llvm-project/llvm/lib/Target/X86/X86CallingConv.td

1134 lines
44 KiB
TableGen

//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This describes the calling conventions for the X86-32 and X86-64
// architectures.
//
//===----------------------------------------------------------------------===//
/// CCIfSubtarget - Match if the current subtarget has a feature F.
class CCIfSubtarget<string F, CCAction A>
: CCIf<!strconcat("static_cast<const X86Subtarget&>"
"(State.getMachineFunction().getSubtarget()).", F),
A>;
// Register classes for RegCall
class RC_X86_RegCall {
list<Register> GPR_8 = [];
list<Register> GPR_16 = [];
list<Register> GPR_32 = [];
list<Register> GPR_64 = [];
list<Register> FP_CALL = [FP0];
list<Register> FP_RET = [FP0, FP1];
list<Register> XMM = [];
list<Register> YMM = [];
list<Register> ZMM = [];
}
// RegCall register classes for 32 bits
def RC_X86_32_RegCall : RC_X86_RegCall {
let GPR_8 = [AL, CL, DL, DIL, SIL];
let GPR_16 = [AX, CX, DX, DI, SI];
let GPR_32 = [EAX, ECX, EDX, EDI, ESI];
let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
///< \todo Fix AssignToReg to enable empty lists
let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
}
class RC_X86_64_RegCall : RC_X86_RegCall {
let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15];
let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15];
let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7,
ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15];
}
def RC_X86_64_RegCall_Win : RC_X86_64_RegCall {
let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B];
let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W];
let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D];
let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15];
}
def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall {
let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B];
let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W];
let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D];
let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15];
}
// X86-64 Intel regcall calling convention.
multiclass X86_RegCall_base<RC_X86_RegCall RC> {
def CC_#NAME : CallingConv<[
// Handles byval parameters.
CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>,
CCIfByVal<CCPassByVal<4, 4>>,
// Promote i1/i8/i16/v1i1 arguments to i32.
CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
// Promote v8i1/v16i1/v32i1 arguments to i32.
CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>,
// bool, char, int, enum, long, pointer --> GPR
CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
// long long, __int64 --> GPR
CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
// __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
CCIfType<[v64i1], CCPromoteToType<i64>>,
CCIfSubtarget<"is64Bit()", CCIfType<[i64],
CCAssignToReg<RC.GPR_64>>>,
CCIfSubtarget<"is32Bit()", CCIfType<[i64],
CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
// float, double, float128 --> XMM
// In the case of SSE disabled --> save to stack
CCIfType<[f32, f64, f128],
CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
// long double --> FP
CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>,
// __m128, __m128i, __m128d --> XMM
// In the case of SSE disabled --> save to stack
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
// __m256, __m256i, __m256d --> YMM
// In the case of SSE disabled --> save to stack
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
// __m512, __m512i, __m512d --> ZMM
// In the case of SSE disabled --> save to stack
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>,
// If no register was found -> assign to stack
// In 64 bit, assign 64/32 bit values to 8 byte stack
CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64],
CCAssignToStack<8, 8>>>,
// In 32 bit, assign 64/32 bit values to 8/4 byte stack
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
CCIfType<[i64, f64], CCAssignToStack<8, 4>>,
// MMX type gets 8 byte slot in stack , while alignment depends on target
CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>,
CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
// float 128 get stack slots whose size and alignment depends
// on the subtarget.
CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
// Vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToStack<16, 16>>,
// 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCAssignToStack<32, 32>>,
// 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
CCIfType<[v16i32, v8i64, v16f32, v8f64], CCAssignToStack<64, 64>>
]>;
def RetCC_#NAME : CallingConv<[
// Promote i1, v1i1, v8i1 arguments to i8.
CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>,
// Promote v16i1 arguments to i16.
CCIfType<[v16i1], CCPromoteToType<i16>>,
// Promote v32i1 arguments to i32.
