[r]] = idata[2 + r];
SparseTensor *tensor = new SparseTensor(indices, nnz);
// Read all nonzero elements.
for (uint64_t k = 0; k < nnz; k++) {
uint64_t idx = -1;
for (uint64_t r = 0; r < rank; r++) {
if (fscanf(file, "%" PRIu64, &idx) != 1) {
fprintf(stderr, "Cannot find next index in %s\n", filename);
exit(1);
}
// Add 0-based index.
indices[perm[r]] = idx - 1;
}
double value;
if (fscanf(file, "%lg\n", &value) != 1) {
fprintf(stderr, "Cannot find next value in %s\n", filename);
exit(1);
}
tensor->add(indices, value);
}
// Close the file and return sorted tensor.
fclose(file);
tensor->sort(); // sort lexicographically
return tensor;
}
/// Templated reader.
template <typename P, typename I, typename V>
void *newSparseTensor(char *filename, uint8_t *sparsity, uint64_t *perm,
uint64_t size) {
SparseTensor *t = openTensor(filename, perm);
assert(size == t->getRank()); // sparsity array must match rank
SparseTensorStorageBase *tensor =
new SparseTensorStorage<P, I, V>(t, sparsity);
delete t;
return tensor;
}
} // anonymous namespace
extern "C" {
/// Helper method to read a sparse tensor filename from the environment,
/// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc.
char *getTensorFilename(uint64_t id) {
char var[80];
sprintf(var, "TENSOR%" PRIu64, id);
char *env = getenv(var);
return env;
}
//===----------------------------------------------------------------------===//
//
// Public API of the sparse runtime support library that support an opaque
// implementation of a bufferized SparseTensor in MLIR. This could be replaced
// by actual codegen in MLIR.
//
// Because we cannot use C++ templates with C linkage, some macro magic is used
// to generate implementations for all required type combinations that can be
// called from MLIR generated code.
//
//===----------------------------------------------------------------------===//
#define TEMPLATE(NAME, TYPE) \
struct NAME { \
const TYPE *base; \
const TYPE *data; \
uint64_t off; \
uint64_t sizes[1]; \
uint64_t strides[1]; \
}
#define CASE(p, i, v, P, I, V) \
if (ptrTp == (p) && indTp == (i) && valTp == (v)) \
return newSparseTensor<P, I, V>(filename, sparsity, perm, asize)
#define IMPL1(RET, NAME, TYPE, LIB) \
RET NAME(void *tensor) { \
std::vector<TYPE> *v; \
static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \
return {v->data(), v->data(), 0, {v->size()}, {1}}; \
}
#define IMPL2(RET, NAME, TYPE, LIB) \
RET NAME(void *tensor, uint64_t d) { \
std::vector<TYPE> *v; \
static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \
return {v->data(), v->data(), 0, {v->size()}, {1}}; \
}
TEMPLATE(MemRef1DU64, uint64_t);
TEMPLATE(MemRef1DU32, uint32_t);
TEMPLATE(MemRef1DU16, uint16_t);
TEMPLATE(MemRef1DU8, uint8_t);
TEMPLATE(MemRef1DI64, int64_t);
TEMPLATE(MemRef1DI32, int32_t);
TEMPLATE(MemRef1DI16, int16_t);
TEMPLATE(MemRef1DI8, int8_t);
TEMPLATE(MemRef1DF64, double);
TEMPLATE(MemRef1DF32, float);
enum OverheadTypeEnum : uint64_t { kU64 = 1, kU32 = 2, kU16 = 3, kU8 = 4 };
enum PrimaryTypeEnum : uint64_t {
kF64 = 1,
kF32 = 2,
kI64 = 3,
kI32 = 4,
kI16 = 5,
kI8 = 6
};
void *newSparseTensor(char *filename, uint8_t *abase, uint8_t *adata,
uint64_t aoff, uint64_t asize, uint64_t astride,
uint64_t *pbase, uint64_t *pdata, uint64_t poff,
uint64_t psize, uint64_t pstride, uint64_t ptrTp,
uint64_t indTp, uint64_t valTp) {
assert(astride == 1 && pstride == 1);
uint8_t *sparsity = adata + aoff;
uint64_t *perm = pdata + poff;
// Double matrices with all combinations of overhead storage.
