llvm-project/mlir/lib/ExecutionEngine/CudaRuntimeWrappers.cpp

186 lines
6.9 KiB
C++

//===- CudaRuntimeWrappers.cpp - MLIR CUDA API wrapper library ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements C wrappers around the CUDA library for easy linking in ORC jit.
// Also adds some debugging helpers that are helpful when writing MLIR code to
// run on GPUs.
//
//===----------------------------------------------------------------------===//
#include <cassert>
#include <numeric>
#include "mlir/ExecutionEngine/CRunnerUtils.h"
#include "llvm/ADT/ArrayRef.h"
#include "cuda.h"
#ifdef _WIN32
#define MLIR_CUDA_WRAPPERS_EXPORT __declspec(dllexport)
#else
#define MLIR_CUDA_WRAPPERS_EXPORT
#endif // _WIN32
#define CUDA_REPORT_IF_ERROR(expr) \
[](CUresult result) { \
if (!result) \
return; \
const char *name = nullptr; \
cuGetErrorName(result, &name); \
if (!name) \
name = "<unknown>"; \
fprintf(stderr, "'%s' failed with '%s'\n", #expr, name); \
}(expr)
// Make the primary context of device 0 current for the duration of the instance
// and restore the previous context on destruction.
class ScopedContext {
public:
ScopedContext() {
// Static reference to CUDA primary context for device ordinal 0.
static CUcontext context = [] {
CUDA_REPORT_IF_ERROR(cuInit(/*flags=*/0));
CUdevice device;
CUDA_REPORT_IF_ERROR(cuDeviceGet(&device, /*ordinal=*/0));
CUcontext ctx;
// Note: this does not affect the current context.
CUDA_REPORT_IF_ERROR(cuDevicePrimaryCtxRetain(&ctx, device));
return ctx;
}();
CUDA_REPORT_IF_ERROR(cuCtxPushCurrent(context));
}
~ScopedContext() { CUDA_REPORT_IF_ERROR(cuCtxPopCurrent(nullptr)); }
};
extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUmodule mgpuModuleLoad(void *data) {
ScopedContext scopedContext;
CUmodule module = nullptr;
CUDA_REPORT_IF_ERROR(cuModuleLoadData(&module, data));
return module;
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuModuleUnload(CUmodule module) {
CUDA_REPORT_IF_ERROR(cuModuleUnload(module));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUfunction
mgpuModuleGetFunction(CUmodule module, const char *name) {
CUfunction function = nullptr;
CUDA_REPORT_IF_ERROR(cuModuleGetFunction(&function, module, name));
return function;
}
// The wrapper uses intptr_t instead of CUDA's unsigned int to match
// the type of MLIR's index type. This avoids the need for casts in the
// generated MLIR code.
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuLaunchKernel(CUfunction function, intptr_t gridX, intptr_t gridY,
intptr_t gridZ, intptr_t blockX, intptr_t blockY,
intptr_t blockZ, int32_t smem, CUstream stream, void **params,
void **extra) {
ScopedContext scopedContext;
CUDA_REPORT_IF_ERROR(cuLaunchKernel(function, gridX, gridY, gridZ, blockX,
blockY, blockZ, smem, stream, params,
extra));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUstream mgpuStreamCreate() {
ScopedContext scopedContext;
CUstream stream = nullptr;
CUDA_REPORT_IF_ERROR(cuStreamCreate(&stream, CU_STREAM_NON_BLOCKING));
return stream;
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuStreamDestroy(CUstream stream) {
CUDA_REPORT_IF_ERROR(cuStreamDestroy(stream));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuStreamSynchronize(CUstream stream) {
CUDA_REPORT_IF_ERROR(cuStreamSynchronize(stream));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuStreamWaitEvent(CUstream stream,
CUevent event) {
CUDA_REPORT_IF_ERROR(cuStreamWaitEvent(stream, event, /*flags=*/0));
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUevent mgpuEventCreate() {
ScopedContext scopedContext;
CUevent event = nullptr;
CUDA_REPORT_IF_ERROR(cuEventCreate(&event, CU_EVENT_DISABLE_TIMING));
return event;
}
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuEventDestroy(CUevent event) {
CUDA_REPORT_IF_ERROR(cuEventDestroy(event));
}
extern MLIR_CUDA_WRAPPERS_EXPORT "C" void mgpuEventSynchronize(CUevent event) {
CUDA_REPORT_IF_ERROR(cuEventSynchronize(event));
}
extern MLIR_CUDA_WRAPPERS_EXPORT "C" void mgpuEventRecord(CUevent event,
CUstream stream) {
CUDA_REPORT_IF_ERROR(cuEventRecord(event, stream));
}
extern "C" void *mgpuMemAlloc(uint64_t sizeBytes, CUstream /*stream*/) {
ScopedContext scopedContext;
CUdeviceptr ptr;
CUDA_REPORT_IF_ERROR(cuMemAlloc(&ptr, sizeBytes));
return reinterpret_cast<void *>(ptr);
}
extern "C" void mgpuMemFree(void *ptr, CUstream /*stream*/) {
CUDA_REPORT_IF_ERROR(cuMemFree(reinterpret_cast<CUdeviceptr>(ptr)));
}
extern "C" void mgpuMemcpy(void *dst, void *src, uint64_t sizeBytes,
CUstream stream) {
CUDA_REPORT_IF_ERROR(cuMemcpyAsync(reinterpret_cast<CUdeviceptr>(dst),
reinterpret_cast<CUdeviceptr>(src),
sizeBytes, stream));
}
/// Helper functions for writing mlir example code
// Allows to register byte array with the CUDA runtime. Helpful until we have
// transfer functions implemented.
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuMemHostRegister(void *ptr, uint64_t sizeBytes) {
ScopedContext scopedContext;
CUDA_REPORT_IF_ERROR(cuMemHostRegister(ptr, sizeBytes, /*flags=*/0));
}
// Allows to register a MemRef with the CUDA runtime. Helpful until we have
// transfer functions implemented.
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
mgpuMemHostRegisterMemRef(int64_t rank, StridedMemRefType<char, 1> *descriptor,
int64_t elementSizeBytes) {
llvm::SmallVector<int64_t, 4> denseStrides(rank);
llvm::ArrayRef<int64_t> sizes(descriptor->sizes, rank);
llvm::ArrayRef<int64_t> strides(sizes.end(), rank);
std::partial_sum(sizes.rbegin(), sizes.rend(), denseStrides.rbegin(),
std::multiplies<int64_t>());
auto sizeBytes = denseStrides.front() * elementSizeBytes;
// Only densely packed tensors are currently supported.
std::rotate(denseStrides.begin(), denseStrides.begin() + 1,
denseStrides.end());
denseStrides.back() = 1;
assert(strides == llvm::makeArrayRef(denseStrides));
auto ptr = descriptor->data + descriptor->offset * elementSizeBytes;
mgpuMemHostRegister(ptr, sizeBytes);
}