CCIfType<[v32i1], CCPromoteToType<i32>>,
// bool, char, int, enum, long, pointer --> GPR
CCIfType<[i8], CCAssignToReg<RC.GPR_8>>,
CCIfType<[i16], CCAssignToReg<RC.GPR_16>>,
CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
// long long, __int64 --> GPR
CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
// __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
CCIfType<[v64i1], CCPromoteToType<i64>>,
CCIfSubtarget<"is64Bit()", CCIfType<[i64],
CCAssignToReg<RC.GPR_64>>>,
CCIfSubtarget<"is32Bit()", CCIfType<[i64],
CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
// long double --> FP
CCIfType<[f80], CCAssignToReg<RC.FP_RET>>,
// float, double, float128 --> XMM
CCIfType<[f32, f64, f128],
CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
// __m128, __m128i, __m128d --> XMM
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
// __m256, __m256i, __m256d --> YMM
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
// __m512, __m512i, __m512d --> ZMM
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>>
]>;
}
//===----------------------------------------------------------------------===//
// Return Value Calling Conventions
//===----------------------------------------------------------------------===//
// Return-value conventions common to all X86 CC's.
def RetCC_X86Common : CallingConv<[
// Scalar values are returned in AX first, then DX. For i8, the ABI
// requires the values to be in AL and AH, however this code uses AL and DL
// instead. This is because using AH for the second register conflicts with
// the way LLVM does multiple return values -- a return of {i16,i8} would end
// up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
// for functions that return two i8 values are currently expected to pack the
// values into an i16 (which uses AX, and thus AL:AH).
//
// For code that doesn't care about the ABI, we allow returning more than two
// integer values in registers.
CCIfType<[v1i1], CCPromoteToType<i8>>,
CCIfType<[i1], CCPromoteToType<i8>>,
CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
// Boolean vectors of AVX-512 are returned in SIMD registers.
// The call from AVX to AVX-512 function should work,
// since the boolean types in AVX/AVX2 are promoted by default.
CCIfType<[v2i1], CCPromoteToType<v2i64>>,
CCIfType<[v4i1], CCPromoteToType<v4i32>>,
CCIfType<[v8i1], CCPromoteToType<v8i16>>,
CCIfType<[v16i1], CCPromoteToType<v16i8>>,
CCIfType<[v32i1], CCPromoteToType<v32i8>>,
CCIfType<[v64i1], CCPromoteToType<v64i8>>,
// Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3
// can only be used by ABI non-compliant code. If the target doesn't have XMM
// registers, it won't have vector types.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
// 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
// can only be used by ABI non-compliant code. This vector type is only
// supported while using the AVX target feature.
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
// 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
// can only be used by ABI non-compliant code. This vector type is only
// supported while using the AVX-512 target feature.
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
// MMX vector types are always returned in MM0. If the target doesn't have
// MM0, it doesn't support these vector types.
CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
// Long double types are always returned in FP0 (even with SSE).
CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>
]>;
// X86-32 C return-value convention.
def RetCC_X86_32_C : CallingConv<[
// The X86-32 calling convention returns FP values in FP0, unless marked
// with "inreg" (used here to distinguish one kind of reg from another,
// weirdly; this is really the sse-regparm calling convention) in which
// case they use XMM0, otherwise it is the same as the common X86 calling
// conv.
CCIfInReg<CCIfSubtarget<"hasSSE2()",
CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>,
CCDelegateTo<RetCC_X86Common>
]>;
// X86-32 FastCC return-value convention.
def RetCC_X86_32_Fast : CallingConv<[
// The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
// SSE2.
// This can happen when a float, 2 x float, or 3 x float vector is split by
// target lowering, and is returned in 1-3 sse regs.
CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
// For integers, ECX can be used as an extra return register
CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>,
CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
// Otherwise, it is the same as the common X86 calling convention.
CCDelegateTo<RetCC_X86Common>
]>;
// Intel_OCL_BI return-value convention.
def RetCC_Intel_OCL_BI : CallingConv<[
// Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
// 256-bit FP vectors
// No more than 4 registers
CCIfType<[v8f32, v4f64, v8i32, v4i64],
CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
// 512-bit FP vectors
CCIfType<[v16f32, v8f64, v16i32, v8i64],
CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
// i32, i64 in the standard way
CCDelegateTo<RetCC_X86Common>
]>;
// X86-32 HiPE return-value convention.
def RetCC_X86_32_HiPE : CallingConv<[
// Promote all types to i32
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Return: HP, P, VAL1, VAL2
CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
]>;
// X86-32 Vectorcall return-value convention.
def RetCC_X86_32_VectorCall : CallingConv<[
// Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3.
CCIfType<[f32, f64, f128],
CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
// Return integers in the standard way.
CCDelegateTo<RetCC_X86Common>
]>;
// X86-64 C return-value convention.
def RetCC_X86_64_C : CallingConv<[
// The X86-64 calling convention always returns FP values in XMM0.
CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
// MMX vector types are always returned in XMM0.
CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
CCDelegateTo<RetCC_X86Common>
]>;
// X86-Win64 C return-value convention.
def RetCC_X86_Win64_C : CallingConv<[
// The X86-Win64 calling convention always returns __m64 values in RAX.
CCIfType<[x86mmx], CCBitConvertToType<i64>>,
// Otherwise, everything is the same as 'normal' X86-64 C CC.
CCDelegateTo<RetCC_X86_64_C>
]>;
// X86-64 vectorcall return-value convention.
def RetCC_X86_64_Vectorcall : CallingConv<[
// Vectorcall calling convention always returns FP values in XMMs.
CCIfType<[f32, f64, f128],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
// Otherwise, everything is the same as Windows X86-64 C CC.
CCDelegateTo<RetCC_X86_Win64_C>
]>;
// X86-64 HiPE return-value convention.
def RetCC_X86_64_HiPE : CallingConv<[
// Promote all types to i64
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// Return: HP, P, VAL1, VAL2
CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
]>;
// X86-64 WebKit_JS return-value convention.
def RetCC_X86_64_WebKit_JS : CallingConv<[
// Promote all types to i64
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// Return: RAX
CCIfType<[i64], CCAssignToReg<[RAX]>>
]>;
def RetCC_X86_64_Swift : CallingConv<[
CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
// For integers, ECX, R8D can be used as extra return registers.
CCIfType<[v1i1], CCPromoteToType<i8>>,
CCIfType<[i1], CCPromoteToType<i8>>,
CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,
// XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
// MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
CCDelegateTo<RetCC_X86Common>
]>;
// X86-64 AnyReg return-value convention. No explicit register is specified for
// the return-value. The register allocator is allowed and expected to choose
// any free register.
//
// This calling convention is currently only supported by the stackmap and
// patchpoint intrinsics. All other uses will result in an assert on Debug
// builds. On Release builds we fallback to the X86 C calling convention.
def RetCC_X86_64_AnyReg : CallingConv<[
CCCustom<"CC_X86_AnyReg_Error">
]>;
// X86-64 HHVM return-value convention.
def RetCC_X86_64_HHVM: CallingConv<[
// Promote all types to i64
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// Return: could return in any GP register save RSP and R12.
CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
RAX, R10, R11, R13, R14, R15]>>
]>;
defm X86_32_RegCall :
X86_RegCall_base<RC_X86_32_RegCall>;
defm X86_Win64_RegCall :
X86_RegCall_base<RC_X86_64_RegCall_Win>;
defm X86_SysV64_RegCall :
X86_RegCall_base<RC_X86_64_RegCall_SysV>;
// This is the root return-value convention for the X86-32 backend.
def RetCC_X86_32 : CallingConv<[
// If FastCC, use RetCC_X86_32_Fast.
CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
// If HiPE, use RetCC_X86_32_HiPE.
CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>,
// Otherwise, use RetCC_X86_32_C.
CCDelegateTo<RetCC_X86_32_C>
]>;
// This is the root return-value convention for the X86-64 backend.
def RetCC_X86_64 : CallingConv<[
// HiPE uses RetCC_X86_64_HiPE
CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
// Handle JavaScript calls.
CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
// Handle Swift calls.
CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,
// Handle explicit CC selection
CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
// Handle Vectorcall CC
CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>,
// Handle HHVM calls.
CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,
CCIfCC<"CallingConv::X86_RegCall",
CCIfSubtarget<"isTargetWin64()",
CCDelegateTo<RetCC_X86_Win64_RegCall>>>,
CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>,
// Mingw64 and native Win64 use Win64 CC
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
// Otherwise, drop to normal X86-64 CC
CCDelegateTo<RetCC_X86_64_C>
]>;
// This is the return-value convention used for the entire X86 backend.
def RetCC_X86 : CallingConv<[
// Check if this is the Intel OpenCL built-ins calling convention
CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
CCDelegateTo<RetCC_X86_32>
]>;
//===----------------------------------------------------------------------===//
// X86-64 Argument Calling Conventions
//===----------------------------------------------------------------------===//
def CC_X86_64_C : CallingConv<[
// Handles byval parameters.
CCIfByVal<CCPassByVal<8, 8>>,
// Promote i1/i8/i16/v1i1 arguments to i32.
CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in R10.
CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
CCIfNest<CCAssignToReg<[R10]>>,
// Pass SwiftSelf in a callee saved register.
CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
// A SwiftError is passed in R12.
CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
// For Swift Calling Convention, pass sret in %RAX.
CCIfCC<"CallingConv::Swift",
CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
// The first 6 integer arguments are passed in integer registers.
CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
// The first 8 MMX vector arguments are passed in XMM registers on Darwin.
CCIfType<[x86mmx],
CCIfSubtarget<"isTargetDarwin()",
CCIfSubtarget<"hasSSE2()",
CCPromoteToType<v2i64>>>>,
// Boolean vectors of AVX-512 are passed in SIMD registers.
// The call from AVX to AVX-512 function should work,
// since the boolean types in AVX/AVX2 are promoted by default.
CCIfType<[v2i1], CCPromoteToType<v2i64>>,
CCIfType<[v4i1], CCPromoteToType<v4i32>>,
CCIfType<[v8i1], CCPromoteToType<v8i16>>,
CCIfType<[v16i1], CCPromoteToType<v16i8>>,
CCIfType<[v32i1], CCPromoteToType<v32i8>>,
CCIfType<[v64i1], CCPromoteToType<v64i8>>,
// The first 8 FP/Vector arguments are passed in XMM registers.
CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfSubtarget<"hasSSE1()",
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
// The first 8 256-bit vector arguments are passed in YMM registers, unless
// this is a vararg function.
// FIXME: This isn't precisely correct; the x86-64 ABI document says that
// fixed arguments to vararg functions are supposed to be passed in
// registers. Actually modeling that would be a lot of work, though.
CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCIfSubtarget<"hasFp256()",
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
YMM4, YMM5, YMM6, YMM7]>>>>,
// The first 8 512-bit vector arguments are passed in ZMM registers.
CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCIfSubtarget<"hasAVX512()",
CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
// Long doubles get stack slots whose size and alignment depends on the
// subtarget.
CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
// Vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
// 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCAssignToStack<32, 32>>,
// 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
CCIfType<[v16i32, v8i64, v16f32, v8f64],
CCAssignToStack<64, 64>>
]>;
// Calling convention for X86-64 HHVM.
def CC_X86_64_HHVM : CallingConv<[
// Use all/any GP registers for args, except RSP.
CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
RDI, RSI, RDX, RCX, R8, R9,
RAX, R10, R11, R13, R14]>>
]>;
// Calling convention for helper functions in HHVM.
def CC_X86_64_HHVM_C : CallingConv<[
// Pass the first argument in RBP.
CCIfType<[i64], CCAssignToReg<[RBP]>>,
// Otherwise it's the same as the regular C calling convention.
CCDelegateTo<CC_X86_64_C>
]>;
// Calling convention used on Win64
def CC_X86_Win64_C : CallingConv<[
// FIXME: Handle byval stuff.
// FIXME: Handle varargs.
// Promote i1/i8/i16/v1i1 arguments to i32.
CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in R10.
CCIfNest<CCAssignToReg<[R10]>>,
// 128 bit vectors are passed by pointer
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
// 256 bit vectors are passed by pointer
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
// 512 bit vectors are passed by pointer
CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
// The first 4 MMX vector arguments are passed in GPRs.
CCIfType<[x86mmx], CCBitConvertToType<i64>>,
// The first 4 integer arguments are passed in integer registers.
CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
[XMM0, XMM1, XMM2, XMM3]>>,
// Do not pass the sret argument in RCX, the Win64 thiscall calling
// convention requires "this" to be passed in RCX.
CCIfCC<"CallingConv::X86_ThisCall",
CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ],
[XMM1, XMM2, XMM3]>>>>,
CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ],
[XMM0, XMM1, XMM2, XMM3]>>,
// The first 4 FP/Vector arguments are passed in XMM registers.
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
[RCX , RDX , R8 , R9 ]>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
// Long doubles get stack slots whose size and alignment depends on the
// subtarget.
CCIfType<[f80], CCAssignToStack<0, 0>>
]>;
def CC_X86_Win64_VectorCall : CallingConv<[
CCCustom<"CC_X86_64_VectorCall">,
// Delegate to fastcall to handle integer types.
CCDelegateTo<CC_X86_Win64_C>
]>;
def CC_X86_64_GHC : CallingConv<[
// Promote i8/i16/i32 arguments to i64.
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
CCIfType<[i64],
CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
// Pass in STG registers: F1, F2, F3, F4, D1, D2
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfSubtarget<"hasSSE1()",
CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>,
// AVX
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCIfSubtarget<"hasAVX()",
CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>,
// AVX-512
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCIfSubtarget<"hasAVX512()",
CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>>
]>;
def CC_X86_64_HiPE : CallingConv<[
// Promote i8/i16/i32 arguments to i64.
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
]>;
def CC_X86_64_WebKit_JS : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Only the first integer argument is passed in register.
CCIfType<[i32], CCAssignToReg<[EAX]>>,
CCIfType<[i64], CCAssignToReg<[RAX]>>,
// The remaining integer arguments are passed on the stack. 32bit integer and
// floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
// 64bit integer and floating-point arguments are aligned to 8 byte and stored
// in 8 byte stack slots.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;
// No explicit register is specified for the AnyReg calling convention. The
// register allocator may assign the arguments to any free register.
//
// This calling convention is currently only supported by the stackmap and
// patchpoint intrinsics. All other uses will result in an assert on Debug
// builds. On Release builds we fallback to the X86 C calling convention.
def CC_X86_64_AnyReg : CallingConv<[
CCCustom<"CC_X86_AnyReg_Error">
]>;
//===----------------------------------------------------------------------===//
// X86 C Calling Convention
//===----------------------------------------------------------------------===//
/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
/// values are spilled on the stack.
def CC_X86_32_Vector_Common : CallingConv<[
// Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
// 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCAssignToStack<32, 32>>,
// 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCAssignToStack<64, 64>>
]>;
// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
// vector registers
def CC_X86_32_Vector_Standard : CallingConv<[
// SSE vector arguments are passed in XMM registers.
CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
// AVX 256-bit vector arguments are passed in YMM registers.
CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCIfSubtarget<"hasFp256()",
CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
// AVX 512-bit vector arguments are passed in ZMM registers.
CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
CCDelegateTo<CC_X86_32_Vector_Common>
]>;
// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
// vector registers.
def CC_X86_32_Vector_Darwin : CallingConv<[
// SSE vector arguments are passed in XMM registers.
CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
// AVX 256-bit vector arguments are passed in YMM registers.
CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCIfSubtarget<"hasFp256()",
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
// AVX 512-bit vector arguments are passed in ZMM registers.
CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
CCDelegateTo<CC_X86_32_Vector_Common>
]>;
/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
/// values are spilled on the stack.
def CC_X86_32_Common : CallingConv<[
// Handles byval parameters.
CCIfByVal<CCPassByVal<4, 4>>,
// The first 3 float or double arguments, if marked 'inreg' and if the call
// is not a vararg call and if SSE2 is available, are passed in SSE registers.
CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
CCIfSubtarget<"hasSSE2()",
CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
// The first 3 __m64 vector arguments are passed in mmx registers if the
// call is not a vararg call.
CCIfNotVarArg<CCIfType<[x86mmx],
CCAssignToReg<[MM0, MM1, MM2]>>>,
// Integer/Float values get stored in stack slots that are 4 bytes in
// size and 4-byte aligned.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
// Doubles get 8-byte slots that are 4-byte aligned.
CCIfType<[f64], CCAssignToStack<8, 4>>,
// Long doubles get slots whose size depends on the subtarget.
CCIfType<[f80], CCAssignToStack<0, 4>>,
// Boolean vectors of AVX-512 are passed in SIMD registers.
// The call from AVX to AVX-512 function should work,
// since the boolean types in AVX/AVX2 are promoted by default.