CASE(kU64, kU64, kF64, uint64_t, uint64_t, double);
CASE(kU64, kU32, kF64, uint64_t, uint32_t, double);
CASE(kU64, kU16, kF64, uint64_t, uint16_t, double);
CASE(kU64, kU8, kF64, uint64_t, uint8_t, double);
CASE(kU32, kU64, kF64, uint32_t, uint64_t, double);
CASE(kU32, kU32, kF64, uint32_t, uint32_t, double);
CASE(kU32, kU16, kF64, uint32_t, uint16_t, double);
CASE(kU32, kU8, kF64, uint32_t, uint8_t, double);
CASE(kU16, kU64, kF64, uint16_t, uint64_t, double);
CASE(kU16, kU32, kF64, uint16_t, uint32_t, double);
CASE(kU16, kU16, kF64, uint16_t, uint16_t, double);
CASE(kU16, kU8, kF64, uint16_t, uint8_t, double);
CASE(kU8, kU64, kF64, uint8_t, uint64_t, double);
CASE(kU8, kU32, kF64, uint8_t, uint32_t, double);
CASE(kU8, kU16, kF64, uint8_t, uint16_t, double);
CASE(kU8, kU8, kF64, uint8_t, uint8_t, double);
// Float matrices with all combinations of overhead storage.
CASE(kU64, kU64, kF32, uint64_t, uint64_t, float);
CASE(kU64, kU32, kF32, uint64_t, uint32_t, float);
CASE(kU64, kU16, kF32, uint64_t, uint16_t, float);
CASE(kU64, kU8, kF32, uint64_t, uint8_t, float);
CASE(kU32, kU64, kF32, uint32_t, uint64_t, float);
CASE(kU32, kU32, kF32, uint32_t, uint32_t, float);
CASE(kU32, kU16, kF32, uint32_t, uint16_t, float);
CASE(kU32, kU8, kF32, uint32_t, uint8_t, float);
CASE(kU16, kU64, kF32, uint16_t, uint64_t, float);
CASE(kU16, kU32, kF32, uint16_t, uint32_t, float);
CASE(kU16, kU16, kF32, uint16_t, uint16_t, float);
CASE(kU16, kU8, kF32, uint16_t, uint8_t, float);
CASE(kU8, kU64, kF32, uint8_t, uint64_t, float);
CASE(kU8, kU32, kF32, uint8_t, uint32_t, float);
CASE(kU8, kU16, kF32, uint8_t, uint16_t, float);
CASE(kU8, kU8, kF32, uint8_t, uint8_t, float);
// Integral matrices with same overhead storage.
CASE(kU64, kU64, kI64, uint64_t, uint64_t, int64_t);
CASE(kU64, kU64, kI32, uint64_t, uint64_t, int32_t);
CASE(kU64, kU64, kI16, uint64_t, uint64_t, int16_t);
CASE(kU64, kU64, kI8, uint64_t, uint64_t, int8_t);
CASE(kU32, kU32, kI32, uint32_t, uint32_t, int32_t);
CASE(kU32, kU32, kI16, uint32_t, uint32_t, int16_t);
CASE(kU32, kU32, kI8, uint32_t, uint32_t, int8_t);
CASE(kU16, kU16, kI32, uint16_t, uint16_t, int32_t);
CASE(kU16, kU16, kI16, uint16_t, uint16_t, int16_t);
CASE(kU16, kU16, kI8, uint16_t, uint16_t, int8_t);
CASE(kU8, kU8, kI32, uint8_t, uint8_t, int32_t);
CASE(kU8, kU8, kI16, uint8_t, uint8_t, int16_t);
CASE(kU8, kU8, kI8, uint8_t, uint8_t, int8_t);
// Unsupported case (add above if needed).
fputs("unsupported combination of types\n", stderr);
exit(1);
}
#undef CASE
uint64_t sparseDimSize(void *tensor, uint64_t d) {
return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d);
}
IMPL2(MemRef1DU64, sparsePointers, uint64_t, getPointers)
IMPL2(MemRef1DU64, sparsePointers64, uint64_t, getPointers)
IMPL2(MemRef1DU32, sparsePointers32, uint32_t, getPointers)
IMPL2(MemRef1DU16, sparsePointers16, uint16_t, getPointers)
IMPL2(MemRef1DU8, sparsePointers8, uint8_t, getPointers)
IMPL2(MemRef1DU64, sparseIndices, uint64_t, getIndices)
IMPL2(MemRef1DU64, sparseIndices64, uint64_t, getIndices)
IMPL2(MemRef1DU32, sparseIndices32, uint32_t, getIndices)
IMPL2(MemRef1DU16, sparseIndices16, uint16_t, getIndices)
IMPL2(MemRef1DU8, sparseIndices8, uint8_t, getIndices)
IMPL1(MemRef1DF64, sparseValuesF64, double, getValues)
IMPL1(MemRef1DF32, sparseValuesF32, float, getValues)
IMPL1(MemRef1DI64, sparseValuesI64, int64_t, getValues)
IMPL1(MemRef1DI32, sparseValuesI32, int32_t, getValues)
IMPL1(MemRef1DI16, sparseValuesI16, int16_t, getValues)
IMPL1(MemRef1DI8, sparseValuesI8, int8_t, getValues)
void delSparseTensor(void *tensor) {
delete static_cast<SparseTensorStorageBase *>(tensor);
}
#undef TEMPLATE
#undef CASE
#undef IMPL1
#undef IMPL2
} // extern "C"
#endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS