llvm-project/clang/unittests/ASTMatchers/ASTMatchersTest.cpp

4630 lines
178 KiB
C++

//===- unittest/Tooling/ASTMatchersTest.cpp - AST matcher unit tests ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ASTMatchersTest.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/Tooling/Tooling.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Host.h"
#include "gtest/gtest.h"
namespace clang {
namespace ast_matchers {
#if GTEST_HAS_DEATH_TEST
TEST(HasNameDeathTest, DiesOnEmptyName) {
ASSERT_DEBUG_DEATH({
DeclarationMatcher HasEmptyName = recordDecl(hasName(""));
EXPECT_TRUE(notMatches("class X {};", HasEmptyName));
}, "");
}
TEST(HasNameDeathTest, DiesOnEmptyPattern) {
ASSERT_DEBUG_DEATH({
DeclarationMatcher HasEmptyName = recordDecl(matchesName(""));
EXPECT_TRUE(notMatches("class X {};", HasEmptyName));
}, "");
}
TEST(IsDerivedFromDeathTest, DiesOnEmptyBaseName) {
ASSERT_DEBUG_DEATH({
DeclarationMatcher IsDerivedFromEmpty = recordDecl(isDerivedFrom(""));
EXPECT_TRUE(notMatches("class X {};", IsDerivedFromEmpty));
}, "");
}
#endif
TEST(Finder, DynamicOnlyAcceptsSomeMatchers) {
MatchFinder Finder;
EXPECT_TRUE(Finder.addDynamicMatcher(decl(), nullptr));
EXPECT_TRUE(Finder.addDynamicMatcher(callExpr(), nullptr));
EXPECT_TRUE(Finder.addDynamicMatcher(constantArrayType(hasSize(42)),
nullptr));
// Do not accept non-toplevel matchers.
EXPECT_FALSE(Finder.addDynamicMatcher(isArrow(), nullptr));
EXPECT_FALSE(Finder.addDynamicMatcher(hasSize(2), nullptr));
EXPECT_FALSE(Finder.addDynamicMatcher(hasName("x"), nullptr));
}
TEST(Decl, MatchesDeclarations) {
EXPECT_TRUE(notMatches("", decl(usingDecl())));
EXPECT_TRUE(matches("namespace x { class X {}; } using x::X;",
decl(usingDecl())));
}
TEST(NameableDeclaration, MatchesVariousDecls) {
DeclarationMatcher NamedX = namedDecl(hasName("X"));
EXPECT_TRUE(matches("typedef int X;", NamedX));
EXPECT_TRUE(matches("int X;", NamedX));
EXPECT_TRUE(matches("class foo { virtual void X(); };", NamedX));
EXPECT_TRUE(matches("void foo() try { } catch(int X) { }", NamedX));
EXPECT_TRUE(matches("void foo() { int X; }", NamedX));
EXPECT_TRUE(matches("namespace X { }", NamedX));
EXPECT_TRUE(matches("enum X { A, B, C };", NamedX));
EXPECT_TRUE(notMatches("#define X 1", NamedX));
}
TEST(NameableDeclaration, REMatchesVariousDecls) {
DeclarationMatcher NamedX = namedDecl(matchesName("::X"));
EXPECT_TRUE(matches("typedef int Xa;", NamedX));
EXPECT_TRUE(matches("int Xb;", NamedX));
EXPECT_TRUE(matches("class foo { virtual void Xc(); };", NamedX));
EXPECT_TRUE(matches("void foo() try { } catch(int Xdef) { }", NamedX));
EXPECT_TRUE(matches("void foo() { int Xgh; }", NamedX));
EXPECT_TRUE(matches("namespace Xij { }", NamedX));
EXPECT_TRUE(matches("enum X { A, B, C };", NamedX));
EXPECT_TRUE(notMatches("#define Xkl 1", NamedX));
DeclarationMatcher StartsWithNo = namedDecl(matchesName("::no"));
EXPECT_TRUE(matches("int no_foo;", StartsWithNo));
EXPECT_TRUE(matches("class foo { virtual void nobody(); };", StartsWithNo));
DeclarationMatcher Abc = namedDecl(matchesName("a.*b.*c"));
EXPECT_TRUE(matches("int abc;", Abc));
EXPECT_TRUE(matches("int aFOObBARc;", Abc));
EXPECT_TRUE(notMatches("int cab;", Abc));
EXPECT_TRUE(matches("int cabc;", Abc));
DeclarationMatcher StartsWithK = namedDecl(matchesName(":k[^:]*$"));
EXPECT_TRUE(matches("int k;", StartsWithK));
EXPECT_TRUE(matches("int kAbc;", StartsWithK));
EXPECT_TRUE(matches("namespace x { int kTest; }", StartsWithK));
EXPECT_TRUE(matches("class C { int k; };", StartsWithK));
EXPECT_TRUE(notMatches("class C { int ckc; };", StartsWithK));
}
TEST(DeclarationMatcher, MatchClass) {
DeclarationMatcher ClassMatcher(recordDecl());
llvm::Triple Triple(llvm::sys::getDefaultTargetTriple());
if (Triple.getOS() != llvm::Triple::Win32 ||
Triple.getEnvironment() != llvm::Triple::MSVC)
EXPECT_FALSE(matches("", ClassMatcher));
else
// Matches class type_info.
EXPECT_TRUE(matches("", ClassMatcher));
DeclarationMatcher ClassX = recordDecl(recordDecl(hasName("X")));
EXPECT_TRUE(matches("class X;", ClassX));
EXPECT_TRUE(matches("class X {};", ClassX));
EXPECT_TRUE(matches("template<class T> class X {};", ClassX));
EXPECT_TRUE(notMatches("", ClassX));
}
TEST(DeclarationMatcher, ClassIsDerived) {
DeclarationMatcher IsDerivedFromX = recordDecl(isDerivedFrom("X"));
EXPECT_TRUE(matches("class X {}; class Y : public X {};", IsDerivedFromX));
EXPECT_TRUE(notMatches("class X {};", IsDerivedFromX));
EXPECT_TRUE(notMatches("class X;", IsDerivedFromX));
EXPECT_TRUE(notMatches("class Y;", IsDerivedFromX));
EXPECT_TRUE(notMatches("", IsDerivedFromX));
DeclarationMatcher IsAX = recordDecl(isSameOrDerivedFrom("X"));
EXPECT_TRUE(matches("class X {}; class Y : public X {};", IsAX));
EXPECT_TRUE(matches("class X {};", IsAX));
EXPECT_TRUE(matches("class X;", IsAX));
EXPECT_TRUE(notMatches("class Y;", IsAX));
EXPECT_TRUE(notMatches("", IsAX));
DeclarationMatcher ZIsDerivedFromX =
recordDecl(hasName("Z"), isDerivedFrom("X"));
EXPECT_TRUE(
matches("class X {}; class Y : public X {}; class Z : public Y {};",
ZIsDerivedFromX));
EXPECT_TRUE(
matches("class X {};"
"template<class T> class Y : public X {};"
"class Z : public Y<int> {};", ZIsDerivedFromX));
EXPECT_TRUE(matches("class X {}; template<class T> class Z : public X {};",
ZIsDerivedFromX));
EXPECT_TRUE(
matches("template<class T> class X {}; "
"template<class T> class Z : public X<T> {};",
ZIsDerivedFromX));
EXPECT_TRUE(
matches("template<class T, class U=T> class X {}; "
"template<class T> class Z : public X<T> {};",
ZIsDerivedFromX));
EXPECT_TRUE(
notMatches("template<class X> class A { class Z : public X {}; };",
ZIsDerivedFromX));
EXPECT_TRUE(
matches("template<class X> class A { public: class Z : public X {}; }; "
"class X{}; void y() { A<X>::Z z; }", ZIsDerivedFromX));
EXPECT_TRUE(
matches("template <class T> class X {}; "
"template<class Y> class A { class Z : public X<Y> {}; };",
ZIsDerivedFromX));
EXPECT_TRUE(
notMatches("template<template<class T> class X> class A { "
" class Z : public X<int> {}; };", ZIsDerivedFromX));
EXPECT_TRUE(
matches("template<template<class T> class X> class A { "
" public: class Z : public X<int> {}; }; "
"template<class T> class X {}; void y() { A<X>::Z z; }",
ZIsDerivedFromX));
EXPECT_TRUE(
notMatches("template<class X> class A { class Z : public X::D {}; };",
ZIsDerivedFromX));
EXPECT_TRUE(
matches("template<class X> class A { public: "
" class Z : public X::D {}; }; "
"class Y { public: class X {}; typedef X D; }; "
"void y() { A<Y>::Z z; }", ZIsDerivedFromX));
EXPECT_TRUE(
matches("class X {}; typedef X Y; class Z : public Y {};",
ZIsDerivedFromX));
EXPECT_TRUE(
matches("template<class T> class Y { typedef typename T::U X; "
" class Z : public X {}; };", ZIsDerivedFromX));
EXPECT_TRUE(matches("class X {}; class Z : public ::X {};",
ZIsDerivedFromX));
EXPECT_TRUE(
notMatches("template<class T> class X {}; "
"template<class T> class A { class Z : public X<T>::D {}; };",
ZIsDerivedFromX));
EXPECT_TRUE(
matches("template<class T> class X { public: typedef X<T> D; }; "
"template<class T> class A { public: "
" class Z : public X<T>::D {}; }; void y() { A<int>::Z z; }",
ZIsDerivedFromX));
EXPECT_TRUE(
notMatches("template<class X> class A { class Z : public X::D::E {}; };",
ZIsDerivedFromX));
EXPECT_TRUE(
matches("class X {}; typedef X V; typedef V W; class Z : public W {};",
ZIsDerivedFromX));
EXPECT_TRUE(
matches("class X {}; class Y : public X {}; "
"typedef Y V; typedef V W; class Z : public W {};",
ZIsDerivedFromX));
EXPECT_TRUE(
matches("template<class T, class U> class X {}; "
"template<class T> class A { class Z : public X<T, int> {}; };",
ZIsDerivedFromX));
EXPECT_TRUE(
notMatches("template<class X> class D { typedef X A; typedef A B; "
" typedef B C; class Z : public C {}; };",
ZIsDerivedFromX));
EXPECT_TRUE(
matches("class X {}; typedef X A; typedef A B; "
"class Z : public B {};", ZIsDerivedFromX));
EXPECT_TRUE(
matches("class X {}; typedef X A; typedef A B; typedef B C; "
"class Z : public C {};", ZIsDerivedFromX));
EXPECT_TRUE(
matches("class U {}; typedef U X; typedef X V; "
"class Z : public V {};", ZIsDerivedFromX));
EXPECT_TRUE(
matches("class Base {}; typedef Base X; "
"class Z : public Base {};", ZIsDerivedFromX));
EXPECT_TRUE(
matches("class Base {}; typedef Base Base2; typedef Base2 X; "
"class Z : public Base {};", ZIsDerivedFromX));
EXPECT_TRUE(
notMatches("class Base {}; class Base2 {}; typedef Base2 X; "
"class Z : public Base {};", ZIsDerivedFromX));
EXPECT_TRUE(
matches("class A {}; typedef A X; typedef A Y; "
"class Z : public Y {};", ZIsDerivedFromX));
EXPECT_TRUE(
notMatches("template <typename T> class Z;"
"template <> class Z<void> {};"
"template <typename T> class Z : public Z<void> {};",
IsDerivedFromX));
EXPECT_TRUE(
matches("template <typename T> class X;"
"template <> class X<void> {};"
"template <typename T> class X : public X<void> {};",
IsDerivedFromX));
EXPECT_TRUE(matches(
"class X {};"
"template <typename T> class Z;"
"template <> class Z<void> {};"
"template <typename T> class Z : public Z<void>, public X {};",
ZIsDerivedFromX));
EXPECT_TRUE(
notMatches("template<int> struct X;"
"template<int i> struct X : public X<i-1> {};",
recordDecl(isDerivedFrom(recordDecl(hasName("Some"))))));
EXPECT_TRUE(matches(
"struct A {};"
"template<int> struct X;"
"template<int i> struct X : public X<i-1> {};"
"template<> struct X<0> : public A {};"
"struct B : public X<42> {};",
recordDecl(hasName("B"), isDerivedFrom(recordDecl(hasName("A"))))));
// FIXME: Once we have better matchers for template type matching,
// get rid of the Variable(...) matching and match the right template
// declarations directly.
const char *RecursiveTemplateOneParameter =
"class Base1 {}; class Base2 {};"
"template <typename T> class Z;"
"template <> class Z<void> : public Base1 {};"
"template <> class Z<int> : public Base2 {};"
"template <> class Z<float> : public Z<void> {};"
"template <> class Z<double> : public Z<int> {};"
"template <typename T> class Z : public Z<float>, public Z<double> {};"
"void f() { Z<float> z_float; Z<double> z_double; Z<char> z_char; }";
EXPECT_TRUE(matches(
RecursiveTemplateOneParameter,
varDecl(hasName("z_float"),
hasInitializer(hasType(recordDecl(isDerivedFrom("Base1")))))));
EXPECT_TRUE(notMatches(
RecursiveTemplateOneParameter,
varDecl(hasName("z_float"),
hasInitializer(hasType(recordDecl(isDerivedFrom("Base2")))))));
EXPECT_TRUE(matches(
RecursiveTemplateOneParameter,
varDecl(hasName("z_char"),
hasInitializer(hasType(recordDecl(isDerivedFrom("Base1"),
isDerivedFrom("Base2")))))));
const char *RecursiveTemplateTwoParameters =
"class Base1 {}; class Base2 {};"
"template <typename T1, typename T2> class Z;"
"template <typename T> class Z<void, T> : public Base1 {};"
"template <typename T> class Z<int, T> : public Base2 {};"
"template <typename T> class Z<float, T> : public Z<void, T> {};"
"template <typename T> class Z<double, T> : public Z<int, T> {};"
"template <typename T1, typename T2> class Z : "
" public Z<float, T2>, public Z<double, T2> {};"
"void f() { Z<float, void> z_float; Z<double, void> z_double; "
" Z<char, void> z_char; }";
EXPECT_TRUE(matches(
RecursiveTemplateTwoParameters,
varDecl(hasName("z_float"),
hasInitializer(hasType(recordDecl(isDerivedFrom("Base1")))))));
EXPECT_TRUE(notMatches(
RecursiveTemplateTwoParameters,
varDecl(hasName("z_float"),
hasInitializer(hasType(recordDecl(isDerivedFrom("Base2")))))));
EXPECT_TRUE(matches(
RecursiveTemplateTwoParameters,
varDecl(hasName("z_char"),
hasInitializer(hasType(recordDecl(isDerivedFrom("Base1"),
isDerivedFrom("Base2")))))));
EXPECT_TRUE(matches(
"namespace ns { class X {}; class Y : public X {}; }",
recordDecl(isDerivedFrom("::ns::X"))));
EXPECT_TRUE(notMatches(
"class X {}; class Y : public X {};",
recordDecl(isDerivedFrom("::ns::X"))));
EXPECT_TRUE(matches(
"class X {}; class Y : public X {};",
recordDecl(isDerivedFrom(recordDecl(hasName("X")).bind("test")))));
EXPECT_TRUE(matches(
"template<typename T> class X {};"
"template<typename T> using Z = X<T>;"
"template <typename T> class Y : Z<T> {};",
recordDecl(isDerivedFrom(namedDecl(hasName("X"))))));
}
TEST(DeclarationMatcher, hasMethod) {
EXPECT_TRUE(matches("class A { void func(); };",
recordDecl(hasMethod(hasName("func")))));
EXPECT_TRUE(notMatches("class A { void func(); };",
recordDecl(hasMethod(isPublic()))));
}
TEST(DeclarationMatcher, ClassDerivedFromDependentTemplateSpecialization) {
EXPECT_TRUE(matches(
"template <typename T> struct A {"
" template <typename T2> struct F {};"
"};"
"template <typename T> struct B : A<T>::template F<T> {};"
"B<int> b;",
recordDecl(hasName("B"), isDerivedFrom(recordDecl()))));
}
TEST(DeclarationMatcher, hasDeclContext) {
EXPECT_TRUE(matches(
"namespace N {"
" namespace M {"
" class D {};"
" }"
"}",
recordDecl(hasDeclContext(namespaceDecl(hasName("M"))))));
EXPECT_TRUE(notMatches(
"namespace N {"
" namespace M {"
" class D {};"
" }"
"}",
recordDecl(hasDeclContext(namespaceDecl(hasName("N"))))));
EXPECT_TRUE(matches("namespace {"
" namespace M {"
" class D {};"
" }"
"}",
recordDecl(hasDeclContext(namespaceDecl(
hasName("M"), hasDeclContext(namespaceDecl()))))));
EXPECT_TRUE(matches("class D{};", decl(hasDeclContext(decl()))));
}
TEST(DeclarationMatcher, LinkageSpecification) {
EXPECT_TRUE(matches("extern \"C\" { void foo() {}; }", linkageSpecDecl()));
EXPECT_TRUE(notMatches("void foo() {};", linkageSpecDecl()));
}
TEST(ClassTemplate, DoesNotMatchClass) {
DeclarationMatcher ClassX = classTemplateDecl(hasName("X"));
EXPECT_TRUE(notMatches("class X;", ClassX));
EXPECT_TRUE(notMatches("class X {};", ClassX));
}
TEST(ClassTemplate, MatchesClassTemplate) {
DeclarationMatcher ClassX = classTemplateDecl(hasName("X"));
EXPECT_TRUE(matches("template<typename T> class X {};", ClassX));
EXPECT_TRUE(matches("class Z { template<class T> class X {}; };", ClassX));
}
TEST(ClassTemplate, DoesNotMatchClassTemplateExplicitSpecialization) {
EXPECT_TRUE(notMatches("template<typename T> class X { };"
"template<> class X<int> { int a; };",
classTemplateDecl(hasName("X"),
hasDescendant(fieldDecl(hasName("a"))))));
}
TEST(ClassTemplate, DoesNotMatchClassTemplatePartialSpecialization) {
EXPECT_TRUE(notMatches("template<typename T, typename U> class X { };"
"template<typename T> class X<T, int> { int a; };",
classTemplateDecl(hasName("X"),
hasDescendant(fieldDecl(hasName("a"))))));
}
TEST(AllOf, AllOverloadsWork) {
const char Program[] =
"struct T { };"
"int f(int, T*, int, int);"
"void g(int x) { T t; f(x, &t, 3, 4); }";
EXPECT_TRUE(matches(Program,
callExpr(allOf(callee(functionDecl(hasName("f"))),
hasArgument(0, declRefExpr(to(varDecl())))))));
EXPECT_TRUE(matches(Program,
callExpr(allOf(callee(functionDecl(hasName("f"))),
hasArgument(0, declRefExpr(to(varDecl()))),
hasArgument(1, hasType(pointsTo(
recordDecl(hasName("T")))))))));
EXPECT_TRUE(matches(Program,
callExpr(allOf(callee(functionDecl(hasName("f"))),
hasArgument(0, declRefExpr(to(varDecl()))),
hasArgument(1, hasType(pointsTo(
recordDecl(hasName("T"))))),
hasArgument(2, integerLiteral(equals(3)))))));
EXPECT_TRUE(matches(Program,
callExpr(allOf(callee(functionDecl(hasName("f"))),
hasArgument(0, declRefExpr(to(varDecl()))),
hasArgument(1, hasType(pointsTo(
recordDecl(hasName("T"))))),
hasArgument(2, integerLiteral(equals(3))),
hasArgument(3, integerLiteral(equals(4)))))));
}
TEST(DeclarationMatcher, MatchAnyOf) {
DeclarationMatcher YOrZDerivedFromX =
recordDecl(anyOf(hasName("Y"), allOf(isDerivedFrom("X"), hasName("Z"))));
EXPECT_TRUE(
matches("class X {}; class Z : public X {};", YOrZDerivedFromX));
EXPECT_TRUE(matches("class Y {};", YOrZDerivedFromX));
EXPECT_TRUE(
notMatches("class X {}; class W : public X {};", YOrZDerivedFromX));
EXPECT_TRUE(notMatches("class Z {};", YOrZDerivedFromX));
DeclarationMatcher XOrYOrZOrU =
recordDecl(anyOf(hasName("X"), hasName("Y"), hasName("Z"), hasName("U")));
EXPECT_TRUE(matches("class X {};", XOrYOrZOrU));
EXPECT_TRUE(notMatches("class V {};", XOrYOrZOrU));
DeclarationMatcher XOrYOrZOrUOrV =
recordDecl(anyOf(hasName("X"), hasName("Y"), hasName("Z"), hasName("U"),
hasName("V")));
EXPECT_TRUE(matches("class X {};", XOrYOrZOrUOrV));
EXPECT_TRUE(matches("class Y {};", XOrYOrZOrUOrV));
EXPECT_TRUE(matches("class Z {};", XOrYOrZOrUOrV));
EXPECT_TRUE(matches("class U {};", XOrYOrZOrUOrV));
EXPECT_TRUE(matches("class V {};", XOrYOrZOrUOrV));
EXPECT_TRUE(notMatches("class A {};", XOrYOrZOrUOrV));
StatementMatcher MixedTypes = stmt(anyOf(ifStmt(), binaryOperator()));