CCIfType<[v2i1], CCPromoteToType<v2i64>>,
CCIfType<[v4i1], CCPromoteToType<v4i32>>,
CCIfType<[v8i1], CCPromoteToType<v8i16>>,
CCIfType<[v16i1], CCPromoteToType<v16i8>>,
CCIfType<[v32i1], CCPromoteToType<v32i8>>,
CCIfType<[v64i1], CCPromoteToType<v64i8>>,
// __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
// passed in the parameter area.
CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
// Darwin passes vectors in a form that differs from the i386 psABI
CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
// Otherwise, drop to 'normal' X86-32 CC
CCDelegateTo<CC_X86_32_Vector_Standard>
]>;
def CC_X86_32_C : CallingConv<[
// Promote i1/i8/i16/v1i1 arguments to i32.
CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in ECX.
CCIfNest<CCAssignToReg<[ECX]>>,
// The first 3 integer arguments, if marked 'inreg' and if the call is not
// a vararg call, are passed in integer registers.
CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_32_MCU : CallingConv<[
// Handles byval parameters. Note that, like FastCC, we can't rely on
// the delegation to CC_X86_32_Common because that happens after code that
// puts arguments in registers.
CCIfByVal<CCPassByVal<4, 4>>,
// Promote i1/i8/i16/v1i1 arguments to i32.
CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
// If the call is not a vararg call, some arguments may be passed
// in integer registers.
CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_32_FastCall : CallingConv<[
// Promote i1/i8/i16/v1i1 arguments to i32.
CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in EAX.
CCIfNest<CCAssignToReg<[EAX]>>,
// The first 2 integer arguments are passed in ECX/EDX
CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_Win32_VectorCall : CallingConv<[
// Pass floating point in XMMs
CCCustom<"CC_X86_32_VectorCall">,
// Delegate to fastcall to handle integer types.
CCDelegateTo<CC_X86_32_FastCall>
]>;
def CC_X86_32_ThisCall_Common : CallingConv<[
// The first integer argument is passed in ECX
CCIfType<[i32], CCAssignToReg<[ECX]>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_32_ThisCall_Mingw : CallingConv<[
// Promote i1/i8/i16/v1i1 arguments to i32.
CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
CCDelegateTo<CC_X86_32_ThisCall_Common>
]>;
def CC_X86_32_ThisCall_Win : CallingConv<[
// Promote i1/i8/i16/v1i1 arguments to i32.
CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
// Pass sret arguments indirectly through stack.
CCIfSRet<CCAssignToStack<4, 4>>,
CCDelegateTo<CC_X86_32_ThisCall_Common>
]>;
def CC_X86_32_ThisCall : CallingConv<[
CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
CCDelegateTo<CC_X86_32_ThisCall_Win>
]>;
def CC_X86_32_FastCC : CallingConv<[
// Handles byval parameters. Note that we can't rely on the delegation
// to CC_X86_32_Common for this because that happens after code that
// puts arguments in registers.
CCIfByVal<CCPassByVal<4, 4>>,
// Promote i1/i8/i16/v1i1 arguments to i32.
CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in EAX.
CCIfNest<CCAssignToReg<[EAX]>>,
// The first 2 integer arguments are passed in ECX/EDX
CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
// The first 3 float or double arguments, if the call is not a vararg
// call and if SSE2 is available, are passed in SSE registers.
CCIfNotVarArg<CCIfType<[f32,f64],
CCIfSubtarget<"hasSSE2()",
CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
// Doubles get 8-byte slots that are 8-byte aligned.
CCIfType<[f64], CCAssignToStack<8, 8>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_32_GHC : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Pass in STG registers: Base, Sp, Hp, R1
CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
]>;
def CC_X86_32_HiPE : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
// Integer/Float values get stored in stack slots that are 4 bytes in
// size and 4-byte aligned.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>
]>;
// X86-64 Intel OpenCL built-ins calling convention.
def CC_Intel_OCL_BI : CallingConv<[
CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8, R9 ]>>>,
CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
CCIfType<[i32], CCAssignToStack<4, 4>>,
// The SSE vector arguments are passed in XMM registers.
CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
// The 256-bit vector arguments are passed in YMM registers.
CCIfType<[v8f32, v4f64, v8i32, v4i64],
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
// The 512-bit vector arguments are passed in ZMM registers.
CCIfType<[v16f32, v8f64, v16i32, v8i64],
CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
// Pass masks in mask registers
CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64_C>>,
CCDelegateTo<CC_X86_32_C>
]>;
def CC_X86_32_Intr : CallingConv<[
CCAssignToStack<4, 4>
]>;
def CC_X86_64_Intr : CallingConv<[
CCAssignToStack<8, 8>
]>;
//===----------------------------------------------------------------------===//
// X86 Root Argument Calling Conventions
//===----------------------------------------------------------------------===//
// This is the root argument convention for the X86-32 backend.
def CC_X86_32 : CallingConv<[
// X86_INTR calling convention is valid in MCU target and should override the
// MCU calling convention. Thus, this should be checked before isTargetMCU().
CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_32_Intr>>,
CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>,
CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>,
// Otherwise, drop to normal X86-32 CC
CCDelegateTo<CC_X86_32_C>
]>;
// This is the root argument convention for the X86-64 backend.
def CC_X86_64 : CallingConv<[
CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>,
CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
CCIfCC<"CallingConv::X86_RegCall",
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>,
CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>,
CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_64_Intr>>,
// Mingw64 and native Win64 use Win64 CC
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
// Otherwise, drop to normal X86-64 CC
CCDelegateTo<CC_X86_64_C>
]>;
// This is the argument convention used for the entire X86 backend.
def CC_X86 : CallingConv<[
CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
CCDelegateTo<CC_X86_32>
]>;
//===----------------------------------------------------------------------===//
// Callee-saved Registers.
//===----------------------------------------------------------------------===//
def CSR_NoRegs : CalleeSavedRegs<(add)>;
def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;
def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>;
def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE,
(sequence "XMM%u", 6, 15))>;
// The function used by Darwin to obtain the address of a thread-local variable
// uses rdi to pass a single parameter and rax for the return value. All other
// GPRs are preserved.
def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
R8, R9, R10, R11)>;
// CSRs that are handled by prologue, epilogue.
def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
// CSRs that are handled explicitly via copies.
def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
// All GPRs - except r11
def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
R8, R9, R10, RSP)>;
// All registers - except r11
def CSR_64_RT_AllRegs : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
(sequence "XMM%u", 0, 15))>;
def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
(sequence "YMM%u", 0, 15))>;
def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
R11, R12, R13, R14, R15, RBP,
(sequence "XMM%u", 0, 15))>;
def CSR_32_AllRegs : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
EDI)>;
def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
(sequence "XMM%u", 0, 7))>;
def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
(sequence "YMM%u", 0, 7))>;
def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
(sequence "ZMM%u", 0, 7),
(sequence "K%u", 0, 7))>;
def CSR_64_AllRegs : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9,
R10, R11, R12, R13, R14, R15, RBP)>;
def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
(sequence "YMM%u", 0, 15)),
(sequence "XMM%u", 0, 15))>;
def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
(sequence "ZMM%u", 0, 31),
(sequence "K%u", 0, 7)),
(sequence "XMM%u", 0, 15))>;
// Standard C + YMM6-15
def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
R13, R14, R15,
(sequence "YMM%u", 6, 15))>;
def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
R12, R13, R14, R15,
(sequence "ZMM%u", 6, 21),
K4, K5, K6, K7)>;
//Standard C + XMM 8-15
def CSR_64_Intel_OCL_BI : CalleeSavedRegs<(add CSR_64,
(sequence "XMM%u", 8, 15))>;
//Standard C + YMM 8-15
def CSR_64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add CSR_64,
(sequence "YMM%u", 8, 15))>;
def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15,
(sequence "ZMM%u", 16, 31),
K4, K5, K6, K7)>;
// Only R12 is preserved for PHP calls in HHVM.
def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;
// Register calling convention preserves few GPR and XMM8-15
def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP, ESP)>;
def CSR_32_RegCall : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE,
(sequence "XMM%u", 4, 7))>;
def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
(sequence "R%u", 10, 15))>;
def CSR_Win64_RegCall : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,
(sequence "XMM%u", 8, 15))>;
def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
(sequence "R%u", 12, 15))>;
def CSR_SysV64_RegCall : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,
(sequence "XMM%u", 8, 15))>;