EXPECT_TRUE(matches("int F() { return 1 + 2; }", MixedTypes));
EXPECT_TRUE(matches("int F() { if (true) return 1; }", MixedTypes));
EXPECT_TRUE(notMatches("int F() { return 1; }", MixedTypes));
}
TEST(DeclarationMatcher, MatchHas) {
DeclarationMatcher HasClassX = recordDecl(has(recordDecl(hasName("X"))));
EXPECT_TRUE(matches("class Y { class X {}; };", HasClassX));
EXPECT_TRUE(matches("class X {};", HasClassX));
DeclarationMatcher YHasClassX =
recordDecl(hasName("Y"), has(recordDecl(hasName("X"))));
EXPECT_TRUE(matches("class Y { class X {}; };", YHasClassX));
EXPECT_TRUE(notMatches("class X {};", YHasClassX));
EXPECT_TRUE(
notMatches("class Y { class Z { class X {}; }; };", YHasClassX));
}
TEST(DeclarationMatcher, MatchHasRecursiveAllOf) {
DeclarationMatcher Recursive =
recordDecl(
has(recordDecl(
has(recordDecl(hasName("X"))),
has(recordDecl(hasName("Y"))),
hasName("Z"))),
has(recordDecl(
has(recordDecl(hasName("A"))),
has(recordDecl(hasName("B"))),
hasName("C"))),
hasName("F"));
EXPECT_TRUE(matches(
"class F {"
" class Z {"
" class X {};"
" class Y {};"
" };"
" class C {"
" class A {};"
" class B {};"
" };"
"};", Recursive));
EXPECT_TRUE(matches(
"class F {"
" class Z {"
" class A {};"
" class X {};"
" class Y {};"
" };"
" class C {"
" class X {};"
" class A {};"
" class B {};"
" };"
"};", Recursive));
EXPECT_TRUE(matches(
"class O1 {"
" class O2 {"
" class F {"
" class Z {"
" class A {};"
" class X {};"
" class Y {};"
" };"
" class C {"
" class X {};"
" class A {};"
" class B {};"
" };"
" };"
" };"
"};", Recursive));
}
TEST(DeclarationMatcher, MatchHasRecursiveAnyOf) {
DeclarationMatcher Recursive =
recordDecl(
anyOf(
has(recordDecl(
anyOf(
has(recordDecl(
hasName("X"))),
has(recordDecl(
hasName("Y"))),
hasName("Z")))),
has(recordDecl(
anyOf(
hasName("C"),
has(recordDecl(
hasName("A"))),
has(recordDecl(
hasName("B")))))),
hasName("F")));
EXPECT_TRUE(matches("class F {};", Recursive));
EXPECT_TRUE(matches("class Z {};", Recursive));
EXPECT_TRUE(matches("class C {};", Recursive));
EXPECT_TRUE(matches("class M { class N { class X {}; }; };", Recursive));
EXPECT_TRUE(matches("class M { class N { class B {}; }; };", Recursive));
EXPECT_TRUE(
matches("class O1 { class O2 {"
" class M { class N { class B {}; }; }; "
"}; };", Recursive));
}
TEST(DeclarationMatcher, MatchNot) {
DeclarationMatcher NotClassX =
recordDecl(
isDerivedFrom("Y"),
unless(hasName("X")));
EXPECT_TRUE(notMatches("", NotClassX));
EXPECT_TRUE(notMatches("class Y {};", NotClassX));
EXPECT_TRUE(matches("class Y {}; class Z : public Y {};", NotClassX));
EXPECT_TRUE(notMatches("class Y {}; class X : public Y {};", NotClassX));
EXPECT_TRUE(
notMatches("class Y {}; class Z {}; class X : public Y {};",
NotClassX));
DeclarationMatcher ClassXHasNotClassY =
recordDecl(
hasName("X"),
has(recordDecl(hasName("Z"))),
unless(
has(recordDecl(hasName("Y")))));
EXPECT_TRUE(matches("class X { class Z {}; };", ClassXHasNotClassY));
EXPECT_TRUE(notMatches("class X { class Y {}; class Z {}; };",
ClassXHasNotClassY));
DeclarationMatcher NamedNotRecord =
namedDecl(hasName("Foo"), unless(recordDecl()));
EXPECT_TRUE(matches("void Foo(){}", NamedNotRecord));
EXPECT_TRUE(notMatches("struct Foo {};", NamedNotRecord));
}
TEST(DeclarationMatcher, HasDescendant) {
DeclarationMatcher ZDescendantClassX =
recordDecl(
hasDescendant(recordDecl(hasName("X"))),
hasName("Z"));
EXPECT_TRUE(matches("class Z { class X {}; };", ZDescendantClassX));
EXPECT_TRUE(
matches("class Z { class Y { class X {}; }; };", ZDescendantClassX));
EXPECT_TRUE(
matches("class Z { class A { class Y { class X {}; }; }; };",
ZDescendantClassX));
EXPECT_TRUE(
matches("class Z { class A { class B { class Y { class X {}; }; }; }; };",
ZDescendantClassX));
EXPECT_TRUE(notMatches("class Z {};", ZDescendantClassX));
DeclarationMatcher ZDescendantClassXHasClassY =
recordDecl(
hasDescendant(recordDecl(has(recordDecl(hasName("Y"))),
hasName("X"))),
hasName("Z"));
EXPECT_TRUE(matches("class Z { class X { class Y {}; }; };",
ZDescendantClassXHasClassY));
EXPECT_TRUE(
matches("class Z { class A { class B { class X { class Y {}; }; }; }; };",
ZDescendantClassXHasClassY));
EXPECT_TRUE(notMatches(
"class Z {"
" class A {"
" class B {"
" class X {"
" class C {"
" class Y {};"
" };"
" };"
" }; "
" };"
"};", ZDescendantClassXHasClassY));
DeclarationMatcher ZDescendantClassXDescendantClassY =
recordDecl(
hasDescendant(recordDecl(hasDescendant(recordDecl(hasName("Y"))),
hasName("X"))),
hasName("Z"));
EXPECT_TRUE(
matches("class Z { class A { class X { class B { class Y {}; }; }; }; };",
ZDescendantClassXDescendantClassY));
EXPECT_TRUE(matches(
"class Z {"
" class A {"
" class X {"
" class B {"
" class Y {};"
" };"
" class Y {};"
" };"
" };"
"};", ZDescendantClassXDescendantClassY));
}
TEST(DeclarationMatcher, HasDescendantMemoization) {
DeclarationMatcher CannotMemoize =
decl(hasDescendant(typeLoc().bind("x")), has(decl()));
EXPECT_TRUE(matches("void f() { int i; }", CannotMemoize));
}
TEST(DeclarationMatcher, HasDescendantMemoizationUsesRestrictKind) {
auto Name = hasName("i");
auto VD = internal::Matcher<VarDecl>(Name).dynCastTo<Decl>();
auto RD = internal::Matcher<RecordDecl>(Name).dynCastTo<Decl>();
// Matching VD first should not make a cache hit for RD.
EXPECT_TRUE(notMatches("void f() { int i; }",
decl(hasDescendant(VD), hasDescendant(RD))));
EXPECT_TRUE(notMatches("void f() { int i; }",
decl(hasDescendant(RD), hasDescendant(VD))));
// Not matching RD first should not make a cache hit for VD either.
EXPECT_TRUE(matches("void f() { int i; }",
decl(anyOf(hasDescendant(RD), hasDescendant(VD)))));
}
TEST(DeclarationMatcher, HasAttr) {
EXPECT_TRUE(matches("struct __attribute__((warn_unused)) X {};",
decl(hasAttr(clang::attr::WarnUnused))));
EXPECT_FALSE(matches("struct X {};",
decl(hasAttr(clang::attr::WarnUnused))));
}
TEST(DeclarationMatcher, MatchCudaDecl) {
EXPECT_TRUE(matchesWithCuda("__global__ void f() { }"
"void g() { f<<<1, 2>>>(); }",
CUDAKernelCallExpr()));
EXPECT_TRUE(matchesWithCuda("__attribute__((device)) void f() {}",
hasAttr(clang::attr::CUDADevice)));
EXPECT_TRUE(notMatchesWithCuda("void f() {}",
CUDAKernelCallExpr()));
EXPECT_FALSE(notMatchesWithCuda("__attribute__((global)) void f() {}",
hasAttr(clang::attr::CUDAGlobal)));
}
// Implements a run method that returns whether BoundNodes contains a
// Decl bound to Id that can be dynamically cast to T.
// Optionally checks that the check succeeded a specific number of times.
template <typename T>
class VerifyIdIsBoundTo : public BoundNodesCallback {
public:
// Create an object that checks that a node of type \c T was bound to \c Id.
// Does not check for a certain number of matches.
explicit VerifyIdIsBoundTo(llvm::StringRef Id)
: Id(Id), ExpectedCount(-1), Count(0) {}
// Create an object that checks that a node of type \c T was bound to \c Id.
// Checks that there were exactly \c ExpectedCount matches.
VerifyIdIsBoundTo(llvm::StringRef Id, int ExpectedCount)
: Id(Id), ExpectedCount(ExpectedCount), Count(0) {}
// Create an object that checks that a node of type \c T was bound to \c Id.
// Checks that there was exactly one match with the name \c ExpectedName.
// Note that \c T must be a NamedDecl for this to work.
VerifyIdIsBoundTo(llvm::StringRef Id, llvm::StringRef ExpectedName,
int ExpectedCount = 1)
: Id(Id), ExpectedCount(ExpectedCount), Count(0),
ExpectedName(ExpectedName) {}
void onEndOfTranslationUnit() override {
if (ExpectedCount != -1)
EXPECT_EQ(ExpectedCount, Count);
if (!ExpectedName.empty())
EXPECT_EQ(ExpectedName, Name);
Count = 0;
Name.clear();
}
~VerifyIdIsBoundTo() {
EXPECT_EQ(0, Count);
EXPECT_EQ("", Name);
}
virtual bool run(const BoundNodes *Nodes) override {
const BoundNodes::IDToNodeMap &M = Nodes->getMap();
if (Nodes->getNodeAs<T>(Id)) {
++Count;
if (const NamedDecl *Named = Nodes->getNodeAs<NamedDecl>(Id)) {
Name = Named->getNameAsString();
} else if (const NestedNameSpecifier *NNS =
Nodes->getNodeAs<NestedNameSpecifier>(Id)) {
llvm::raw_string_ostream OS(Name);
NNS->print(OS, PrintingPolicy(LangOptions()));
}
BoundNodes::IDToNodeMap::const_iterator I = M.find(Id);
EXPECT_NE(M.end(), I);
if (I != M.end())
EXPECT_EQ(Nodes->getNodeAs<T>(Id), I->second.get<T>());
return true;
}
EXPECT_TRUE(M.count(Id) == 0 ||
M.find(Id)->second.template get<T>() == nullptr);
return false;
}
virtual bool run(const BoundNodes *Nodes, ASTContext *Context) override {
return run(Nodes);
}
private:
const std::string Id;
const int ExpectedCount;
int Count;
const std::string ExpectedName;
std::string Name;
};
TEST(HasDescendant, MatchesDescendantTypes) {
EXPECT_TRUE(matches("void f() { int i = 3; }",
decl(hasDescendant(loc(builtinType())))));
EXPECT_TRUE(matches("void f() { int i = 3; }",
stmt(hasDescendant(builtinType()))));
EXPECT_TRUE(matches("void f() { int i = 3; }",
stmt(hasDescendant(loc(builtinType())))));
EXPECT_TRUE(matches("void f() { int i = 3; }",
stmt(hasDescendant(qualType(builtinType())))));
EXPECT_TRUE(notMatches("void f() { float f = 2.0f; }",
stmt(hasDescendant(isInteger()))));
EXPECT_TRUE(matchAndVerifyResultTrue(
"void f() { int a; float c; int d; int e; }",
functionDecl(forEachDescendant(
varDecl(hasDescendant(isInteger())).bind("x"))),
new VerifyIdIsBoundTo<Decl>("x", 3)));
}
TEST(HasDescendant, MatchesDescendantsOfTypes) {
EXPECT_TRUE(matches("void f() { int*** i; }",
qualType(hasDescendant(builtinType()))));
EXPECT_TRUE(matches("void f() { int*** i; }",
qualType(hasDescendant(
pointerType(pointee(builtinType()))))));
EXPECT_TRUE(matches("void f() { int*** i; }",
typeLoc(hasDescendant(loc(builtinType())))));
EXPECT_TRUE(matchAndVerifyResultTrue(
"void f() { int*** i; }",
qualType(asString("int ***"), forEachDescendant(pointerType().bind("x"))),
new VerifyIdIsBoundTo<Type>("x", 2)));
}
TEST(Has, MatchesChildrenOfTypes) {
EXPECT_TRUE(matches("int i;",
varDecl(hasName("i"), has(isInteger()))));
EXPECT_TRUE(notMatches("int** i;",
varDecl(hasName("i"), has(isInteger()))));
EXPECT_TRUE(matchAndVerifyResultTrue(
"int (*f)(float, int);",
qualType(functionType(), forEach(qualType(isInteger()).bind("x"))),
new VerifyIdIsBoundTo<QualType>("x", 2)));
}
TEST(Has, MatchesChildTypes) {
EXPECT_TRUE(matches(
"int* i;",
varDecl(hasName("i"), hasType(qualType(has(builtinType()))))));
EXPECT_TRUE(notMatches(
"int* i;",
varDecl(hasName("i"), hasType(qualType(has(pointerType()))))));
}
TEST(ValueDecl, Matches) {
EXPECT_TRUE(matches("enum EnumType { EnumValue };",
valueDecl(hasType(asString("enum EnumType")))));
EXPECT_TRUE(matches("void FunctionDecl();",
valueDecl(hasType(asString("void (void)")))));
}
TEST(Enum, DoesNotMatchClasses) {
EXPECT_TRUE(notMatches("class X {};", enumDecl(hasName("X"))));
}
TEST(Enum, MatchesEnums) {
EXPECT_TRUE(matches("enum X {};", enumDecl(hasName("X"))));
}
TEST(EnumConstant, Matches) {
DeclarationMatcher Matcher = enumConstantDecl(hasName("A"));
EXPECT_TRUE(matches("enum X{ A };", Matcher));
EXPECT_TRUE(notMatches("enum X{ B };", Matcher));
EXPECT_TRUE(notMatches("enum X {};", Matcher));
}
TEST(StatementMatcher, Has) {
StatementMatcher HasVariableI =
expr(hasType(pointsTo(recordDecl(hasName("X")))),
has(declRefExpr(to(varDecl(hasName("i"))))));
EXPECT_TRUE(matches(
"class X; X *x(int); void c() { int i; x(i); }", HasVariableI));
EXPECT_TRUE(notMatches(
"class X; X *x(int); void c() { int i; x(42); }", HasVariableI));
}
TEST(StatementMatcher, HasDescendant) {
StatementMatcher HasDescendantVariableI =
expr(hasType(pointsTo(recordDecl(hasName("X")))),
hasDescendant(declRefExpr(to(varDecl(hasName("i"))))));
EXPECT_TRUE(matches(
"class X; X *x(bool); bool b(int); void c() { int i; x(b(i)); }",
HasDescendantVariableI));
EXPECT_TRUE(notMatches(
"class X; X *x(bool); bool b(int); void c() { int i; x(b(42)); }",
HasDescendantVariableI));
}
TEST(TypeMatcher, MatchesClassType) {
TypeMatcher TypeA = hasDeclaration(recordDecl(hasName("A")));
EXPECT_TRUE(matches("class A { public: A *a; };", TypeA));
EXPECT_TRUE(notMatches("class A {};", TypeA));
TypeMatcher TypeDerivedFromA = hasDeclaration(recordDecl(isDerivedFrom("A")));
EXPECT_TRUE(matches("class A {}; class B : public A { public: B *b; };",
TypeDerivedFromA));
EXPECT_TRUE(notMatches("class A {};", TypeA));
TypeMatcher TypeAHasClassB = hasDeclaration(
recordDecl(hasName("A"), has(recordDecl(hasName("B")))));
EXPECT_TRUE(
matches("class A { public: A *a; class B {}; };", TypeAHasClassB));
}
TEST(Matcher, BindMatchedNodes) {
DeclarationMatcher ClassX = has(recordDecl(hasName("::X")).bind("x"));
EXPECT_TRUE(matchAndVerifyResultTrue("class X {};",
ClassX, new VerifyIdIsBoundTo<CXXRecordDecl>("x")));
EXPECT_TRUE(matchAndVerifyResultFalse("class X {};",
ClassX, new VerifyIdIsBoundTo<CXXRecordDecl>("other-id")));
TypeMatcher TypeAHasClassB = hasDeclaration(
recordDecl(hasName("A"), has(recordDecl(hasName("B")).bind("b"))));
EXPECT_TRUE(matchAndVerifyResultTrue("class A { public: A *a; class B {}; };",
TypeAHasClassB,
new VerifyIdIsBoundTo<Decl>("b")));
StatementMatcher MethodX =
callExpr(callee(methodDecl(hasName("x")))).bind("x");
EXPECT_TRUE(matchAndVerifyResultTrue("class A { void x() { x(); } };",
MethodX,
new VerifyIdIsBoundTo<CXXMemberCallExpr>("x")));
}
TEST(Matcher, BindTheSameNameInAlternatives) {
StatementMatcher matcher = anyOf(
binaryOperator(hasOperatorName("+"),
hasLHS(expr().bind("x")),
hasRHS(integerLiteral(equals(0)))),
binaryOperator(hasOperatorName("+"),
hasLHS(integerLiteral(equals(0))),
hasRHS(expr().bind("x"))));
EXPECT_TRUE(matchAndVerifyResultTrue(
// The first branch of the matcher binds x to 0 but then fails.
// The second branch binds x to f() and succeeds.
"int f() { return 0 + f(); }",
matcher,
new VerifyIdIsBoundTo<CallExpr>("x")));
}
TEST(Matcher, BindsIDForMemoizedResults) {
// Using the same matcher in two match expressions will make memoization
// kick in.
DeclarationMatcher ClassX = recordDecl(hasName("X")).bind("x");
EXPECT_TRUE(matchAndVerifyResultTrue(
"class A { class B { class X {}; }; };",
DeclarationMatcher(anyOf(
recordDecl(hasName("A"), hasDescendant(ClassX)),
recordDecl(hasName("B"), hasDescendant(ClassX)))),
new VerifyIdIsBoundTo<Decl>("x", 2)));
}
TEST(HasDeclaration, HasDeclarationOfEnumType) {
EXPECT_TRUE(matches("enum X {}; void y(X *x) { x; }",
expr(hasType(pointsTo(
qualType(hasDeclaration(enumDecl(hasName("X")))))))));
}
TEST(HasDeclaration, HasGetDeclTraitTest) {
EXPECT_TRUE(internal::has_getDecl<TypedefType>::value);
EXPECT_TRUE(internal::has_getDecl<RecordType>::value);
EXPECT_FALSE(internal::has_getDecl<TemplateSpecializationType>::value);
}
TEST(HasDeclaration, HasDeclarationOfTypeWithDecl) {
EXPECT_TRUE(matches("typedef int X; X a;",
varDecl(hasName("a"),
hasType(typedefType(hasDeclaration(decl()))))));
// FIXME: Add tests for other types with getDecl() (e.g. RecordType)
}
TEST(HasDeclaration, HasDeclarationOfTemplateSpecializationType) {
EXPECT_TRUE(matches("template <typename T> class A {}; A<int> a;",
varDecl(hasType(templateSpecializationType(
hasDeclaration(namedDecl(hasName("A"))))))));
}
TEST(HasType, TakesQualTypeMatcherAndMatchesExpr) {
TypeMatcher ClassX = hasDeclaration(recordDecl(hasName("X")));
EXPECT_TRUE(
matches("class X {}; void y(X &x) { x; }", expr(hasType(ClassX))));
EXPECT_TRUE(
notMatches("class X {}; void y(X *x) { x; }",
expr(hasType(ClassX))));
EXPECT_TRUE(
matches("class X {}; void y(X *x) { x; }",
expr(hasType(pointsTo(ClassX)))));
}
TEST(HasType, TakesQualTypeMatcherAndMatchesValueDecl) {
TypeMatcher ClassX = hasDeclaration(recordDecl(hasName("X")));
EXPECT_TRUE(
matches("class X {}; void y() { X x; }", varDecl(hasType(ClassX))));
EXPECT_TRUE(
notMatches("class X {}; void y() { X *x; }", varDecl(hasType(ClassX))));
EXPECT_TRUE(
matches("class X {}; void y() { X *x; }",
varDecl(hasType(pointsTo(ClassX)))));
}
TEST(HasType, TakesDeclMatcherAndMatchesExpr) {
DeclarationMatcher ClassX = recordDecl(hasName("X"));
EXPECT_TRUE(
matches("class X {}; void y(X &x) { x; }", expr(hasType(ClassX))));
EXPECT_TRUE(
notMatches("class X {}; void y(X *x) { x; }",
expr(hasType(ClassX))));
}
TEST(HasType, TakesDeclMatcherAndMatchesValueDecl) {
DeclarationMatcher ClassX = recordDecl(hasName("X"));
EXPECT_TRUE(
matches("class X {}; void y() { X x; }", varDecl(hasType(ClassX))));
EXPECT_TRUE(
notMatches("class X {}; void y() { X *x; }", varDecl(hasType(ClassX))));
}
TEST(HasTypeLoc, MatchesDeclaratorDecls) {
EXPECT_TRUE(matches("int x;",
varDecl(hasName("x"), hasTypeLoc(loc(asString("int"))))));
// Make sure we don't crash on implicit constructors.
EXPECT_TRUE(notMatches("class X {}; X x;",
declaratorDecl(hasTypeLoc(loc(asString("int"))))));
}
TEST(Matcher, Call) {
// FIXME: Do we want to overload Call() to directly take
// Matcher<Decl>, too?
StatementMatcher MethodX = callExpr(hasDeclaration(methodDecl(hasName("x"))));
EXPECT_TRUE(matches("class Y { void x() { x(); } };", MethodX));
EXPECT_TRUE(notMatches("class Y { void x() {} };", MethodX));
StatementMatcher MethodOnY =
memberCallExpr(on(hasType(recordDecl(hasName("Y")))));
EXPECT_TRUE(
matches("class Y { public: void x(); }; void z() { Y y; y.x(); }",
MethodOnY));
EXPECT_TRUE(
matches("class Y { public: void x(); }; void z(Y &y) { y.x(); }",
MethodOnY));
EXPECT_TRUE(
notMatches("class Y { public: void x(); }; void z(Y *&y) { y->x(); }",
MethodOnY));
EXPECT_TRUE(
notMatches("class Y { public: void x(); }; void z(Y y[]) { y->x(); }",
MethodOnY));
EXPECT_TRUE(
notMatches("class Y { public: void x(); }; void z() { Y *y; y->x(); }",
MethodOnY));
StatementMatcher MethodOnYPointer =
memberCallExpr(on(hasType(pointsTo(recordDecl(hasName("Y"))))));
EXPECT_TRUE(
matches("class Y { public: void x(); }; void z() { Y *y; y->x(); }",
MethodOnYPointer));
EXPECT_TRUE(
matches("class Y { public: void x(); }; void z(Y *&y) { y->x(); }",
MethodOnYPointer));
EXPECT_TRUE(
matches("class Y { public: void x(); }; void z(Y y[]) { y->x(); }",
MethodOnYPointer));
EXPECT_TRUE(
notMatches("class Y { public: void x(); }; void z() { Y y; y.x(); }",
MethodOnYPointer));
EXPECT_TRUE(
notMatches("class Y { public: void x(); }; void z(Y &y) { y.x(); }",
MethodOnYPointer));
}
TEST(Matcher, Lambda) {
EXPECT_TRUE(matches("auto f = [] (int i) { return i; };",
lambdaExpr()));
}
TEST(Matcher, ForRange) {
EXPECT_TRUE(matches("int as[] = { 1, 2, 3 };"
"void f() { for (auto &a : as); }",
forRangeStmt()));
EXPECT_TRUE(notMatches("void f() { for (int i; i<5; ++i); }",
forRangeStmt()));
}
TEST(Matcher, SubstNonTypeTemplateParm) {
EXPECT_FALSE(matches("template<int N>\n"
"struct A { static const int n = 0; };\n"
"struct B : public A<42> {};",
substNonTypeTemplateParmExpr()));
EXPECT_TRUE(matches("template<int N>\n"
"struct A { static const int n = N; };\n"
"struct B : public A<42> {};",
substNonTypeTemplateParmExpr()));
}
TEST(Matcher, UserDefinedLiteral) {
EXPECT_TRUE(matches("constexpr char operator \"\" _inc (const char i) {"
" return i + 1;"
"}"
"char c = 'a'_inc;",
userDefinedLiteral()));
}
TEST(Matcher, FlowControl) {
EXPECT_TRUE(matches("void f() { while(true) { break; } }", breakStmt()));
EXPECT_TRUE(matches("void f() { while(true) { continue; } }",
continueStmt()));
EXPECT_TRUE(matches("void f() { goto FOO; FOO: ;}", gotoStmt()));
EXPECT_TRUE(matches("void f() { goto FOO; FOO: ;}", labelStmt()));
EXPECT_TRUE(matches("void f() { return; }", returnStmt()));
}
TEST(HasType, MatchesAsString) {
EXPECT_TRUE(
matches("class Y { public: void x(); }; void z() {Y* y; y->x(); }",
memberCallExpr(on(hasType(asString("class Y *"))))));
EXPECT_TRUE(matches("class X { void x(int x) {} };",
methodDecl(hasParameter(0, hasType(asString("int"))))));
EXPECT_TRUE(matches("namespace ns { struct A {}; } struct B { ns::A a; };",
fieldDecl(hasType(asString("ns::A")))));
EXPECT_TRUE(matches("namespace { struct A {}; } struct B { A a; };",
fieldDecl(hasType(asString("struct (anonymous namespace)::A")))));
}
TEST(Matcher, OverloadedOperatorCall) {
StatementMatcher OpCall = operatorCallExpr();
// Unary operator
EXPECT_TRUE(matches("class Y { }; "
"bool operator!(Y x) { return false; }; "
"Y y; bool c = !y;", OpCall));
// No match -- special operators like "new", "delete"
// FIXME: operator new takes size_t, for which we need stddef.h, for which
// we need to figure out include paths in the test.
// EXPECT_TRUE(NotMatches("#include <stddef.h>\n"
// "class Y { }; "
// "void *operator new(size_t size) { return 0; } "
// "Y *y = new Y;", OpCall));
EXPECT_TRUE(notMatches("class Y { }; "
"void operator delete(void *p) { } "
"void a() {Y *y = new Y; delete y;}", OpCall));
// Binary operator
EXPECT_TRUE(matches("class Y { }; "
"bool operator&&(Y x, Y y) { return true; }; "
"Y a; Y b; bool c = a && b;",
OpCall));
// No match -- normal operator, not an overloaded one.
EXPECT_TRUE(notMatches("bool x = true, y = true; bool t = x && y;", OpCall));
EXPECT_TRUE(notMatches("int t = 5 << 2;", OpCall));
}
TEST(Matcher, HasOperatorNameForOverloadedOperatorCall) {
StatementMatcher OpCallAndAnd =
operatorCallExpr(hasOverloadedOperatorName("&&"));
EXPECT_TRUE(matches("class Y { }; "
"bool operator&&(Y x, Y y) { return true; }; "
"Y a; Y b; bool c = a && b;", OpCallAndAnd));
StatementMatcher OpCallLessLess =
operatorCallExpr(hasOverloadedOperatorName("<<"));
EXPECT_TRUE(notMatches("class Y { }; "
"bool operator&&(Y x, Y y) { return true; }; "
"Y a; Y b; bool c = a && b;",
OpCallLessLess));
StatementMatcher OpStarCall =
operatorCallExpr(hasOverloadedOperatorName("*"));
EXPECT_TRUE(matches("class Y; int operator*(Y &); void f(Y &y) { *y; }",
OpStarCall));
DeclarationMatcher ClassWithOpStar =
recordDecl(hasMethod(hasOverloadedOperatorName("*")));
EXPECT_TRUE(matches("class Y { int operator*(); };",
ClassWithOpStar));
EXPECT_TRUE(notMatches("class Y { void myOperator(); };",
ClassWithOpStar)) ;
DeclarationMatcher AnyOpStar = functionDecl(hasOverloadedOperatorName("*"));
EXPECT_TRUE(matches("class Y; int operator*(Y &);", AnyOpStar));
EXPECT_TRUE(matches("class Y { int operator*(); };", AnyOpStar));
}
TEST(Matcher, NestedOverloadedOperatorCalls) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"class Y { }; "
"Y& operator&&(Y& x, Y& y) { return x; }; "
"Y a; Y b; Y c; Y d = a && b && c;",
operatorCallExpr(hasOverloadedOperatorName("&&")).bind("x"),
new VerifyIdIsBoundTo<CXXOperatorCallExpr>("x", 2)));
EXPECT_TRUE(matches(
"class Y { }; "
"Y& operator&&(Y& x, Y& y) { return x; }; "
"Y a; Y b; Y c; Y d = a && b && c;",
operatorCallExpr(hasParent(operatorCallExpr()))));
EXPECT_TRUE(matches(
"class Y { }; "
"Y& operator&&(Y& x, Y& y) { return x; }; "
"Y a; Y b; Y c; Y d = a && b && c;",
operatorCallExpr(hasDescendant(operatorCallExpr()))));
}
TEST(Matcher, ThisPointerType) {
StatementMatcher MethodOnY =
memberCallExpr(thisPointerType(recordDecl(hasName("Y"))));
EXPECT_TRUE(
matches("class Y { public: void x(); }; void z() { Y y; y.x(); }",
MethodOnY));
EXPECT_TRUE(
matches("class Y { public: void x(); }; void z(Y &y) { y.x(); }",
MethodOnY));
EXPECT_TRUE(
matches("class Y { public: void x(); }; void z(Y *&y) { y->x(); }",
MethodOnY));
EXPECT_TRUE(
matches("class Y { public: void x(); }; void z(Y y[]) { y->x(); }",
MethodOnY));
EXPECT_TRUE(
matches("class Y { public: void x(); }; void z() { Y *y; y->x(); }",
MethodOnY));
EXPECT_TRUE(matches(
"class Y {"
" public: virtual void x();"
"};"
"class X : public Y {"
" public: virtual void x();"
"};"
"void z() { X *x; x->Y::x(); }", MethodOnY));
}
TEST(Matcher, VariableUsage) {
StatementMatcher Reference =
declRefExpr(to(
varDecl(hasInitializer(
memberCallExpr(thisPointerType(recordDecl(hasName("Y"))))))));
EXPECT_TRUE(matches(
"class Y {"
" public:"
" bool x() const;"
"};"
"void z(const Y &y) {"
" bool b = y.x();"
" if (b) {}"
"}", Reference));
EXPECT_TRUE(notMatches(
"class Y {"
" public:"
" bool x() const;"
"};"
"void z(const Y &y) {"
" bool b = y.x();"
"}", Reference));
}
TEST(Matcher, VarDecl_Storage) {
auto M = varDecl(hasName("X"), hasLocalStorage());
EXPECT_TRUE(matches("void f() { int X; }", M));
EXPECT_TRUE(notMatches("int X;", M));
EXPECT_TRUE(notMatches("void f() { static int X; }", M));
M = varDecl(hasName("X"), hasGlobalStorage());
EXPECT_TRUE(notMatches("void f() { int X; }", M));
EXPECT_TRUE(matches("int X;", M));
EXPECT_TRUE(matches("void f() { static int X; }", M));
}
TEST(Matcher, FindsVarDeclInFunctionParameter) {
EXPECT_TRUE(matches(
"void f(int i) {}",
varDecl(hasName("i"))));
}
TEST(Matcher, CalledVariable) {
StatementMatcher CallOnVariableY =
memberCallExpr(on(declRefExpr(to(varDecl(hasName("y"))))));
EXPECT_TRUE(matches(
"class Y { public: void x() { Y y; y.x(); } };", CallOnVariableY));
EXPECT_TRUE(matches(
"class Y { public: void x() const { Y y; y.x(); } };", CallOnVariableY));
EXPECT_TRUE(matches(
"class Y { public: void x(); };"
"class X : public Y { void z() { X y; y.x(); } };", CallOnVariableY));
EXPECT_TRUE(matches(
"class Y { public: void x(); };"
"class X : public Y { void z() { X *y; y->x(); } };", CallOnVariableY));
EXPECT_TRUE(notMatches(
"class Y { public: void x(); };"
"class X : public Y { void z() { unsigned long y; ((X*)y)->x(); } };",
CallOnVariableY));
}
TEST(UnaryExprOrTypeTraitExpr, MatchesSizeOfAndAlignOf) {
EXPECT_TRUE(matches("void x() { int a = sizeof(a); }",
unaryExprOrTypeTraitExpr()));
EXPECT_TRUE(notMatches("void x() { int a = sizeof(a); }",
alignOfExpr(anything())));
// FIXME: Uncomment once alignof is enabled.
// EXPECT_TRUE(matches("void x() { int a = alignof(a); }",
// unaryExprOrTypeTraitExpr()));
// EXPECT_TRUE(notMatches("void x() { int a = alignof(a); }",
// sizeOfExpr()));
}
TEST(UnaryExpressionOrTypeTraitExpression, MatchesCorrectType) {
EXPECT_TRUE(matches("void x() { int a = sizeof(a); }", sizeOfExpr(
hasArgumentOfType(asString("int")))));
EXPECT_TRUE(notMatches("void x() { int a = sizeof(a); }", sizeOfExpr(
hasArgumentOfType(asString("float")))));
EXPECT_TRUE(matches(
"struct A {}; void x() { A a; int b = sizeof(a); }",
sizeOfExpr(hasArgumentOfType(hasDeclaration(recordDecl(hasName("A")))))));
EXPECT_TRUE(notMatches("void x() { int a = sizeof(a); }", sizeOfExpr(
hasArgumentOfType(hasDeclaration(recordDecl(hasName("string")))))));
}
TEST(MemberExpression, DoesNotMatchClasses) {
EXPECT_TRUE(notMatches("class Y { void x() {} };", memberExpr()));
}
TEST(MemberExpression, MatchesMemberFunctionCall) {
EXPECT_TRUE(matches("class Y { void x() { x(); } };", memberExpr()));
}
TEST(MemberExpression, MatchesVariable) {
EXPECT_TRUE(
matches("class Y { void x() { this->y; } int y; };", memberExpr()));
EXPECT_TRUE(
matches("class Y { void x() { y; } int y; };", memberExpr()));
EXPECT_TRUE(
matches("class Y { void x() { Y y; y.y; } int y; };", memberExpr()));
}
TEST(MemberExpression, MatchesStaticVariable) {
EXPECT_TRUE(matches("class Y { void x() { this->y; } static int y; };",
memberExpr()));
EXPECT_TRUE(notMatches("class Y { void x() { y; } static int y; };",
memberExpr()));
EXPECT_TRUE(notMatches("class Y { void x() { Y::y; } static int y; };",
memberExpr()));
}
TEST(IsInteger, MatchesIntegers) {
EXPECT_TRUE(matches("int i = 0;", varDecl(hasType(isInteger()))));
EXPECT_TRUE(matches(
"long long i = 0; void f(long long) { }; void g() {f(i);}",
callExpr(hasArgument(0, declRefExpr(
to(varDecl(hasType(isInteger()))))))));
}
TEST(IsInteger, ReportsNoFalsePositives) {
EXPECT_TRUE(notMatches("int *i;", varDecl(hasType(isInteger()))));
EXPECT_TRUE(notMatches("struct T {}; T t; void f(T *) { }; void g() {f(&t);}",
callExpr(hasArgument(0, declRefExpr(
to(varDecl(hasType(isInteger()))))))));
}
TEST(IsArrow, MatchesMemberVariablesViaArrow) {
EXPECT_TRUE(matches("class Y { void x() { this->y; } int y; };",
memberExpr(isArrow())));
EXPECT_TRUE(matches("class Y { void x() { y; } int y; };",
memberExpr(isArrow())));
EXPECT_TRUE(notMatches("class Y { void x() { (*this).y; } int y; };",
memberExpr(isArrow())));
}
TEST(IsArrow, MatchesStaticMemberVariablesViaArrow) {
EXPECT_TRUE(matches("class Y { void x() { this->y; } static int y; };",
memberExpr(isArrow())));
EXPECT_TRUE(notMatches("class Y { void x() { y; } static int y; };",
memberExpr(isArrow())));
EXPECT_TRUE(notMatches("class Y { void x() { (*this).y; } static int y; };",
memberExpr(isArrow())));
}
TEST(IsArrow, MatchesMemberCallsViaArrow) {
EXPECT_TRUE(matches("class Y { void x() { this->x(); } };",
memberExpr(isArrow())));
EXPECT_TRUE(matches("class Y { void x() { x(); } };",
memberExpr(isArrow())));
EXPECT_TRUE(notMatches("class Y { void x() { Y y; y.x(); } };",
memberExpr(isArrow())));
}
TEST(Callee, MatchesDeclarations) {
StatementMatcher CallMethodX = callExpr(callee(methodDecl(hasName("x"))));
EXPECT_TRUE(matches("class Y { void x() { x(); } };", CallMethodX));
EXPECT_TRUE(notMatches("class Y { void x() {} };", CallMethodX));
}
TEST(Callee, MatchesMemberExpressions) {
EXPECT_TRUE(matches("class Y { void x() { this->x(); } };",
callExpr(callee(memberExpr()))));
EXPECT_TRUE(
notMatches("class Y { void x() { this->x(); } };", callExpr(callee(callExpr()))));
}
TEST(Function, MatchesFunctionDeclarations) {
StatementMatcher CallFunctionF = callExpr(callee(functionDecl(hasName("f"))));
EXPECT_TRUE(matches("void f() { f(); }", CallFunctionF));
EXPECT_TRUE(notMatches("void f() { }", CallFunctionF));
if (llvm::Triple(llvm::sys::getDefaultTargetTriple()).getOS() !=
llvm::Triple::Win32) {
// FIXME: Make this work for MSVC.
// Dependent contexts, but a non-dependent call.
EXPECT_TRUE(matches("void f(); template <int N> void g() { f(); }",
CallFunctionF));
EXPECT_TRUE(
matches("void f(); template <int N> struct S { void g() { f(); } };",
CallFunctionF));
}
// Depedent calls don't match.
EXPECT_TRUE(
notMatches("void f(int); template <typename T> void g(T t) { f(t); }",
CallFunctionF));
EXPECT_TRUE(
notMatches("void f(int);"
"template <typename T> struct S { void g(T t) { f(t); } };",
CallFunctionF));
}
TEST(FunctionTemplate, MatchesFunctionTemplateDeclarations) {
EXPECT_TRUE(
matches("template <typename T> void f(T t) {}",
functionTemplateDecl(hasName("f"))));
}
TEST(FunctionTemplate, DoesNotMatchFunctionDeclarations) {
EXPECT_TRUE(
notMatches("void f(double d); void f(int t) {}",
functionTemplateDecl(hasName("f"))));
}
TEST(FunctionTemplate, DoesNotMatchFunctionTemplateSpecializations) {
EXPECT_TRUE(
notMatches("void g(); template <typename T> void f(T t) {}"
"template <> void f(int t) { g(); }",
functionTemplateDecl(hasName("f"),
hasDescendant(declRefExpr(to(
functionDecl(hasName("g"))))))));
}
TEST(Matcher, Argument) {
StatementMatcher CallArgumentY = callExpr(
hasArgument(0, declRefExpr(to(varDecl(hasName("y"))))));
EXPECT_TRUE(matches("void x(int) { int y; x(y); }", CallArgumentY));
EXPECT_TRUE(
matches("class X { void x(int) { int y; x(y); } };", CallArgumentY));
EXPECT_TRUE(notMatches("void x(int) { int z; x(z); }", CallArgumentY));
StatementMatcher WrongIndex = callExpr(
hasArgument(42, declRefExpr(to(varDecl(hasName("y"))))));
EXPECT_TRUE(notMatches("void x(int) { int y; x(y); }", WrongIndex));
}
TEST(Matcher, AnyArgument) {
StatementMatcher CallArgumentY = callExpr(
hasAnyArgument(declRefExpr(to(varDecl(hasName("y"))))));
EXPECT_TRUE(matches("void x(int, int) { int y; x(1, y); }", CallArgumentY));
EXPECT_TRUE(matches("void x(int, int) { int y; x(y, 42); }", CallArgumentY));
EXPECT_TRUE(notMatches("void x(int, int) { x(1, 2); }", CallArgumentY));
}
TEST(Matcher, ArgumentCount) {
StatementMatcher Call1Arg = callExpr(argumentCountIs(1));
EXPECT_TRUE(matches("void x(int) { x(0); }", Call1Arg));
EXPECT_TRUE(matches("class X { void x(int) { x(0); } };", Call1Arg));
EXPECT_TRUE(notMatches("void x(int, int) { x(0, 0); }", Call1Arg));
}
TEST(Matcher, ParameterCount) {
DeclarationMatcher Function1Arg = functionDecl(parameterCountIs(1));
EXPECT_TRUE(matches("void f(int i) {}", Function1Arg));
EXPECT_TRUE(matches("class X { void f(int i) {} };", Function1Arg));
EXPECT_TRUE(notMatches("void f() {}", Function1Arg));
EXPECT_TRUE(notMatches("void f(int i, int j, int k) {}", Function1Arg));
}
TEST(Matcher, References) {
DeclarationMatcher ReferenceClassX = varDecl(
hasType(references(recordDecl(hasName("X")))));
EXPECT_TRUE(matches("class X {}; void y(X y) { X &x = y; }",
ReferenceClassX));
EXPECT_TRUE(
matches("class X {}; void y(X y) { const X &x = y; }", ReferenceClassX));
// The match here is on the implicit copy constructor code for
// class X, not on code 'X x = y'.
EXPECT_TRUE(
matches("class X {}; void y(X y) { X x = y; }", ReferenceClassX));
EXPECT_TRUE(
notMatches("class X {}; extern X x;", ReferenceClassX));
EXPECT_TRUE(
notMatches("class X {}; void y(X *y) { X *&x = y; }", ReferenceClassX));
}
TEST(QualType, hasCanonicalType) {
EXPECT_TRUE(notMatches("typedef int &int_ref;"
"int a;"
"int_ref b = a;",
varDecl(hasType(qualType(referenceType())))));
EXPECT_TRUE(
matches("typedef int &int_ref;"
"int a;"
"int_ref b = a;",
varDecl(hasType(qualType(hasCanonicalType(referenceType()))))));
}
TEST(QualType, hasLocalQualifiers) {
EXPECT_TRUE(notMatches("typedef const int const_int; const_int i = 1;",
varDecl(hasType(hasLocalQualifiers()))));
EXPECT_TRUE(matches("int *const j = nullptr;",
varDecl(hasType(hasLocalQualifiers()))));
EXPECT_TRUE(matches("int *volatile k;",
varDecl(hasType(hasLocalQualifiers()))));
EXPECT_TRUE(notMatches("int m;",
varDecl(hasType(hasLocalQualifiers()))));
}
TEST(HasParameter, CallsInnerMatcher) {
EXPECT_TRUE(matches("class X { void x(int) {} };",
methodDecl(hasParameter(0, varDecl()))));
EXPECT_TRUE(notMatches("class X { void x(int) {} };",
methodDecl(hasParameter(0, hasName("x")))));
}
TEST(HasParameter, DoesNotMatchIfIndexOutOfBounds) {
EXPECT_TRUE(notMatches("class X { void x(int) {} };",
methodDecl(hasParameter(42, varDecl()))));
}
TEST(HasType, MatchesParameterVariableTypesStrictly) {
EXPECT_TRUE(matches("class X { void x(X x) {} };",
methodDecl(hasParameter(0, hasType(recordDecl(hasName("X")))))));
EXPECT_TRUE(notMatches("class X { void x(const X &x) {} };",
methodDecl(hasParameter(0, hasType(recordDecl(hasName("X")))))));
EXPECT_TRUE(matches("class X { void x(const X *x) {} };",
methodDecl(hasParameter(0,
hasType(pointsTo(recordDecl(hasName("X"))))))));
EXPECT_TRUE(matches("class X { void x(const X &x) {} };",
methodDecl(hasParameter(0,
hasType(references(recordDecl(hasName("X"))))))));
}
TEST(HasAnyParameter, MatchesIndependentlyOfPosition) {
EXPECT_TRUE(matches("class Y {}; class X { void x(X x, Y y) {} };",
methodDecl(hasAnyParameter(hasType(recordDecl(hasName("X")))))));
EXPECT_TRUE(matches("class Y {}; class X { void x(Y y, X x) {} };",
methodDecl(hasAnyParameter(hasType(recordDecl(hasName("X")))))));
}
TEST(Returns, MatchesReturnTypes) {
EXPECT_TRUE(matches("class Y { int f() { return 1; } };",
functionDecl(returns(asString("int")))));
EXPECT_TRUE(notMatches("class Y { int f() { return 1; } };",
functionDecl(returns(asString("float")))));
EXPECT_TRUE(matches("class Y { Y getMe() { return *this; } };",
functionDecl(returns(hasDeclaration(
recordDecl(hasName("Y")))))));
}
TEST(IsExternC, MatchesExternCFunctionDeclarations) {
EXPECT_TRUE(matches("extern \"C\" void f() {}", functionDecl(isExternC())));
EXPECT_TRUE(matches("extern \"C\" { void f() {} }",
functionDecl(isExternC())));
EXPECT_TRUE(notMatches("void f() {}", functionDecl(isExternC())));
}
TEST(IsDeleted, MatchesDeletedFunctionDeclarations) {
EXPECT_TRUE(
notMatches("void Func();", functionDecl(hasName("Func"), isDeleted())));
EXPECT_TRUE(matches("void Func() = delete;",
functionDecl(hasName("Func"), isDeleted())));
}
TEST(HasAnyParameter, DoesntMatchIfInnerMatcherDoesntMatch) {
EXPECT_TRUE(notMatches("class Y {}; class X { void x(int) {} };",
methodDecl(hasAnyParameter(hasType(recordDecl(hasName("X")))))));
}
TEST(HasAnyParameter, DoesNotMatchThisPointer) {
EXPECT_TRUE(notMatches("class Y {}; class X { void x() {} };",
methodDecl(hasAnyParameter(hasType(pointsTo(
recordDecl(hasName("X"))))))));
}
TEST(HasName, MatchesParameterVariableDeclarations) {
EXPECT_TRUE(matches("class Y {}; class X { void x(int x) {} };",
methodDecl(hasAnyParameter(hasName("x")))));
EXPECT_TRUE(notMatches("class Y {}; class X { void x(int) {} };",
methodDecl(hasAnyParameter(hasName("x")))));
}
TEST(Matcher, MatchesClassTemplateSpecialization) {
EXPECT_TRUE(matches("template<typename T> struct A {};"
"template<> struct A<int> {};",
classTemplateSpecializationDecl()));
EXPECT_TRUE(matches("template<typename T> struct A {}; A<int> a;",
classTemplateSpecializationDecl()));
EXPECT_TRUE(notMatches("template<typename T> struct A {};",
classTemplateSpecializationDecl()));
}
TEST(DeclaratorDecl, MatchesDeclaratorDecls) {
EXPECT_TRUE(matches("int x;", declaratorDecl()));
EXPECT_TRUE(notMatches("class A {};", declaratorDecl()));
}
TEST(ParmVarDecl, MatchesParmVars) {
EXPECT_TRUE(matches("void f(int x);", parmVarDecl()));
EXPECT_TRUE(notMatches("void f();", parmVarDecl()));
}
TEST(Matcher, MatchesTypeTemplateArgument) {
EXPECT_TRUE(matches(
"template<typename T> struct B {};"
"B<int> b;",
classTemplateSpecializationDecl(hasAnyTemplateArgument(refersToType(
asString("int"))))));
}
TEST(Matcher, MatchesDeclarationReferenceTemplateArgument) {
EXPECT_TRUE(matches(
"struct B { int next; };"
"template<int(B::*next_ptr)> struct A {};"
"A<&B::next> a;",
classTemplateSpecializationDecl(hasAnyTemplateArgument(
refersToDeclaration(fieldDecl(hasName("next")))))));
EXPECT_TRUE(notMatches(
"template <typename T> struct A {};"
"A<int> a;",
classTemplateSpecializationDecl(hasAnyTemplateArgument(
refersToDeclaration(decl())))));
EXPECT_TRUE(matches(
"struct B { int next; };"
"template<int(B::*next_ptr)> struct A {};"
"A<&B::next> a;",
templateSpecializationType(hasAnyTemplateArgument(isExpr(
hasDescendant(declRefExpr(to(fieldDecl(hasName("next"))))))))));
EXPECT_TRUE(notMatches(
"template <typename T> struct A {};"
"A<int> a;",
templateSpecializationType(hasAnyTemplateArgument(
refersToDeclaration(decl())))));
}
TEST(Matcher, MatchesSpecificArgument) {
EXPECT_TRUE(matches(
"template<typename T, typename U> class A {};"
"A<bool, int> a;",
classTemplateSpecializationDecl(hasTemplateArgument(
1, refersToType(asString("int"))))));
EXPECT_TRUE(notMatches(
"template<typename T, typename U> class A {};"
"A<int, bool> a;",
classTemplateSpecializationDecl(hasTemplateArgument(
1, refersToType(asString("int"))))));
EXPECT_TRUE(matches(
"template<typename T, typename U> class A {};"
"A<bool, int> a;",
templateSpecializationType(hasTemplateArgument(
1, refersToType(asString("int"))))));
EXPECT_TRUE(notMatches(
"template<typename T, typename U> class A {};"
"A<int, bool> a;",
templateSpecializationType(hasTemplateArgument(
1, refersToType(asString("int"))))));
}
TEST(TemplateArgument, Matches) {
EXPECT_TRUE(matches("template<typename T> struct C {}; C<int> c;",
classTemplateSpecializationDecl(
hasAnyTemplateArgument(templateArgument()))));
EXPECT_TRUE(matches(
"template<typename T> struct C {}; C<int> c;",
templateSpecializationType(hasAnyTemplateArgument(templateArgument()))));
}
TEST(TemplateArgumentCountIs, Matches) {
EXPECT_TRUE(
matches("template<typename T> struct C {}; C<int> c;",
classTemplateSpecializationDecl(templateArgumentCountIs(1))));
EXPECT_TRUE(
notMatches("template<typename T> struct C {}; C<int> c;",
classTemplateSpecializationDecl(templateArgumentCountIs(2))));
EXPECT_TRUE(matches("template<typename T> struct C {}; C<int> c;",
templateSpecializationType(templateArgumentCountIs(1))));
EXPECT_TRUE(
notMatches("template<typename T> struct C {}; C<int> c;",
templateSpecializationType(templateArgumentCountIs(2))));
}
TEST(IsIntegral, Matches) {
EXPECT_TRUE(matches("template<int T> struct C {}; C<42> c;",
classTemplateSpecializationDecl(
hasAnyTemplateArgument(isIntegral()))));
EXPECT_TRUE(notMatches("template<typename T> struct C {}; C<int> c;",
classTemplateSpecializationDecl(hasAnyTemplateArgument(
templateArgument(isIntegral())))));
}
TEST(RefersToIntegralType, Matches) {
EXPECT_TRUE(matches("template<int T> struct C {}; C<42> c;",
classTemplateSpecializationDecl(
hasAnyTemplateArgument(refersToIntegralType(
asString("int"))))));
EXPECT_TRUE(notMatches("template<unsigned T> struct C {}; C<42> c;",
classTemplateSpecializationDecl(hasAnyTemplateArgument(
refersToIntegralType(asString("int"))))));
}
TEST(EqualsIntegralValue, Matches) {
EXPECT_TRUE(matches("template<int T> struct C {}; C<42> c;",
classTemplateSpecializationDecl(
hasAnyTemplateArgument(equalsIntegralValue("42")))));
EXPECT_TRUE(matches("template<int T> struct C {}; C<-42> c;",
classTemplateSpecializationDecl(
hasAnyTemplateArgument(equalsIntegralValue("-42")))));
EXPECT_TRUE(matches("template<int T> struct C {}; C<-0042> c;",
classTemplateSpecializationDecl(
hasAnyTemplateArgument(equalsIntegralValue("-34")))));
EXPECT_TRUE(notMatches("template<int T> struct C {}; C<42> c;",
classTemplateSpecializationDecl(hasAnyTemplateArgument(
equalsIntegralValue("0042")))));
}
TEST(Matcher, MatchesAccessSpecDecls) {
EXPECT_TRUE(matches("class C { public: int i; };", accessSpecDecl()));
EXPECT_TRUE(
matches("class C { public: int i; };", accessSpecDecl(isPublic())));
EXPECT_TRUE(
notMatches("class C { public: int i; };", accessSpecDecl(isProtected())));
EXPECT_TRUE(
notMatches("class C { public: int i; };", accessSpecDecl(isPrivate())));
EXPECT_TRUE(notMatches("class C { int i; };", accessSpecDecl()));
}
TEST(Matcher, MatchesVirtualMethod) {
EXPECT_TRUE(matches("class X { virtual int f(); };",
methodDecl(isVirtual(), hasName("::X::f"))));
EXPECT_TRUE(notMatches("class X { int f(); };",
methodDecl(isVirtual())));
}
TEST(Matcher, MatchesPureMethod) {
EXPECT_TRUE(matches("class X { virtual int f() = 0; };",
methodDecl(isPure(), hasName("::X::f"))));
EXPECT_TRUE(notMatches("class X { int f(); };",
methodDecl(isPure())));
}
TEST(Matcher, MatchesConstMethod) {
EXPECT_TRUE(matches("struct A { void foo() const; };",
methodDecl(isConst())));
EXPECT_TRUE(notMatches("struct A { void foo(); };",
methodDecl(isConst())));
}
TEST(Matcher, MatchesOverridingMethod) {
EXPECT_TRUE(matches("class X { virtual int f(); }; "
"class Y : public X { int f(); };",
methodDecl(isOverride(), hasName("::Y::f"))));
EXPECT_TRUE(notMatches("class X { virtual int f(); }; "
"class Y : public X { int f(); };",
methodDecl(isOverride(), hasName("::X::f"))));
EXPECT_TRUE(notMatches("class X { int f(); }; "
"class Y : public X { int f(); };",
methodDecl(isOverride())));
EXPECT_TRUE(notMatches("class X { int f(); int f(int); }; ",
methodDecl(isOverride())));
}
TEST(Matcher, ConstructorCall) {
StatementMatcher Constructor = constructExpr();
EXPECT_TRUE(
matches("class X { public: X(); }; void x() { X x; }", Constructor));
EXPECT_TRUE(
matches("class X { public: X(); }; void x() { X x = X(); }",
Constructor));
EXPECT_TRUE(
matches("class X { public: X(int); }; void x() { X x = 0; }",
Constructor));
EXPECT_TRUE(matches("class X {}; void x(int) { X x; }", Constructor));
}
TEST(Matcher, ConstructorArgument) {
StatementMatcher Constructor = constructExpr(
hasArgument(0, declRefExpr(to(varDecl(hasName("y"))))));
EXPECT_TRUE(
matches("class X { public: X(int); }; void x() { int y; X x(y); }",
Constructor));
EXPECT_TRUE(
matches("class X { public: X(int); }; void x() { int y; X x = X(y); }",
Constructor));
EXPECT_TRUE(
matches("class X { public: X(int); }; void x() { int y; X x = y; }",
Constructor));
EXPECT_TRUE(
notMatches("class X { public: X(int); }; void x() { int z; X x(z); }",
Constructor));
StatementMatcher WrongIndex = constructExpr(
hasArgument(42, declRefExpr(to(varDecl(hasName("y"))))));
EXPECT_TRUE(
notMatches("class X { public: X(int); }; void x() { int y; X x(y); }",
WrongIndex));
}
TEST(Matcher, ConstructorArgumentCount) {
StatementMatcher Constructor1Arg = constructExpr(argumentCountIs(1));
EXPECT_TRUE(
matches("class X { public: X(int); }; void x() { X x(0); }",
Constructor1Arg));
EXPECT_TRUE(
matches("class X { public: X(int); }; void x() { X x = X(0); }",
Constructor1Arg));
EXPECT_TRUE(
matches("class X { public: X(int); }; void x() { X x = 0; }",
Constructor1Arg));
EXPECT_TRUE(
notMatches("class X { public: X(int, int); }; void x() { X x(0, 0); }",
Constructor1Arg));
}
TEST(Matcher, ConstructorListInitialization) {
StatementMatcher ConstructorListInit = constructExpr(isListInitialization());
EXPECT_TRUE(
matches("class X { public: X(int); }; void x() { X x{0}; }",
ConstructorListInit));
EXPECT_FALSE(
matches("class X { public: X(int); }; void x() { X x(0); }",
ConstructorListInit));
}
TEST(Matcher,ThisExpr) {
EXPECT_TRUE(
matches("struct X { int a; int f () { return a; } };", thisExpr()));
EXPECT_TRUE(
notMatches("struct X { int f () { int a; return a; } };", thisExpr()));
}
TEST(Matcher, BindTemporaryExpression) {
StatementMatcher TempExpression = bindTemporaryExpr();
std::string ClassString = "class string { public: string(); ~string(); }; ";
EXPECT_TRUE(
matches(ClassString +
"string GetStringByValue();"
"void FunctionTakesString(string s);"
"void run() { FunctionTakesString(GetStringByValue()); }",
TempExpression));
EXPECT_TRUE(
notMatches(ClassString +
"string* GetStringPointer(); "
"void FunctionTakesStringPtr(string* s);"
"void run() {"
" string* s = GetStringPointer();"
" FunctionTakesStringPtr(GetStringPointer());"
" FunctionTakesStringPtr(s);"
"}",
TempExpression));
EXPECT_TRUE(
notMatches("class no_dtor {};"
"no_dtor GetObjByValue();"
"void ConsumeObj(no_dtor param);"
"void run() { ConsumeObj(GetObjByValue()); }",
TempExpression));
}
TEST(MaterializeTemporaryExpr, MatchesTemporary) {
std::string ClassString =
"class string { public: string(); int length(); }; ";
EXPECT_TRUE(
matches(ClassString +
"string GetStringByValue();"
"void FunctionTakesString(string s);"
"void run() { FunctionTakesString(GetStringByValue()); }",
materializeTemporaryExpr()));
EXPECT_TRUE(
notMatches(ClassString +
"string* GetStringPointer(); "
"void FunctionTakesStringPtr(string* s);"
"void run() {"
" string* s = GetStringPointer();"
" FunctionTakesStringPtr(GetStringPointer());"
" FunctionTakesStringPtr(s);"
"}",
materializeTemporaryExpr()));
EXPECT_TRUE(
notMatches(ClassString +
"string GetStringByValue();"
"void run() { int k = GetStringByValue().length(); }",
materializeTemporaryExpr()));
EXPECT_TRUE(
notMatches(ClassString +
"string GetStringByValue();"
"void run() { GetStringByValue(); }",
materializeTemporaryExpr()));
}
TEST(ConstructorDeclaration, SimpleCase) {
EXPECT_TRUE(matches("class Foo { Foo(int i); };",
constructorDecl(ofClass(hasName("Foo")))));
EXPECT_TRUE(notMatches("class Foo { Foo(int i); };",
constructorDecl(ofClass(hasName("Bar")))));
}
TEST(ConstructorDeclaration, IsImplicit) {
// This one doesn't match because the constructor is not added by the
// compiler (it is not needed).
EXPECT_TRUE(notMatches("class Foo { };",
constructorDecl(isImplicit())));
// The compiler added the implicit default constructor.
EXPECT_TRUE(matches("class Foo { }; Foo* f = new Foo();",
constructorDecl(isImplicit())));
EXPECT_TRUE(matches("class Foo { Foo(){} };",
constructorDecl(unless(isImplicit()))));
// The compiler added an implicit assignment operator.
EXPECT_TRUE(matches("struct A { int x; } a = {0}, b = a; void f() { a = b; }",
methodDecl(isImplicit(), hasName("operator="))));
}
TEST(DestructorDeclaration, MatchesVirtualDestructor) {
EXPECT_TRUE(matches("class Foo { virtual ~Foo(); };",
destructorDecl(ofClass(hasName("Foo")))));
}
TEST(DestructorDeclaration, DoesNotMatchImplicitDestructor) {
EXPECT_TRUE(notMatches("class Foo {};",
destructorDecl(ofClass(hasName("Foo")))));
}
TEST(HasAnyConstructorInitializer, SimpleCase) {
EXPECT_TRUE(notMatches(
"class Foo { Foo() { } };",
constructorDecl(hasAnyConstructorInitializer(anything()))));
EXPECT_TRUE(matches(
"class Foo {"
" Foo() : foo_() { }"
" int foo_;"
"};",
constructorDecl(hasAnyConstructorInitializer(anything()))));
}
TEST(HasAnyConstructorInitializer, ForField) {
static const char Code[] =
"class Baz { };"
"class Foo {"
" Foo() : foo_() { }"
" Baz foo_;"
" Baz bar_;"
"};";
EXPECT_TRUE(matches(Code, constructorDecl(hasAnyConstructorInitializer(
forField(hasType(recordDecl(hasName("Baz"))))))));
EXPECT_TRUE(matches(Code, constructorDecl(hasAnyConstructorInitializer(
forField(hasName("foo_"))))));
EXPECT_TRUE(notMatches(Code, constructorDecl(hasAnyConstructorInitializer(
forField(hasType(recordDecl(hasName("Bar"))))))));
}
TEST(HasAnyConstructorInitializer, WithInitializer) {
static const char Code[] =
"class Foo {"
" Foo() : foo_(0) { }"
" int foo_;"
"};";
EXPECT_TRUE(matches(Code, constructorDecl(hasAnyConstructorInitializer(
withInitializer(integerLiteral(equals(0)))))));
EXPECT_TRUE(notMatches(Code, constructorDecl(hasAnyConstructorInitializer(
withInitializer(integerLiteral(equals(1)))))));
}
TEST(HasAnyConstructorInitializer, IsWritten) {
static const char Code[] =
"struct Bar { Bar(){} };"
"class Foo {"
" Foo() : foo_() { }"
" Bar foo_;"
" Bar bar_;"
"};";
EXPECT_TRUE(matches(Code, constructorDecl(hasAnyConstructorInitializer(
allOf(forField(hasName("foo_")), isWritten())))));
EXPECT_TRUE(notMatches(Code, constructorDecl(hasAnyConstructorInitializer(
allOf(forField(hasName("bar_")), isWritten())))));
EXPECT_TRUE(matches(Code, constructorDecl(hasAnyConstructorInitializer(
allOf(forField(hasName("bar_")), unless(isWritten()))))));
}
TEST(Matcher, NewExpression) {
StatementMatcher New = newExpr();
EXPECT_TRUE(matches("class X { public: X(); }; void x() { new X; }", New));
EXPECT_TRUE(
matches("class X { public: X(); }; void x() { new X(); }", New));
EXPECT_TRUE(
matches("class X { public: X(int); }; void x() { new X(0); }", New));
EXPECT_TRUE(matches("class X {}; void x(int) { new X; }", New));
}
TEST(Matcher, NewExpressionArgument) {
StatementMatcher New = constructExpr(
hasArgument(0, declRefExpr(to(varDecl(hasName("y"))))));
EXPECT_TRUE(
matches("class X { public: X(int); }; void x() { int y; new X(y); }",
New));
EXPECT_TRUE(
matches("class X { public: X(int); }; void x() { int y; new X(y); }",
New));
EXPECT_TRUE(
notMatches("class X { public: X(int); }; void x() { int z; new X(z); }",
New));
StatementMatcher WrongIndex = constructExpr(
hasArgument(42, declRefExpr(to(varDecl(hasName("y"))))));
EXPECT_TRUE(
notMatches("class X { public: X(int); }; void x() { int y; new X(y); }",
WrongIndex));
}
TEST(Matcher, NewExpressionArgumentCount) {
StatementMatcher New = constructExpr(argumentCountIs(1));
EXPECT_TRUE(
matches("class X { public: X(int); }; void x() { new X(0); }", New));
EXPECT_TRUE(
notMatches("class X { public: X(int, int); }; void x() { new X(0, 0); }",
New));
}
TEST(Matcher, DeleteExpression) {
EXPECT_TRUE(matches("struct A {}; void f(A* a) { delete a; }",
deleteExpr()));
}
TEST(Matcher, DefaultArgument) {
StatementMatcher Arg = defaultArgExpr();
EXPECT_TRUE(matches("void x(int, int = 0) { int y; x(y); }", Arg));
EXPECT_TRUE(
matches("class X { void x(int, int = 0) { int y; x(y); } };", Arg));
EXPECT_TRUE(notMatches("void x(int, int = 0) { int y; x(y, 0); }", Arg));
}
TEST(Matcher, StringLiterals) {
StatementMatcher Literal = stringLiteral();
EXPECT_TRUE(matches("const char *s = \"string\";", Literal));
// wide string
EXPECT_TRUE(matches("const wchar_t *s = L\"string\";", Literal));
// with escaped characters
EXPECT_TRUE(matches("const char *s = \"\x05five\";", Literal));
// no matching -- though the data type is the same, there is no string literal
EXPECT_TRUE(notMatches("const char s[1] = {'a'};", Literal));
}
TEST(Matcher, CharacterLiterals) {
StatementMatcher CharLiteral = characterLiteral();
EXPECT_TRUE(matches("const char c = 'c';", CharLiteral));
// wide character
EXPECT_TRUE(matches("const char c = L'c';", CharLiteral));
// wide character, Hex encoded, NOT MATCHED!
EXPECT_TRUE(notMatches("const wchar_t c = 0x2126;", CharLiteral));
EXPECT_TRUE(notMatches("const char c = 0x1;", CharLiteral));
}
TEST(Matcher, IntegerLiterals) {
StatementMatcher HasIntLiteral = integerLiteral();
EXPECT_TRUE(matches("int i = 10;", HasIntLiteral));
EXPECT_TRUE(matches("int i = 0x1AB;", HasIntLiteral));
EXPECT_TRUE(matches("int i = 10L;", HasIntLiteral));
EXPECT_TRUE(matches("int i = 10U;", HasIntLiteral));
// Non-matching cases (character literals, float and double)
EXPECT_TRUE(notMatches("int i = L'a';",
HasIntLiteral)); // this is actually a character
// literal cast to int
EXPECT_TRUE(notMatches("int i = 'a';", HasIntLiteral));
EXPECT_TRUE(notMatches("int i = 1e10;", HasIntLiteral));
EXPECT_TRUE(notMatches("int i = 10.0;", HasIntLiteral));
}
TEST(Matcher, FloatLiterals) {
StatementMatcher HasFloatLiteral = floatLiteral();
EXPECT_TRUE(matches("float i = 10.0;", HasFloatLiteral));
EXPECT_TRUE(matches("float i = 10.0f;", HasFloatLiteral));
EXPECT_TRUE(matches("double i = 10.0;", HasFloatLiteral));
EXPECT_TRUE(matches("double i = 10.0L;", HasFloatLiteral));
EXPECT_TRUE(matches("double i = 1e10;", HasFloatLiteral));
EXPECT_TRUE(notMatches("float i = 10;", HasFloatLiteral));
}
TEST(Matcher, NullPtrLiteral) {
EXPECT_TRUE(matches("int* i = nullptr;", nullPtrLiteralExpr()));
}
TEST(Matcher, AsmStatement) {
EXPECT_TRUE(matches("void foo() { __asm(\"mov al, 2\"); }", asmStmt()));
}
TEST(Matcher, Conditions) {
StatementMatcher Condition = ifStmt(hasCondition(boolLiteral(equals(true))));
EXPECT_TRUE(matches("void x() { if (true) {} }", Condition));
EXPECT_TRUE(notMatches("void x() { if (false) {} }", Condition));
EXPECT_TRUE(notMatches("void x() { bool a = true; if (a) {} }", Condition));
EXPECT_TRUE(notMatches("void x() { if (true || false) {} }", Condition));
EXPECT_TRUE(notMatches("void x() { if (1) {} }", Condition));
}
TEST(IfStmt, ChildTraversalMatchers) {
EXPECT_TRUE(matches("void f() { if (false) true; else false; }",
ifStmt(hasThen(boolLiteral(equals(true))))));
EXPECT_TRUE(notMatches("void f() { if (false) false; else true; }",
ifStmt(hasThen(boolLiteral(equals(true))))));
EXPECT_TRUE(matches("void f() { if (false) false; else true; }",
ifStmt(hasElse(boolLiteral(equals(true))))));
EXPECT_TRUE(notMatches("void f() { if (false) true; else false; }",
ifStmt(hasElse(boolLiteral(equals(true))))));
}
TEST(MatchBinaryOperator, HasOperatorName) {
StatementMatcher OperatorOr = binaryOperator(hasOperatorName("||"));
EXPECT_TRUE(matches("void x() { true || false; }", OperatorOr));
EXPECT_TRUE(notMatches("void x() { true && false; }", OperatorOr));
}
TEST(MatchBinaryOperator, HasLHSAndHasRHS) {
StatementMatcher OperatorTrueFalse =
binaryOperator(hasLHS(boolLiteral(equals(true))),
hasRHS(boolLiteral(equals(false))));
EXPECT_TRUE(matches("void x() { true || false; }", OperatorTrueFalse));
EXPECT_TRUE(matches("void x() { true && false; }", OperatorTrueFalse));
EXPECT_TRUE(notMatches("void x() { false || true; }", OperatorTrueFalse));
}
TEST(MatchBinaryOperator, HasEitherOperand) {
StatementMatcher HasOperand =
binaryOperator(hasEitherOperand(boolLiteral(equals(false))));
EXPECT_TRUE(matches("void x() { true || false; }", HasOperand));
EXPECT_TRUE(matches("void x() { false && true; }", HasOperand));
EXPECT_TRUE(notMatches("void x() { true || true; }", HasOperand));
}
TEST(Matcher, BinaryOperatorTypes) {
// Integration test that verifies the AST provides all binary operators in
// a way we expect.
// FIXME: Operator ','
EXPECT_TRUE(
matches("void x() { 3, 4; }", binaryOperator(hasOperatorName(","))));
EXPECT_TRUE(
matches("bool b; bool c = (b = true);",
binaryOperator(hasOperatorName("="))));
EXPECT_TRUE(
matches("bool b = 1 != 2;", binaryOperator(hasOperatorName("!="))));
EXPECT_TRUE(
matches("bool b = 1 == 2;", binaryOperator(hasOperatorName("=="))));
EXPECT_TRUE(matches("bool b = 1 < 2;", binaryOperator(hasOperatorName("<"))));
EXPECT_TRUE(
matches("bool b = 1 <= 2;", binaryOperator(hasOperatorName("<="))));
EXPECT_TRUE(
matches("int i = 1 << 2;", binaryOperator(hasOperatorName("<<"))));
EXPECT_TRUE(
matches("int i = 1; int j = (i <<= 2);",
binaryOperator(hasOperatorName("<<="))));
EXPECT_TRUE(matches("bool b = 1 > 2;", binaryOperator(hasOperatorName(">"))));
EXPECT_TRUE(
matches("bool b = 1 >= 2;", binaryOperator(hasOperatorName(">="))));
EXPECT_TRUE(
matches("int i = 1 >> 2;", binaryOperator(hasOperatorName(">>"))));
EXPECT_TRUE(
matches("int i = 1; int j = (i >>= 2);",
binaryOperator(hasOperatorName(">>="))));
EXPECT_TRUE(
matches("int i = 42 ^ 23;", binaryOperator(hasOperatorName("^"))));
EXPECT_TRUE(
matches("int i = 42; int j = (i ^= 42);",
binaryOperator(hasOperatorName("^="))));
EXPECT_TRUE(
matches("int i = 42 % 23;", binaryOperator(hasOperatorName("%"))));
EXPECT_TRUE(
matches("int i = 42; int j = (i %= 42);",
binaryOperator(hasOperatorName("%="))));
EXPECT_TRUE(
matches("bool b = 42 &23;", binaryOperator(hasOperatorName("&"))));
EXPECT_TRUE(
matches("bool b = true && false;",
binaryOperator(hasOperatorName("&&"))));
EXPECT_TRUE(
matches("bool b = true; bool c = (b &= false);",
binaryOperator(hasOperatorName("&="))));
EXPECT_TRUE(
matches("bool b = 42 | 23;", binaryOperator(hasOperatorName("|"))));
EXPECT_TRUE(
matches("bool b = true || false;",
binaryOperator(hasOperatorName("||"))));
EXPECT_TRUE(
matches("bool b = true; bool c = (b |= false);",
binaryOperator(hasOperatorName("|="))));
EXPECT_TRUE(
matches("int i = 42 *23;", binaryOperator(hasOperatorName("*"))));
EXPECT_TRUE(
matches("int i = 42; int j = (i *= 23);",
binaryOperator(hasOperatorName("*="))));
EXPECT_TRUE(
matches("int i = 42 / 23;", binaryOperator(hasOperatorName("/"))));
EXPECT_TRUE(
matches("int i = 42; int j = (i /= 23);",
binaryOperator(hasOperatorName("/="))));
EXPECT_TRUE(
matches("int i = 42 + 23;", binaryOperator(hasOperatorName("+"))));
EXPECT_TRUE(
matches("int i = 42; int j = (i += 23);",
binaryOperator(hasOperatorName("+="))));
EXPECT_TRUE(
matches("int i = 42 - 23;", binaryOperator(hasOperatorName("-"))));
EXPECT_TRUE(
matches("int i = 42; int j = (i -= 23);",
binaryOperator(hasOperatorName("-="))));
EXPECT_TRUE(
matches("struct A { void x() { void (A::*a)(); (this->*a)(); } };",
binaryOperator(hasOperatorName("->*"))));
EXPECT_TRUE(
matches("struct A { void x() { void (A::*a)(); ((*this).*a)(); } };",
binaryOperator(hasOperatorName(".*"))));
// Member expressions as operators are not supported in matches.
EXPECT_TRUE(
notMatches("struct A { void x(A *a) { a->x(this); } };",
binaryOperator(hasOperatorName("->"))));
// Initializer assignments are not represented as operator equals.
EXPECT_TRUE(
notMatches("bool b = true;", binaryOperator(hasOperatorName("="))));
// Array indexing is not represented as operator.
EXPECT_TRUE(notMatches("int a[42]; void x() { a[23]; }", unaryOperator()));
// Overloaded operators do not match at all.
EXPECT_TRUE(notMatches(
"struct A { bool operator&&(const A &a) const { return false; } };"
"void x() { A a, b; a && b; }",
binaryOperator()));
}
TEST(MatchUnaryOperator, HasOperatorName) {
StatementMatcher OperatorNot = unaryOperator(hasOperatorName("!"));
EXPECT_TRUE(matches("void x() { !true; } ", OperatorNot));
EXPECT_TRUE(notMatches("void x() { true; } ", OperatorNot));
}
TEST(MatchUnaryOperator, HasUnaryOperand) {
StatementMatcher OperatorOnFalse =
unaryOperator(hasUnaryOperand(boolLiteral(equals(false))));
EXPECT_TRUE(matches("void x() { !false; }", OperatorOnFalse));
EXPECT_TRUE(notMatches("void x() { !true; }", OperatorOnFalse));
}
TEST(Matcher, UnaryOperatorTypes) {
// Integration test that verifies the AST provides all unary operators in
// a way we expect.
EXPECT_TRUE(matches("bool b = !true;", unaryOperator(hasOperatorName("!"))));
EXPECT_TRUE(
matches("bool b; bool *p = &b;", unaryOperator(hasOperatorName("&"))));
EXPECT_TRUE(matches("int i = ~ 1;", unaryOperator(hasOperatorName("~"))));
EXPECT_TRUE(
matches("bool *p; bool b = *p;", unaryOperator(hasOperatorName("*"))));
EXPECT_TRUE(
matches("int i; int j = +i;", unaryOperator(hasOperatorName("+"))));
EXPECT_TRUE(
matches("int i; int j = -i;", unaryOperator(hasOperatorName("-"))));
EXPECT_TRUE(
matches("int i; int j = ++i;", unaryOperator(hasOperatorName("++"))));
EXPECT_TRUE(
matches("int i; int j = i++;", unaryOperator(hasOperatorName("++"))));
EXPECT_TRUE(
matches("int i; int j = --i;", unaryOperator(hasOperatorName("--"))));
EXPECT_TRUE(
matches("int i; int j = i--;", unaryOperator(hasOperatorName("--"))));
// We don't match conversion operators.
EXPECT_TRUE(notMatches("int i; double d = (double)i;", unaryOperator()));
// Function calls are not represented as operator.
EXPECT_TRUE(notMatches("void f(); void x() { f(); }", unaryOperator()));
// Overloaded operators do not match at all.
// FIXME: We probably want to add that.
EXPECT_TRUE(notMatches(
"struct A { bool operator!() const { return false; } };"
"void x() { A a; !a; }", unaryOperator(hasOperatorName("!"))));
}
TEST(Matcher, ConditionalOperator) {
StatementMatcher Conditional = conditionalOperator(
hasCondition(boolLiteral(equals(true))),
hasTrueExpression(boolLiteral(equals(false))));
EXPECT_TRUE(matches("void x() { true ? false : true; }", Conditional));
EXPECT_TRUE(notMatches("void x() { false ? false : true; }", Conditional));
EXPECT_TRUE(notMatches("void x() { true ? true : false; }", Conditional));
StatementMatcher ConditionalFalse = conditionalOperator(
hasFalseExpression(boolLiteral(equals(false))));
EXPECT_TRUE(matches("void x() { true ? true : false; }", ConditionalFalse));
EXPECT_TRUE(
notMatches("void x() { true ? false : true; }", ConditionalFalse));
}
TEST(ArraySubscriptMatchers, ArraySubscripts) {
EXPECT_TRUE(matches("int i[2]; void f() { i[1] = 1; }",
arraySubscriptExpr()));
EXPECT_TRUE(notMatches("int i; void f() { i = 1; }",
arraySubscriptExpr()));
}
TEST(ArraySubscriptMatchers, ArrayIndex) {
EXPECT_TRUE(matches(
"int i[2]; void f() { i[1] = 1; }",
arraySubscriptExpr(hasIndex(integerLiteral(equals(1))))));
EXPECT_TRUE(matches(
"int i[2]; void f() { 1[i] = 1; }",
arraySubscriptExpr(hasIndex(integerLiteral(equals(1))))));
EXPECT_TRUE(notMatches(
"int i[2]; void f() { i[1] = 1; }",
arraySubscriptExpr(hasIndex(integerLiteral(equals(0))))));
}
TEST(ArraySubscriptMatchers, MatchesArrayBase) {
EXPECT_TRUE(matches(
"int i[2]; void f() { i[1] = 2; }",
arraySubscriptExpr(hasBase(implicitCastExpr(
hasSourceExpression(declRefExpr()))))));
}
TEST(Matcher, HasNameSupportsNamespaces) {
EXPECT_TRUE(matches("namespace a { namespace b { class C; } }",
recordDecl(hasName("a::b::C"))));
EXPECT_TRUE(matches("namespace a { namespace b { class C; } }",
recordDecl(hasName("::a::b::C"))));
EXPECT_TRUE(matches("namespace a { namespace b { class C; } }",
recordDecl(hasName("b::C"))));
EXPECT_TRUE(matches("namespace a { namespace b { class C; } }",
recordDecl(hasName("C"))));
EXPECT_TRUE(notMatches("namespace a { namespace b { class C; } }",
recordDecl(hasName("c::b::C"))));
EXPECT_TRUE(notMatches("namespace a { namespace b { class C; } }",
recordDecl(hasName("a::c::C"))));
EXPECT_TRUE(notMatches("namespace a { namespace b { class C; } }",
recordDecl(hasName("a::b::A"))));
EXPECT_TRUE(notMatches("namespace a { namespace b { class C; } }",
recordDecl(hasName("::C"))));
EXPECT_TRUE(notMatches("namespace a { namespace b { class C; } }",
recordDecl(hasName("::b::C"))));
EXPECT_TRUE(notMatches("namespace a { namespace b { class C; } }",
recordDecl(hasName("z::a::b::C"))));
EXPECT_TRUE(notMatches("namespace a { namespace b { class C; } }",
recordDecl(hasName("a+b::C"))));
EXPECT_TRUE(notMatches("namespace a { namespace b { class AC; } }",
recordDecl(hasName("C"))));
}
TEST(Matcher, HasNameSupportsOuterClasses) {
EXPECT_TRUE(
matches("class A { class B { class C; }; };",
recordDecl(hasName("A::B::C"))));
EXPECT_TRUE(
matches("class A { class B { class C; }; };",
recordDecl(hasName("::A::B::C"))));
EXPECT_TRUE(
matches("class A { class B { class C; }; };",
recordDecl(hasName("B::C"))));
EXPECT_TRUE(
matches("class A { class B { class C; }; };",
recordDecl(hasName("C"))));
EXPECT_TRUE(
notMatches("class A { class B { class C; }; };",
recordDecl(hasName("c::B::C"))));
EXPECT_TRUE(
notMatches("class A { class B { class C; }; };",
recordDecl(hasName("A::c::C"))));
EXPECT_TRUE(
notMatches("class A { class B { class C; }; };",
recordDecl(hasName("A::B::A"))));
EXPECT_TRUE(
notMatches("class A { class B { class C; }; };",
recordDecl(hasName("::C"))));
EXPECT_TRUE(
notMatches("class A { class B { class C; }; };",
recordDecl(hasName("::B::C"))));
EXPECT_TRUE(notMatches("class A { class B { class C; }; };",
recordDecl(hasName("z::A::B::C"))));
EXPECT_TRUE(
notMatches("class A { class B { class C; }; };",
recordDecl(hasName("A+B::C"))));
}
TEST(Matcher, IsDefinition) {
DeclarationMatcher DefinitionOfClassA =
recordDecl(hasName("A"), isDefinition());
EXPECT_TRUE(matches("class A {};", DefinitionOfClassA));
EXPECT_TRUE(notMatches("class A;", DefinitionOfClassA));
DeclarationMatcher DefinitionOfVariableA =
varDecl(hasName("a"), isDefinition());
EXPECT_TRUE(matches("int a;", DefinitionOfVariableA));
EXPECT_TRUE(notMatches("extern int a;", DefinitionOfVariableA));
DeclarationMatcher DefinitionOfMethodA =
methodDecl(hasName("a"), isDefinition());
EXPECT_TRUE(matches("class A { void a() {} };", DefinitionOfMethodA));
EXPECT_TRUE(notMatches("class A { void a(); };", DefinitionOfMethodA));
}
TEST(Matcher, OfClass) {
StatementMatcher Constructor = constructExpr(hasDeclaration(methodDecl(
ofClass(hasName("X")))));
EXPECT_TRUE(
matches("class X { public: X(); }; void x(int) { X x; }", Constructor));
EXPECT_TRUE(
matches("class X { public: X(); }; void x(int) { X x = X(); }",
Constructor));
EXPECT_TRUE(
notMatches("class Y { public: Y(); }; void x(int) { Y y; }",
Constructor));
}
TEST(Matcher, VisitsTemplateInstantiations) {
EXPECT_TRUE(matches(
"class A { public: void x(); };"
"template <typename T> class B { public: void y() { T t; t.x(); } };"
"void f() { B<A> b; b.y(); }",
callExpr(callee(methodDecl(hasName("x"))))));
EXPECT_TRUE(matches(
"class A { public: void x(); };"
"class C {"
" public:"
" template <typename T> class B { public: void y() { T t; t.x(); } };"
"};"
"void f() {"
" C::B<A> b; b.y();"
"}",
recordDecl(hasName("C"),
hasDescendant(callExpr(callee(methodDecl(hasName("x"))))))));
}
TEST(Matcher, HandlesNullQualTypes) {
// FIXME: Add a Type matcher so we can replace uses of this
// variable with Type(True())
const TypeMatcher AnyType = anything();
// We don't really care whether this matcher succeeds; we're testing that
// it completes without crashing.
EXPECT_TRUE(matches(
"struct A { };"
"template <typename T>"
"void f(T t) {"
" T local_t(t /* this becomes a null QualType in the AST */);"
"}"
"void g() {"
" f(0);"
"}",
expr(hasType(TypeMatcher(
anyOf(
TypeMatcher(hasDeclaration(anything())),
pointsTo(AnyType),
references(AnyType)
// Other QualType matchers should go here.
))))));
}
// For testing AST_MATCHER_P().
AST_MATCHER_P(Decl, just, internal::Matcher<Decl>, AMatcher) {
// Make sure all special variables are used: node, match_finder,
// bound_nodes_builder, and the parameter named 'AMatcher'.
return AMatcher.matches(Node, Finder, Builder);
}
TEST(AstMatcherPMacro, Works) {
DeclarationMatcher HasClassB = just(has(recordDecl(hasName("B")).bind("b")));
EXPECT_TRUE(matchAndVerifyResultTrue("class A { class B {}; };",
HasClassB, new VerifyIdIsBoundTo<Decl>("b")));
EXPECT_TRUE(matchAndVerifyResultFalse("class A { class B {}; };",
HasClassB, new VerifyIdIsBoundTo<Decl>("a")));
EXPECT_TRUE(matchAndVerifyResultFalse("class A { class C {}; };",
HasClassB, new VerifyIdIsBoundTo<Decl>("b")));
}
AST_POLYMORPHIC_MATCHER_P(
polymorphicHas,
AST_POLYMORPHIC_SUPPORTED_TYPES_2(Decl, Stmt),
internal::Matcher<Decl>, AMatcher) {
return Finder->matchesChildOf(
Node, AMatcher, Builder,
ASTMatchFinder::TK_IgnoreImplicitCastsAndParentheses,
ASTMatchFinder::BK_First);
}
TEST(AstPolymorphicMatcherPMacro, Works) {
DeclarationMatcher HasClassB =
polymorphicHas(recordDecl(hasName("B")).bind("b"));
EXPECT_TRUE(matchAndVerifyResultTrue("class A { class B {}; };",
HasClassB, new VerifyIdIsBoundTo<Decl>("b")));
EXPECT_TRUE(matchAndVerifyResultFalse("class A { class B {}; };",
HasClassB, new VerifyIdIsBoundTo<Decl>("a")));
EXPECT_TRUE(matchAndVerifyResultFalse("class A { class C {}; };",
HasClassB, new VerifyIdIsBoundTo<Decl>("b")));
StatementMatcher StatementHasClassB =
polymorphicHas(recordDecl(hasName("B")));
EXPECT_TRUE(matches("void x() { class B {}; }", StatementHasClassB));
}
TEST(For, FindsForLoops) {
EXPECT_TRUE(matches("void f() { for(;;); }", forStmt()));
EXPECT_TRUE(matches("void f() { if(true) for(;;); }", forStmt()));
EXPECT_TRUE(notMatches("int as[] = { 1, 2, 3 };"
"void f() { for (auto &a : as); }",
forStmt()));
}
TEST(For, ForLoopInternals) {
EXPECT_TRUE(matches("void f(){ int i; for (; i < 3 ; ); }",
forStmt(hasCondition(anything()))));
EXPECT_TRUE(matches("void f() { for (int i = 0; ;); }",
forStmt(hasLoopInit(anything()))));
}
TEST(For, ForRangeLoopInternals) {
EXPECT_TRUE(matches("void f(){ int a[] {1, 2}; for (int i : a); }",
forRangeStmt(hasLoopVariable(anything()))));
EXPECT_TRUE(matches(
"void f(){ int a[] {1, 2}; for (int i : a); }",
forRangeStmt(hasRangeInit(declRefExpr(to(varDecl(hasName("a"))))))));
}
TEST(For, NegativeForLoopInternals) {
EXPECT_TRUE(notMatches("void f(){ for (int i = 0; ; ++i); }",
forStmt(hasCondition(expr()))));
EXPECT_TRUE(notMatches("void f() {int i; for (; i < 4; ++i) {} }",
forStmt(hasLoopInit(anything()))));
}
TEST(For, ReportsNoFalsePositives) {
EXPECT_TRUE(notMatches("void f() { ; }", forStmt()));
EXPECT_TRUE(notMatches("void f() { if(true); }", forStmt()));
}
TEST(CompoundStatement, HandlesSimpleCases) {
EXPECT_TRUE(notMatches("void f();", compoundStmt()));
EXPECT_TRUE(matches("void f() {}", compoundStmt()));
EXPECT_TRUE(matches("void f() {{}}", compoundStmt()));
}
TEST(CompoundStatement, DoesNotMatchEmptyStruct) {
// It's not a compound statement just because there's "{}" in the source
// text. This is an AST search, not grep.
EXPECT_TRUE(notMatches("namespace n { struct S {}; }",
compoundStmt()));
EXPECT_TRUE(matches("namespace n { struct S { void f() {{}} }; }",
compoundStmt()));
}
TEST(HasBody, FindsBodyOfForWhileDoLoops) {
EXPECT_TRUE(matches("void f() { for(;;) {} }",
forStmt(hasBody(compoundStmt()))));
EXPECT_TRUE(notMatches("void f() { for(;;); }",
forStmt(hasBody(compoundStmt()))));
EXPECT_TRUE(matches("void f() { while(true) {} }",
whileStmt(hasBody(compoundStmt()))));
EXPECT_TRUE(matches("void f() { do {} while(true); }",
doStmt(hasBody(compoundStmt()))));
EXPECT_TRUE(matches("void f() { int p[2]; for (auto x : p) {} }",
forRangeStmt(hasBody(compoundStmt()))));
}
TEST(HasAnySubstatement, MatchesForTopLevelCompoundStatement) {
// The simplest case: every compound statement is in a function
// definition, and the function body itself must be a compound
// statement.
EXPECT_TRUE(matches("void f() { for (;;); }",
compoundStmt(hasAnySubstatement(forStmt()))));
}
TEST(HasAnySubstatement, IsNotRecursive) {
// It's really "has any immediate substatement".
EXPECT_TRUE(notMatches("void f() { if (true) for (;;); }",
compoundStmt(hasAnySubstatement(forStmt()))));
}
TEST(HasAnySubstatement, MatchesInNestedCompoundStatements) {
EXPECT_TRUE(matches("void f() { if (true) { for (;;); } }",
compoundStmt(hasAnySubstatement(forStmt()))));
}
TEST(HasAnySubstatement, FindsSubstatementBetweenOthers) {
EXPECT_TRUE(matches("void f() { 1; 2; 3; for (;;); 4; 5; 6; }",
compoundStmt(hasAnySubstatement(forStmt()))));
}
TEST(StatementCountIs, FindsNoStatementsInAnEmptyCompoundStatement) {
EXPECT_TRUE(matches("void f() { }",
compoundStmt(statementCountIs(0))));
EXPECT_TRUE(notMatches("void f() {}",
compoundStmt(statementCountIs(1))));
}
TEST(StatementCountIs, AppearsToMatchOnlyOneCount) {
EXPECT_TRUE(matches("void f() { 1; }",
compoundStmt(statementCountIs(1))));
EXPECT_TRUE(notMatches("void f() { 1; }",
compoundStmt(statementCountIs(0))));
EXPECT_TRUE(notMatches("void f() { 1; }",
compoundStmt(statementCountIs(2))));
}
TEST(StatementCountIs, WorksWithMultipleStatements) {
EXPECT_TRUE(matches("void f() { 1; 2; 3; }",
compoundStmt(statementCountIs(3))));
}
TEST(StatementCountIs, WorksWithNestedCompoundStatements) {
EXPECT_TRUE(matches("void f() { { 1; } { 1; 2; 3; 4; } }",
compoundStmt(statementCountIs(1))));
EXPECT_TRUE(matches("void f() { { 1; } { 1; 2; 3; 4; } }",
compoundStmt(statementCountIs(2))));
EXPECT_TRUE(notMatches("void f() { { 1; } { 1; 2; 3; 4; } }",
compoundStmt(statementCountIs(3))));
EXPECT_TRUE(matches("void f() { { 1; } { 1; 2; 3; 4; } }",
compoundStmt(statementCountIs(4))));
}
TEST(Member, WorksInSimplestCase) {
EXPECT_TRUE(matches("struct { int first; } s; int i(s.first);",
memberExpr(member(hasName("first")))));
}
TEST(Member, DoesNotMatchTheBaseExpression) {
// Don't pick out the wrong part of the member expression, this should
// be checking the member (name) only.
EXPECT_TRUE(notMatches("struct { int i; } first; int i(first.i);",
memberExpr(member(hasName("first")))));
}
TEST(Member, MatchesInMemberFunctionCall) {
EXPECT_TRUE(matches("void f() {"
" struct { void first() {}; } s;"
" s.first();"
"};",
memberExpr(member(hasName("first")))));
}
TEST(Member, MatchesMember) {
EXPECT_TRUE(matches(
"struct A { int i; }; void f() { A a; a.i = 2; }",
memberExpr(hasDeclaration(fieldDecl(hasType(isInteger()))))));
EXPECT_TRUE(notMatches(
"struct A { float f; }; void f() { A a; a.f = 2.0f; }",
memberExpr(hasDeclaration(fieldDecl(hasType(isInteger()))))));
}
TEST(Member, UnderstandsAccess) {
EXPECT_TRUE(matches(
"struct A { int i; };", fieldDecl(isPublic(), hasName("i"))));
EXPECT_TRUE(notMatches(
"struct A { int i; };", fieldDecl(isProtected(), hasName("i"))));
EXPECT_TRUE(notMatches(
"struct A { int i; };", fieldDecl(isPrivate(), hasName("i"))));
EXPECT_TRUE(notMatches(
"class A { int i; };", fieldDecl(isPublic(), hasName("i"))));
EXPECT_TRUE(notMatches(
"class A { int i; };", fieldDecl(isProtected(), hasName("i"))));
EXPECT_TRUE(matches(
"class A { int i; };", fieldDecl(isPrivate(), hasName("i"))));
EXPECT_TRUE(notMatches(
"class A { protected: int i; };", fieldDecl(isPublic(), hasName("i"))));
EXPECT_TRUE(matches("class A { protected: int i; };",
fieldDecl(isProtected(), hasName("i"))));
EXPECT_TRUE(notMatches(
"class A { protected: int i; };", fieldDecl(isPrivate(), hasName("i"))));
// Non-member decls have the AccessSpecifier AS_none and thus aren't matched.
EXPECT_TRUE(notMatches("int i;", varDecl(isPublic(), hasName("i"))));
EXPECT_TRUE(notMatches("int i;", varDecl(isProtected(), hasName("i"))));
EXPECT_TRUE(notMatches("int i;", varDecl(isPrivate(), hasName("i"))));
}
TEST(Member, MatchesMemberAllocationFunction) {
// Fails in C++11 mode
EXPECT_TRUE(matchesConditionally(
"namespace std { typedef typeof(sizeof(int)) size_t; }"
"class X { void *operator new(std::size_t); };",
methodDecl(ofClass(hasName("X"))), true, "-std=gnu++98"));
EXPECT_TRUE(matches("class X { void operator delete(void*); };",
methodDecl(ofClass(hasName("X")))));
// Fails in C++11 mode
EXPECT_TRUE(matchesConditionally(
"namespace std { typedef typeof(sizeof(int)) size_t; }"
"class X { void operator delete[](void*, std::size_t); };",
methodDecl(ofClass(hasName("X"))), true, "-std=gnu++98"));
}
TEST(HasObjectExpression, DoesNotMatchMember) {
EXPECT_TRUE(notMatches(
"class X {}; struct Z { X m; }; void f(Z z) { z.m; }",
memberExpr(hasObjectExpression(hasType(recordDecl(hasName("X")))))));
}
TEST(HasObjectExpression, MatchesBaseOfVariable) {
EXPECT_TRUE(matches(
"struct X { int m; }; void f(X x) { x.m; }",
memberExpr(hasObjectExpression(hasType(recordDecl(hasName("X")))))));
EXPECT_TRUE(matches(
"struct X { int m; }; void f(X* x) { x->m; }",
memberExpr(hasObjectExpression(
hasType(pointsTo(recordDecl(hasName("X"))))))));
}
TEST(HasObjectExpression,
MatchesObjectExpressionOfImplicitlyFormedMemberExpression) {
EXPECT_TRUE(matches(
"class X {}; struct S { X m; void f() { this->m; } };",
memberExpr(hasObjectExpression(
hasType(pointsTo(recordDecl(hasName("S"))))))));
EXPECT_TRUE(matches(
"class X {}; struct S { X m; void f() { m; } };",
memberExpr(hasObjectExpression(
hasType(pointsTo(recordDecl(hasName("S"))))))));
}
TEST(Field, DoesNotMatchNonFieldMembers) {
EXPECT_TRUE(notMatches("class X { void m(); };", fieldDecl(hasName("m"))));
EXPECT_TRUE(notMatches("class X { class m {}; };", fieldDecl(hasName("m"))));
EXPECT_TRUE(notMatches("class X { enum { m }; };", fieldDecl(hasName("m"))));
EXPECT_TRUE(notMatches("class X { enum m {}; };", fieldDecl(hasName("m"))));
}
TEST(Field, MatchesField) {
EXPECT_TRUE(matches("class X { int m; };", fieldDecl(hasName("m"))));
}
TEST(IsConstQualified, MatchesConstInt) {
EXPECT_TRUE(matches("const int i = 42;",
varDecl(hasType(isConstQualified()))));
}
TEST(IsConstQualified, MatchesConstPointer) {
EXPECT_TRUE(matches("int i = 42; int* const p(&i);",
varDecl(hasType(isConstQualified()))));
}
TEST(IsConstQualified, MatchesThroughTypedef) {
EXPECT_TRUE(matches("typedef const int const_int; const_int i = 42;",
varDecl(hasType(isConstQualified()))));
EXPECT_TRUE(matches("typedef int* int_ptr; const int_ptr p(0);",
varDecl(hasType(isConstQualified()))));
}
TEST(IsConstQualified, DoesNotMatchInappropriately) {
EXPECT_TRUE(notMatches("typedef int nonconst_int; nonconst_int i = 42;",
varDecl(hasType(isConstQualified()))));
EXPECT_TRUE(notMatches("int const* p;",
varDecl(hasType(isConstQualified()))));
}
TEST(CastExpression, MatchesExplicitCasts) {
EXPECT_TRUE(matches("char *p = reinterpret_cast<char *>(&p);",castExpr()));
EXPECT_TRUE(matches("void *p = (void *)(&p);", castExpr()));
EXPECT_TRUE(matches("char q, *p = const_cast<char *>(&q);", castExpr()));
EXPECT_TRUE(matches("char c = char(0);", castExpr()));
}
TEST(CastExpression, MatchesImplicitCasts) {
// This test creates an implicit cast from int to char.
EXPECT_TRUE(matches("char c = 0;", castExpr()));
// This test creates an implicit cast from lvalue to rvalue.
EXPECT_TRUE(matches("char c = 0, d = c;", castExpr()));
}
TEST(CastExpression, DoesNotMatchNonCasts) {
EXPECT_TRUE(notMatches("char c = '0';", castExpr()));
EXPECT_TRUE(notMatches("char c, &q = c;", castExpr()));
EXPECT_TRUE(notMatches("int i = (0);", castExpr()));
EXPECT_TRUE(notMatches("int i = 0;", castExpr()));
}
TEST(ReinterpretCast, MatchesSimpleCase) {
EXPECT_TRUE(matches("char* p = reinterpret_cast<char*>(&p);",
reinterpretCastExpr()));
}
TEST(ReinterpretCast, DoesNotMatchOtherCasts) {
EXPECT_TRUE(notMatches("char* p = (char*)(&p);", reinterpretCastExpr()));
EXPECT_TRUE(notMatches("char q, *p = const_cast<char*>(&q);",
reinterpretCastExpr()));
EXPECT_TRUE(notMatches("void* p = static_cast<void*>(&p);",
reinterpretCastExpr()));
EXPECT_TRUE(notMatches("struct B { virtual ~B() {} }; struct D : B {};"
"B b;"
"D* p = dynamic_cast<D*>(&b);",
reinterpretCastExpr()));
}
TEST(FunctionalCast, MatchesSimpleCase) {
std::string foo_class = "class Foo { public: Foo(const char*); };";
EXPECT_TRUE(matches(foo_class + "void r() { Foo f = Foo(\"hello world\"); }",
functionalCastExpr()));
}
TEST(FunctionalCast, DoesNotMatchOtherCasts) {
std::string FooClass = "class Foo { public: Foo(const char*); };";
EXPECT_TRUE(
notMatches(FooClass + "void r() { Foo f = (Foo) \"hello world\"; }",
functionalCastExpr()));
EXPECT_TRUE(
notMatches(FooClass + "void r() { Foo f = \"hello world\"; }",
functionalCastExpr()));
}
TEST(DynamicCast, MatchesSimpleCase) {
EXPECT_TRUE(matches("struct B { virtual ~B() {} }; struct D : B {};"
"B b;"
"D* p = dynamic_cast<D*>(&b);",
dynamicCastExpr()));
}
TEST(StaticCast, MatchesSimpleCase) {
EXPECT_TRUE(matches("void* p(static_cast<void*>(&p));",
staticCastExpr()));
}
TEST(StaticCast, DoesNotMatchOtherCasts) {
EXPECT_TRUE(notMatches("char* p = (char*)(&p);", staticCastExpr()));
EXPECT_TRUE(notMatches("char q, *p = const_cast<char*>(&q);",
staticCastExpr()));
EXPECT_TRUE(notMatches("void* p = reinterpret_cast<char*>(&p);",
staticCastExpr()));
EXPECT_TRUE(notMatches("struct B { virtual ~B() {} }; struct D : B {};"
"B b;"
"D* p = dynamic_cast<D*>(&b);",
staticCastExpr()));
}
TEST(CStyleCast, MatchesSimpleCase) {
EXPECT_TRUE(matches("int i = (int) 2.2f;", cStyleCastExpr()));
}
TEST(CStyleCast, DoesNotMatchOtherCasts) {
EXPECT_TRUE(notMatches("char* p = static_cast<char*>(0);"
"char q, *r = const_cast<char*>(&q);"
"void* s = reinterpret_cast<char*>(&s);"
"struct B { virtual ~B() {} }; struct D : B {};"
"B b;"
"D* t = dynamic_cast<D*>(&b);",
cStyleCastExpr()));
}
TEST(HasDestinationType, MatchesSimpleCase) {
EXPECT_TRUE(matches("char* p = static_cast<char*>(0);",
staticCastExpr(hasDestinationType(
pointsTo(TypeMatcher(anything()))))));
}
TEST(HasImplicitDestinationType, MatchesSimpleCase) {
// This test creates an implicit const cast.
EXPECT_TRUE(matches("int x; const int i = x;",
implicitCastExpr(
hasImplicitDestinationType(isInteger()))));
// This test creates an implicit array-to-pointer cast.
EXPECT_TRUE(matches("int arr[3]; int *p = arr;",
implicitCastExpr(hasImplicitDestinationType(
pointsTo(TypeMatcher(anything()))))));
}
TEST(HasImplicitDestinationType, DoesNotMatchIncorrectly) {
// This test creates an implicit cast from int to char.
EXPECT_TRUE(notMatches("char c = 0;",
implicitCastExpr(hasImplicitDestinationType(
unless(anything())))));
// This test creates an implicit array-to-pointer cast.
EXPECT_TRUE(notMatches("int arr[3]; int *p = arr;",
implicitCastExpr(hasImplicitDestinationType(
unless(anything())))));
}
TEST(ImplicitCast, MatchesSimpleCase) {
// This test creates an implicit const cast.
EXPECT_TRUE(matches("int x = 0; const int y = x;",
varDecl(hasInitializer(implicitCastExpr()))));
// This test creates an implicit cast from int to char.
EXPECT_TRUE(matches("char c = 0;",
varDecl(hasInitializer(implicitCastExpr()))));
// This test creates an implicit array-to-pointer cast.
EXPECT_TRUE(matches("int arr[6]; int *p = arr;",
varDecl(hasInitializer(implicitCastExpr()))));
}
TEST(ImplicitCast, DoesNotMatchIncorrectly) {
// This test verifies that implicitCastExpr() matches exactly when implicit casts
// are present, and that it ignores explicit and paren casts.
// These two test cases have no casts.
EXPECT_TRUE(notMatches("int x = 0;",
varDecl(hasInitializer(implicitCastExpr()))));
EXPECT_TRUE(notMatches("int x = 0, &y = x;",
varDecl(hasInitializer(implicitCastExpr()))));
EXPECT_TRUE(notMatches("int x = 0; double d = (double) x;",
varDecl(hasInitializer(implicitCastExpr()))));
EXPECT_TRUE(notMatches("const int *p; int *q = const_cast<int *>(p);",
varDecl(hasInitializer(implicitCastExpr()))));
EXPECT_TRUE(notMatches("int x = (0);",
varDecl(hasInitializer(implicitCastExpr()))));
}
TEST(IgnoringImpCasts, MatchesImpCasts) {
// This test checks that ignoringImpCasts matches when implicit casts are
// present and its inner matcher alone does not match.
// Note that this test creates an implicit const cast.
EXPECT_TRUE(matches("int x = 0; const int y = x;",
varDecl(hasInitializer(ignoringImpCasts(
declRefExpr(to(varDecl(hasName("x")))))))));
// This test creates an implict cast from int to char.
EXPECT_TRUE(matches("char x = 0;",
varDecl(hasInitializer(ignoringImpCasts(
integerLiteral(equals(0)))))));
}
TEST(IgnoringImpCasts, DoesNotMatchIncorrectly) {
// These tests verify that ignoringImpCasts does not match if the inner
// matcher does not match.
// Note that the first test creates an implicit const cast.
EXPECT_TRUE(notMatches("int x; const int y = x;",
varDecl(hasInitializer(ignoringImpCasts(
unless(anything()))))));
EXPECT_TRUE(notMatches("int x; int y = x;",
varDecl(hasInitializer(ignoringImpCasts(
unless(anything()))))));
// These tests verify that ignoringImplictCasts does not look through explicit
// casts or parentheses.
EXPECT_TRUE(notMatches("char* p = static_cast<char*>(0);",
varDecl(hasInitializer(ignoringImpCasts(
integerLiteral())))));
EXPECT_TRUE(notMatches("int i = (0);",
varDecl(hasInitializer(ignoringImpCasts(
integerLiteral())))));
EXPECT_TRUE(notMatches("float i = (float)0;",
varDecl(hasInitializer(ignoringImpCasts(
integerLiteral())))));
EXPECT_TRUE(notMatches("float i = float(0);",
varDecl(hasInitializer(ignoringImpCasts(
integerLiteral())))));
}
TEST(IgnoringImpCasts, MatchesWithoutImpCasts) {
// This test verifies that expressions that do not have implicit casts
// still match the inner matcher.
EXPECT_TRUE(matches("int x = 0; int &y = x;",
varDecl(hasInitializer(ignoringImpCasts(
declRefExpr(to(varDecl(hasName("x")))))))));
}
TEST(IgnoringParenCasts, MatchesParenCasts) {
// This test checks that ignoringParenCasts matches when parentheses and/or
// casts are present and its inner matcher alone does not match.
EXPECT_TRUE(matches("int x = (0);",
varDecl(hasInitializer(ignoringParenCasts(
integerLiteral(equals(0)))))));
EXPECT_TRUE(matches("int x = (((((0)))));",
varDecl(hasInitializer(ignoringParenCasts(
integerLiteral(equals(0)))))));
// This test creates an implict cast from int to char in addition to the
// parentheses.
EXPECT_TRUE(matches("char x = (0);",
varDecl(hasInitializer(ignoringParenCasts(
integerLiteral(equals(0)))))));
EXPECT_TRUE(matches("char x = (char)0;",
varDecl(hasInitializer(ignoringParenCasts(
integerLiteral(equals(0)))))));
EXPECT_TRUE(matches("char* p = static_cast<char*>(0);",
varDecl(hasInitializer(ignoringParenCasts(
integerLiteral(equals(0)))))));
}
TEST(IgnoringParenCasts, MatchesWithoutParenCasts) {
// This test verifies that expressions that do not have any casts still match.
EXPECT_TRUE(matches("int x = 0;",
varDecl(hasInitializer(ignoringParenCasts(
integerLiteral(equals(0)))))));
}
TEST(IgnoringParenCasts, DoesNotMatchIncorrectly) {
// These tests verify that ignoringImpCasts does not match if the inner
// matcher does not match.
EXPECT_TRUE(notMatches("int x = ((0));",
varDecl(hasInitializer(ignoringParenCasts(
unless(anything()))))));
// This test creates an implicit cast from int to char in addition to the
// parentheses.
EXPECT_TRUE(notMatches("char x = ((0));",
varDecl(hasInitializer(ignoringParenCasts(
unless(anything()))))));
EXPECT_TRUE(notMatches("char *x = static_cast<char *>((0));",
varDecl(hasInitializer(ignoringParenCasts(
unless(anything()))))));
}
TEST(IgnoringParenAndImpCasts, MatchesParenImpCasts) {
// This test checks that ignoringParenAndImpCasts matches when
// parentheses and/or implicit casts are present and its inner matcher alone
// does not match.
// Note that this test creates an implicit const cast.
EXPECT_TRUE(matches("int x = 0; const int y = x;",
varDecl(hasInitializer(ignoringParenImpCasts(
declRefExpr(to(varDecl(hasName("x")))))))));
// This test creates an implicit cast from int to char.
EXPECT_TRUE(matches("const char x = (0);",
varDecl(hasInitializer(ignoringParenImpCasts(
integerLiteral(equals(0)))))));
}
TEST(IgnoringParenAndImpCasts, MatchesWithoutParenImpCasts) {
// This test verifies that expressions that do not have parentheses or
// implicit casts still match.
EXPECT_TRUE(matches("int x = 0; int &y = x;",
varDecl(hasInitializer(ignoringParenImpCasts(
declRefExpr(to(varDecl(hasName("x")))))))));
EXPECT_TRUE(matches("int x = 0;",
varDecl(hasInitializer(ignoringParenImpCasts(
integerLiteral(equals(0)))))));
}
TEST(IgnoringParenAndImpCasts, DoesNotMatchIncorrectly) {
// These tests verify that ignoringParenImpCasts does not match if
// the inner matcher does not match.
// This test creates an implicit cast.
EXPECT_TRUE(notMatches("char c = ((3));",
varDecl(hasInitializer(ignoringParenImpCasts(
unless(anything()))))));
// These tests verify that ignoringParenAndImplictCasts does not look
// through explicit casts.
EXPECT_TRUE(notMatches("float y = (float(0));",
varDecl(hasInitializer(ignoringParenImpCasts(
integerLiteral())))));
EXPECT_TRUE(notMatches("float y = (float)0;",
varDecl(hasInitializer(ignoringParenImpCasts(
integerLiteral())))));
EXPECT_TRUE(notMatches("char* p = static_cast<char*>(0);",
varDecl(hasInitializer(ignoringParenImpCasts(
integerLiteral())))));
}
TEST(HasSourceExpression, MatchesImplicitCasts) {
EXPECT_TRUE(matches("class string {}; class URL { public: URL(string s); };"
"void r() {string a_string; URL url = a_string; }",
implicitCastExpr(
hasSourceExpression(constructExpr()))));
}
TEST(HasSourceExpression, MatchesExplicitCasts) {
EXPECT_TRUE(matches("float x = static_cast<float>(42);",
explicitCastExpr(
hasSourceExpression(hasDescendant(
expr(integerLiteral()))))));
}
TEST(Statement, DoesNotMatchDeclarations) {
EXPECT_TRUE(notMatches("class X {};", stmt()));
}
TEST(Statement, MatchesCompoundStatments) {
EXPECT_TRUE(matches("void x() {}", stmt()));
}
TEST(DeclarationStatement, DoesNotMatchCompoundStatements) {
EXPECT_TRUE(notMatches("void x() {}", declStmt()));
}
TEST(DeclarationStatement, MatchesVariableDeclarationStatements) {
EXPECT_TRUE(matches("void x() { int a; }", declStmt()));
}
TEST(ExprWithCleanups, MatchesExprWithCleanups) {
EXPECT_TRUE(matches("struct Foo { ~Foo(); };"
"const Foo f = Foo();",
varDecl(hasInitializer(exprWithCleanups()))));
EXPECT_FALSE(matches("struct Foo { };"
"const Foo f = Foo();",
varDecl(hasInitializer(exprWithCleanups()))));
}
TEST(InitListExpression, MatchesInitListExpression) {
EXPECT_TRUE(matches("int a[] = { 1, 2 };",
initListExpr(hasType(asString("int [2]")))));
EXPECT_TRUE(matches("struct B { int x, y; }; B b = { 5, 6 };",
initListExpr(hasType(recordDecl(hasName("B"))))));
}
TEST(UsingDeclaration, MatchesUsingDeclarations) {
EXPECT_TRUE(matches("namespace X { int x; } using X::x;",
usingDecl()));
}
TEST(UsingDeclaration, MatchesShadowUsingDelcarations) {
EXPECT_TRUE(matches("namespace f { int a; } using f::a;",
usingDecl(hasAnyUsingShadowDecl(hasName("a")))));
}
TEST(UsingDeclaration, MatchesSpecificTarget) {
EXPECT_TRUE(matches("namespace f { int a; void b(); } using f::b;",
usingDecl(hasAnyUsingShadowDecl(
hasTargetDecl(functionDecl())))));
EXPECT_TRUE(notMatches("namespace f { int a; void b(); } using f::a;",
usingDecl(hasAnyUsingShadowDecl(
hasTargetDecl(functionDecl())))));
}
TEST(UsingDeclaration, ThroughUsingDeclaration) {
EXPECT_TRUE(matches(
"namespace a { void f(); } using a::f; void g() { f(); }",
declRefExpr(throughUsingDecl(anything()))));
EXPECT_TRUE(notMatches(
"namespace a { void f(); } using a::f; void g() { a::f(); }",
declRefExpr(throughUsingDecl(anything()))));
}
TEST(UsingDirectiveDeclaration, MatchesUsingNamespace) {
EXPECT_TRUE(matches("namespace X { int x; } using namespace X;",
usingDirectiveDecl()));
EXPECT_FALSE(
matches("namespace X { int x; } using X::x;", usingDirectiveDecl()));
}
TEST(SingleDecl, IsSingleDecl) {
StatementMatcher SingleDeclStmt =
declStmt(hasSingleDecl(varDecl(hasInitializer(anything()))));
EXPECT_TRUE(matches("void f() {int a = 4;}", SingleDeclStmt));
EXPECT_TRUE(notMatches("void f() {int a;}", SingleDeclStmt));
EXPECT_TRUE(notMatches("void f() {int a = 4, b = 3;}",
SingleDeclStmt));
}
TEST(DeclStmt, ContainsDeclaration) {
DeclarationMatcher MatchesInit = varDecl(hasInitializer(anything()));
EXPECT_TRUE(matches("void f() {int a = 4;}",
declStmt(containsDeclaration(0, MatchesInit))));
EXPECT_TRUE(matches("void f() {int a = 4, b = 3;}",
declStmt(containsDeclaration(0, MatchesInit),
containsDeclaration(1, MatchesInit))));
unsigned WrongIndex = 42;
EXPECT_TRUE(notMatches("void f() {int a = 4, b = 3;}",
declStmt(containsDeclaration(WrongIndex,
MatchesInit))));
}
TEST(DeclCount, DeclCountIsCorrect) {
EXPECT_TRUE(matches("void f() {int i,j;}",
declStmt(declCountIs(2))));
EXPECT_TRUE(notMatches("void f() {int i,j; int k;}",
declStmt(declCountIs(3))));
EXPECT_TRUE(notMatches("void f() {int i,j, k, l;}",
declStmt(declCountIs(3))));
}
TEST(While, MatchesWhileLoops) {
EXPECT_TRUE(notMatches("void x() {}", whileStmt()));
EXPECT_TRUE(matches("void x() { while(true); }", whileStmt()));
EXPECT_TRUE(notMatches("void x() { do {} while(true); }", whileStmt()));
}
TEST(Do, MatchesDoLoops) {
EXPECT_TRUE(matches("void x() { do {} while(true); }", doStmt()));
EXPECT_TRUE(matches("void x() { do ; while(false); }", doStmt()));
}
TEST(Do, DoesNotMatchWhileLoops) {
EXPECT_TRUE(notMatches("void x() { while(true) {} }", doStmt()));
}
TEST(SwitchCase, MatchesCase) {
EXPECT_TRUE(matches("void x() { switch(42) { case 42:; } }", switchCase()));
EXPECT_TRUE(matches("void x() { switch(42) { default:; } }", switchCase()));
EXPECT_TRUE(matches("void x() { switch(42) default:; }", switchCase()));
EXPECT_TRUE(notMatches("void x() { switch(42) {} }", switchCase()));
}
TEST(SwitchCase, MatchesSwitch) {
EXPECT_TRUE(matches("void x() { switch(42) { case 42:; } }", switchStmt()));
EXPECT_TRUE(matches("void x() { switch(42) { default:; } }", switchStmt()));
EXPECT_TRUE(matches("void x() { switch(42) default:; }", switchStmt()));
EXPECT_TRUE(notMatches("void x() {}", switchStmt()));
}
TEST(SwitchCase, MatchesEachCase) {
EXPECT_TRUE(notMatches("void x() { switch(42); }",
switchStmt(forEachSwitchCase(caseStmt()))));
EXPECT_TRUE(matches("void x() { switch(42) case 42:; }",
switchStmt(forEachSwitchCase(caseStmt()))));
EXPECT_TRUE(matches("void x() { switch(42) { case 42:; } }",
switchStmt(forEachSwitchCase(caseStmt()))));
EXPECT_TRUE(notMatches(
"void x() { if (1) switch(42) { case 42: switch (42) { default:; } } }",
ifStmt(has(switchStmt(forEachSwitchCase(defaultStmt()))))));
EXPECT_TRUE(matches("void x() { switch(42) { case 1+1: case 4:; } }",
switchStmt(forEachSwitchCase(
caseStmt(hasCaseConstant(integerLiteral()))))));
EXPECT_TRUE(notMatches("void x() { switch(42) { case 1+1: case 2+2:; } }",
switchStmt(forEachSwitchCase(
caseStmt(hasCaseConstant(integerLiteral()))))));
EXPECT_TRUE(notMatches("void x() { switch(42) { case 1 ... 2:; } }",
switchStmt(forEachSwitchCase(
caseStmt(hasCaseConstant(integerLiteral()))))));
EXPECT_TRUE(matchAndVerifyResultTrue(
"void x() { switch (42) { case 1: case 2: case 3: default:; } }",
switchStmt(forEachSwitchCase(caseStmt().bind("x"))),
new VerifyIdIsBoundTo<CaseStmt>("x", 3)));
}
TEST(ForEachConstructorInitializer, MatchesInitializers) {
EXPECT_TRUE(matches(
"struct X { X() : i(42), j(42) {} int i, j; };",
constructorDecl(forEachConstructorInitializer(ctorInitializer()))));
}
TEST(ExceptionHandling, SimpleCases) {
EXPECT_TRUE(matches("void foo() try { } catch(int X) { }", catchStmt()));
EXPECT_TRUE(matches("void foo() try { } catch(int X) { }", tryStmt()));
EXPECT_TRUE(notMatches("void foo() try { } catch(int X) { }", throwExpr()));
EXPECT_TRUE(matches("void foo() try { throw; } catch(int X) { }",
throwExpr()));
EXPECT_TRUE(matches("void foo() try { throw 5;} catch(int X) { }",
throwExpr()));
}
TEST(HasConditionVariableStatement, DoesNotMatchCondition) {
EXPECT_TRUE(notMatches(
"void x() { if(true) {} }",
ifStmt(hasConditionVariableStatement(declStmt()))));
EXPECT_TRUE(notMatches(
"void x() { int x; if((x = 42)) {} }",
ifStmt(hasConditionVariableStatement(declStmt()))));
}
TEST(HasConditionVariableStatement, MatchesConditionVariables) {
EXPECT_TRUE(matches(
"void x() { if(int* a = 0) {} }",
ifStmt(hasConditionVariableStatement(declStmt()))));
}
TEST(ForEach, BindsOneNode) {
EXPECT_TRUE(matchAndVerifyResultTrue("class C { int x; };",
recordDecl(hasName("C"), forEach(fieldDecl(hasName("x")).bind("x"))),
new VerifyIdIsBoundTo<FieldDecl>("x", 1)));
}
TEST(ForEach, BindsMultipleNodes) {
EXPECT_TRUE(matchAndVerifyResultTrue("class C { int x; int y; int z; };",
recordDecl(hasName("C"), forEach(fieldDecl().bind("f"))),
new VerifyIdIsBoundTo<FieldDecl>("f", 3)));
}
TEST(ForEach, BindsRecursiveCombinations) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"class C { class D { int x; int y; }; class E { int y; int z; }; };",
recordDecl(hasName("C"),
forEach(recordDecl(forEach(fieldDecl().bind("f"))))),
new VerifyIdIsBoundTo<FieldDecl>("f", 4)));
}
TEST(ForEachDescendant, BindsOneNode) {
EXPECT_TRUE(matchAndVerifyResultTrue("class C { class D { int x; }; };",
recordDecl(hasName("C"),
forEachDescendant(fieldDecl(hasName("x")).bind("x"))),
new VerifyIdIsBoundTo<FieldDecl>("x", 1)));
}
TEST(ForEachDescendant, NestedForEachDescendant) {
DeclarationMatcher m = recordDecl(
isDefinition(), decl().bind("x"), hasName("C"));
EXPECT_TRUE(matchAndVerifyResultTrue(
"class A { class B { class C {}; }; };",
recordDecl(hasName("A"), anyOf(m, forEachDescendant(m))),
new VerifyIdIsBoundTo<Decl>("x", "C")));
// Check that a partial match of 'm' that binds 'x' in the
// first part of anyOf(m, anything()) will not overwrite the
// binding created by the earlier binding in the hasDescendant.
EXPECT_TRUE(matchAndVerifyResultTrue(
"class A { class B { class C {}; }; };",
recordDecl(hasName("A"), allOf(hasDescendant(m), anyOf(m, anything()))),
new VerifyIdIsBoundTo<Decl>("x", "C")));
}
TEST(ForEachDescendant, BindsMultipleNodes) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"class C { class D { int x; int y; }; "
" class E { class F { int y; int z; }; }; };",
recordDecl(hasName("C"), forEachDescendant(fieldDecl().bind("f"))),
new VerifyIdIsBoundTo<FieldDecl>("f", 4)));
}
TEST(ForEachDescendant, BindsRecursiveCombinations) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"class C { class D { "
" class E { class F { class G { int y; int z; }; }; }; }; };",
recordDecl(hasName("C"), forEachDescendant(recordDecl(
forEachDescendant(fieldDecl().bind("f"))))),
new VerifyIdIsBoundTo<FieldDecl>("f", 8)));
}
TEST(ForEachDescendant, BindsCombinations) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"void f() { if(true) {} if (true) {} while (true) {} if (true) {} while "
"(true) {} }",
compoundStmt(forEachDescendant(ifStmt().bind("if")),
forEachDescendant(whileStmt().bind("while"))),
new VerifyIdIsBoundTo<IfStmt>("if", 6)));
}
TEST(Has, DoesNotDeleteBindings) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"class X { int a; };", recordDecl(decl().bind("x"), has(fieldDecl())),
new VerifyIdIsBoundTo<Decl>("x", 1)));
}
TEST(LoopingMatchers, DoNotOverwritePreviousMatchResultOnFailure) {
// Those matchers cover all the cases where an inner matcher is called
// and there is not a 1:1 relationship between the match of the outer
// matcher and the match of the inner matcher.
// The pattern to look for is:
// ... return InnerMatcher.matches(...); ...
// In which case no special handling is needed.
//
// On the other hand, if there are multiple alternative matches
// (for example forEach*) or matches might be discarded (for example has*)
// the implementation must make sure that the discarded matches do not
// affect the bindings.
// When new such matchers are added, add a test here that:
// - matches a simple node, and binds it as the first thing in the matcher:
// recordDecl(decl().bind("x"), hasName("X")))
// - uses the matcher under test afterwards in a way that not the first
// alternative is matched; for anyOf, that means the first branch
// would need to return false; for hasAncestor, it means that not
// the direct parent matches the inner matcher.
EXPECT_TRUE(matchAndVerifyResultTrue(
"class X { int y; };",
recordDecl(
recordDecl().bind("x"), hasName("::X"),
anyOf(forEachDescendant(recordDecl(hasName("Y"))), anything())),
new VerifyIdIsBoundTo<CXXRecordDecl>("x", 1)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"class X {};", recordDecl(recordDecl().bind("x"), hasName("::X"),
anyOf(unless(anything()), anything())),
new VerifyIdIsBoundTo<CXXRecordDecl>("x", 1)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"template<typename T1, typename T2> class X {}; X<float, int> x;",
classTemplateSpecializationDecl(
decl().bind("x"),
hasAnyTemplateArgument(refersToType(asString("int")))),
new VerifyIdIsBoundTo<Decl>("x", 1)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"class X { void f(); void g(); };",
recordDecl(decl().bind("x"), hasMethod(hasName("g"))),
new VerifyIdIsBoundTo<Decl>("x", 1)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"class X { X() : a(1), b(2) {} double a; int b; };",
recordDecl(decl().bind("x"),
has(constructorDecl(
hasAnyConstructorInitializer(forField(hasName("b")))))),
new VerifyIdIsBoundTo<Decl>("x", 1)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"void x(int, int) { x(0, 42); }",
callExpr(expr().bind("x"), hasAnyArgument(integerLiteral(equals(42)))),
new VerifyIdIsBoundTo<Expr>("x", 1)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"void x(int, int y) {}",
functionDecl(decl().bind("x"), hasAnyParameter(hasName("y"))),
new VerifyIdIsBoundTo<Decl>("x", 1)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"void x() { return; if (true) {} }",
functionDecl(decl().bind("x"),
has(compoundStmt(hasAnySubstatement(ifStmt())))),
new VerifyIdIsBoundTo<Decl>("x", 1)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"namespace X { void b(int); void b(); }"
"using X::b;",
usingDecl(decl().bind("x"), hasAnyUsingShadowDecl(hasTargetDecl(
functionDecl(parameterCountIs(1))))),
new VerifyIdIsBoundTo<Decl>("x", 1)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"class A{}; class B{}; class C : B, A {};",
recordDecl(decl().bind("x"), isDerivedFrom("::A")),
new VerifyIdIsBoundTo<Decl>("x", 1)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"class A{}; typedef A B; typedef A C; typedef A D;"
"class E : A {};",
recordDecl(decl().bind("x"), isDerivedFrom("C")),
new VerifyIdIsBoundTo<Decl>("x", 1)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"class A { class B { void f() {} }; };",
functionDecl(decl().bind("x"), hasAncestor(recordDecl(hasName("::A")))),
new VerifyIdIsBoundTo<Decl>("x", 1)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"template <typename T> struct A { struct B {"
" void f() { if(true) {} }"
"}; };"
"void t() { A<int>::B b; b.f(); }",
ifStmt(stmt().bind("x"), hasAncestor(recordDecl(hasName("::A")))),
new VerifyIdIsBoundTo<Stmt>("x", 2)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"class A {};",
recordDecl(hasName("::A"), decl().bind("x"), unless(hasName("fooble"))),
new VerifyIdIsBoundTo<Decl>("x", 1)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"class A { A() : s(), i(42) {} const char *s; int i; };",
constructorDecl(hasName("::A::A"), decl().bind("x"),
forEachConstructorInitializer(forField(hasName("i")))),
new VerifyIdIsBoundTo<Decl>("x", 1)));
}
TEST(ForEachDescendant, BindsCorrectNodes) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"class C { void f(); int i; };",
recordDecl(hasName("C"), forEachDescendant(decl().bind("decl"))),
new VerifyIdIsBoundTo<FieldDecl>("decl", 1)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"class C { void f() {} int i; };",
recordDecl(hasName("C"), forEachDescendant(decl().bind("decl"))),
new VerifyIdIsBoundTo<FunctionDecl>("decl", 1)));
}
TEST(FindAll, BindsNodeOnMatch) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"class A {};",
recordDecl(hasName("::A"), findAll(recordDecl(hasName("::A")).bind("v"))),
new VerifyIdIsBoundTo<CXXRecordDecl>("v", 1)));
}
TEST(FindAll, BindsDescendantNodeOnMatch) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"class A { int a; int b; };",
recordDecl(hasName("::A"), findAll(fieldDecl().bind("v"))),
new VerifyIdIsBoundTo<FieldDecl>("v", 2)));
}
TEST(FindAll, BindsNodeAndDescendantNodesOnOneMatch) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"class A { int a; int b; };",
recordDecl(hasName("::A"),
findAll(decl(anyOf(recordDecl(hasName("::A")).bind("v"),
fieldDecl().bind("v"))))),
new VerifyIdIsBoundTo<Decl>("v", 3)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"class A { class B {}; class C {}; };",
recordDecl(hasName("::A"), findAll(recordDecl(isDefinition()).bind("v"))),
new VerifyIdIsBoundTo<CXXRecordDecl>("v", 3)));
}
TEST(EachOf, TriggersForEachMatch) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"class A { int a; int b; };",
recordDecl(eachOf(has(fieldDecl(hasName("a")).bind("v")),
has(fieldDecl(hasName("b")).bind("v")))),
new VerifyIdIsBoundTo<FieldDecl>("v", 2)));
}
TEST(EachOf, BehavesLikeAnyOfUnlessBothMatch) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"class A { int a; int c; };",
recordDecl(eachOf(has(fieldDecl(hasName("a")).bind("v")),
has(fieldDecl(hasName("b")).bind("v")))),
new VerifyIdIsBoundTo<FieldDecl>("v", 1)));
EXPECT_TRUE(matchAndVerifyResultTrue(
"class A { int c; int b; };",
recordDecl(eachOf(has(fieldDecl(hasName("a")).bind("v")),
has(fieldDecl(hasName("b")).bind("v")))),
new VerifyIdIsBoundTo<FieldDecl>("v", 1)));
EXPECT_TRUE(notMatches(
"class A { int c; int d; };",
recordDecl(eachOf(has(fieldDecl(hasName("a")).bind("v")),
has(fieldDecl(hasName("b")).bind("v"))))));
}
TEST(IsTemplateInstantiation, MatchesImplicitClassTemplateInstantiation) {
// Make sure that we can both match the class by name (::X) and by the type
// the template was instantiated with (via a field).
EXPECT_TRUE(matches(
"template <typename T> class X {}; class A {}; X<A> x;",
recordDecl(hasName("::X"), isTemplateInstantiation())));
EXPECT_TRUE(matches(
"template <typename T> class X { T t; }; class A {}; X<A> x;",
recordDecl(isTemplateInstantiation(), hasDescendant(
fieldDecl(hasType(recordDecl(hasName("A"))))))));
}
TEST(IsTemplateInstantiation, MatchesImplicitFunctionTemplateInstantiation) {
EXPECT_TRUE(matches(
"template <typename T> void f(T t) {} class A {}; void g() { f(A()); }",
functionDecl(hasParameter(0, hasType(recordDecl(hasName("A")))),
isTemplateInstantiation())));
}
TEST(IsTemplateInstantiation, MatchesExplicitClassTemplateInstantiation) {
EXPECT_TRUE(matches(
"template <typename T> class X { T t; }; class A {};"
"template class X<A>;",
recordDecl(isTemplateInstantiation(), hasDescendant(
fieldDecl(hasType(recordDecl(hasName("A"))))))));
}
TEST(IsTemplateInstantiation,
MatchesInstantiationOfPartiallySpecializedClassTemplate) {
EXPECT_TRUE(matches(
"template <typename T> class X {};"
"template <typename T> class X<T*> {}; class A {}; X<A*> x;",
recordDecl(hasName("::X"), isTemplateInstantiation())));
}
TEST(IsTemplateInstantiation,
MatchesInstantiationOfClassTemplateNestedInNonTemplate) {
EXPECT_TRUE(matches(
"class A {};"
"class X {"
" template <typename U> class Y { U u; };"
" Y<A> y;"
"};",
recordDecl(hasName("::X::Y"), isTemplateInstantiation())));
}
TEST(IsTemplateInstantiation, DoesNotMatchInstantiationsInsideOfInstantiation) {
// FIXME: Figure out whether this makes sense. It doesn't affect the
// normal use case as long as the uppermost instantiation always is marked
// as template instantiation, but it might be confusing as a predicate.
EXPECT_TRUE(matches(
"class A {};"
"template <typename T> class X {"
" template <typename U> class Y { U u; };"
" Y<T> y;"
"}; X<A> x;",
recordDecl(hasName("::X<A>::Y"), unless(isTemplateInstantiation()))));
}
TEST(IsTemplateInstantiation, DoesNotMatchExplicitClassTemplateSpecialization) {
EXPECT_TRUE(notMatches(
"template <typename T> class X {}; class A {};"
"template <> class X<A> {}; X<A> x;",
recordDecl(hasName("::X"), isTemplateInstantiation())));
}
TEST(IsTemplateInstantiation, DoesNotMatchNonTemplate) {
EXPECT_TRUE(notMatches(
"class A {}; class Y { A a; };",
recordDecl(isTemplateInstantiation())));
}
TEST(IsInstantiated, MatchesInstantiation) {
EXPECT_TRUE(
matches("template<typename T> class A { T i; }; class Y { A<int> a; };",
recordDecl(isInstantiated())));
}
TEST(IsInstantiated, NotMatchesDefinition) {
EXPECT_TRUE(notMatches("template<typename T> class A { T i; };",
recordDecl(isInstantiated())));
}
TEST(IsInTemplateInstantiation, MatchesInstantiationStmt) {
EXPECT_TRUE(matches("template<typename T> struct A { A() { T i; } };"
"class Y { A<int> a; }; Y y;",
declStmt(isInTemplateInstantiation())));
}
TEST(IsInTemplateInstantiation, NotMatchesDefinitionStmt) {
EXPECT_TRUE(notMatches("template<typename T> struct A { void x() { T i; } };",
declStmt(isInTemplateInstantiation())));
}
TEST(IsInstantiated, MatchesFunctionInstantiation) {
EXPECT_TRUE(
matches("template<typename T> void A(T t) { T i; } void x() { A(0); }",
functionDecl(isInstantiated())));
}
TEST(IsInstantiated, NotMatchesFunctionDefinition) {
EXPECT_TRUE(notMatches("template<typename T> void A(T t) { T i; }",
varDecl(isInstantiated())));
}
TEST(IsInTemplateInstantiation, MatchesFunctionInstantiationStmt) {
EXPECT_TRUE(
matches("template<typename T> void A(T t) { T i; } void x() { A(0); }",
declStmt(isInTemplateInstantiation())));
}
TEST(IsInTemplateInstantiation, NotMatchesFunctionDefinitionStmt) {
EXPECT_TRUE(notMatches("template<typename T> void A(T t) { T i; }",
declStmt(isInTemplateInstantiation())));
}
TEST(IsInTemplateInstantiation, Sharing) {
auto Matcher = binaryOperator(unless(isInTemplateInstantiation()));
// FIXME: Node sharing is an implementation detail, exposing it is ugly
// and makes the matcher behave in non-obvious ways.
EXPECT_TRUE(notMatches(
"int j; template<typename T> void A(T t) { j += 42; } void x() { A(0); }",
Matcher));
EXPECT_TRUE(matches(
"int j; template<typename T> void A(T t) { j += t; } void x() { A(0); }",
Matcher));
}
TEST(IsExplicitTemplateSpecialization,
DoesNotMatchPrimaryTemplate) {
EXPECT_TRUE(notMatches(
"template <typename T> class X {};",
recordDecl(isExplicitTemplateSpecialization())));
EXPECT_TRUE(notMatches(
"template <typename T> void f(T t);",
functionDecl(isExplicitTemplateSpecialization())));
}
TEST(IsExplicitTemplateSpecialization,
DoesNotMatchExplicitTemplateInstantiations) {
EXPECT_TRUE(notMatches(
"template <typename T> class X {};"
"template class X<int>; extern template class X<long>;",
recordDecl(isExplicitTemplateSpecialization())));
EXPECT_TRUE(notMatches(
"template <typename T> void f(T t) {}"
"template void f(int t); extern template void f(long t);",
functionDecl(isExplicitTemplateSpecialization())));
}
TEST(IsExplicitTemplateSpecialization,
DoesNotMatchImplicitTemplateInstantiations) {
EXPECT_TRUE(notMatches(
"template <typename T> class X {}; X<int> x;",
recordDecl(isExplicitTemplateSpecialization())));
EXPECT_TRUE(notMatches(
"template <typename T> void f(T t); void g() { f(10); }",
functionDecl(isExplicitTemplateSpecialization())));
}
TEST(IsExplicitTemplateSpecialization,
MatchesExplicitTemplateSpecializations) {
EXPECT_TRUE(matches(
"template <typename T> class X {};"
"template<> class X<int> {};",
recordDecl(isExplicitTemplateSpecialization())));
EXPECT_TRUE(matches(
"template <typename T> void f(T t) {}"
"template<> void f(int t) {}",
functionDecl(isExplicitTemplateSpecialization())));
}
TEST(HasAncenstor, MatchesDeclarationAncestors) {
EXPECT_TRUE(matches(
"class A { class B { class C {}; }; };",
recordDecl(hasName("C"), hasAncestor(recordDecl(hasName("A"))))));
}
TEST(HasAncenstor, FailsIfNoAncestorMatches) {
EXPECT_TRUE(notMatches(
"class A { class B { class C {}; }; };",
recordDecl(hasName("C"), hasAncestor(recordDecl(hasName("X"))))));
}
TEST(HasAncestor, MatchesDeclarationsThatGetVisitedLater) {
EXPECT_TRUE(matches(
"class A { class B { void f() { C c; } class C {}; }; };",
varDecl(hasName("c"), hasType(recordDecl(hasName("C"),
hasAncestor(recordDecl(hasName("A"))))))));
}
TEST(HasAncenstor, MatchesStatementAncestors) {
EXPECT_TRUE(matches(
"void f() { if (true) { while (false) { 42; } } }",
integerLiteral(equals(42), hasAncestor(ifStmt()))));
}
TEST(HasAncestor, DrillsThroughDifferentHierarchies) {
EXPECT_TRUE(matches(
"void f() { if (true) { int x = 42; } }",
integerLiteral(equals(42), hasAncestor(functionDecl(hasName("f"))))));
}
TEST(HasAncestor, BindsRecursiveCombinations) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"class C { class D { class E { class F { int y; }; }; }; };",
fieldDecl(hasAncestor(recordDecl(hasAncestor(recordDecl().bind("r"))))),
new VerifyIdIsBoundTo<CXXRecordDecl>("r", 1)));
}
TEST(HasAncestor, BindsCombinationsWithHasDescendant) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"class C { class D { class E { class F { int y; }; }; }; };",
fieldDecl(hasAncestor(
decl(
hasDescendant(recordDecl(isDefinition(),
hasAncestor(recordDecl())))
).bind("d")
)),
new VerifyIdIsBoundTo<CXXRecordDecl>("d", "E")));
}
TEST(HasAncestor, MatchesClosestAncestor) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"template <typename T> struct C {"
" void f(int) {"
" struct I { void g(T) { int x; } } i; i.g(42);"
" }"
"};"
"template struct C<int>;",
varDecl(hasName("x"),
hasAncestor(functionDecl(hasParameter(
0, varDecl(hasType(asString("int"))))).bind("f"))).bind("v"),
new VerifyIdIsBoundTo<FunctionDecl>("f", "g", 2)));
}
TEST(HasAncestor, MatchesInTemplateInstantiations) {
EXPECT_TRUE(matches(
"template <typename T> struct A { struct B { struct C { T t; }; }; }; "
"A<int>::B::C a;",
fieldDecl(hasType(asString("int")),
hasAncestor(recordDecl(hasName("A"))))));
}
TEST(HasAncestor, MatchesInImplicitCode) {
EXPECT_TRUE(matches(
"struct X {}; struct A { A() {} X x; };",
constructorDecl(
hasAnyConstructorInitializer(withInitializer(expr(
hasAncestor(recordDecl(hasName("A")))))))));
}
TEST(HasParent, MatchesOnlyParent) {
EXPECT_TRUE(matches(
"void f() { if (true) { int x = 42; } }",
compoundStmt(hasParent(ifStmt()))));
EXPECT_TRUE(notMatches(
"void f() { for (;;) { int x = 42; } }",
compoundStmt(hasParent(ifStmt()))));
EXPECT_TRUE(notMatches(
"void f() { if (true) for (;;) { int x = 42; } }",
compoundStmt(hasParent(ifStmt()))));
}
TEST(HasAncestor, MatchesAllAncestors) {
EXPECT_TRUE(matches(
"template <typename T> struct C { static void f() { 42; } };"
"void t() { C<int>::f(); }",
integerLiteral(
equals(42),
allOf(hasAncestor(recordDecl(isTemplateInstantiation())),
hasAncestor(recordDecl(unless(isTemplateInstantiation())))))));
}
TEST(HasParent, MatchesAllParents) {
EXPECT_TRUE(matches(
"template <typename T> struct C { static void f() { 42; } };"
"void t() { C<int>::f(); }",
integerLiteral(
equals(42),
hasParent(compoundStmt(hasParent(functionDecl(
hasParent(recordDecl(isTemplateInstantiation())))))))));
EXPECT_TRUE(matches(
"template <typename T> struct C { static void f() { 42; } };"
"void t() { C<int>::f(); }",
integerLiteral(
equals(42),
hasParent(compoundStmt(hasParent(functionDecl(
hasParent(recordDecl(unless(isTemplateInstantiation()))))))))));
EXPECT_TRUE(matches(
"template <typename T> struct C { static void f() { 42; } };"
"void t() { C<int>::f(); }",
integerLiteral(equals(42),
hasParent(compoundStmt(allOf(
hasParent(functionDecl(
hasParent(recordDecl(isTemplateInstantiation())))),
hasParent(functionDecl(hasParent(recordDecl(
unless(isTemplateInstantiation())))))))))));
EXPECT_TRUE(
notMatches("template <typename T> struct C { static void f() {} };"
"void t() { C<int>::f(); }",
compoundStmt(hasParent(recordDecl()))));
}
TEST(HasParent, NoDuplicateParents) {
class HasDuplicateParents : public BoundNodesCallback {
public:
bool run(const BoundNodes *Nodes) override { return false; }
bool run(const BoundNodes *Nodes, ASTContext *Context) override {
const Stmt *Node = Nodes->getNodeAs<Stmt>("node");
std::set<const void *> Parents;
for (const auto &Parent : Context->getParents(*Node)) {
if (!Parents.insert(Parent.getMemoizationData()).second) {
return true;
}
}
return false;
}
};
EXPECT_FALSE(matchAndVerifyResultTrue(
"template <typename T> int Foo() { return 1 + 2; }\n"
"int x = Foo<int>() + Foo<unsigned>();",
stmt().bind("node"), new HasDuplicateParents()));
}
TEST(TypeMatching, MatchesTypes) {
EXPECT_TRUE(matches("struct S {};", qualType().bind("loc")));
}
TEST(TypeMatching, MatchesArrayTypes) {
EXPECT_TRUE(matches("int a[] = {2,3};", arrayType()));
EXPECT_TRUE(matches("int a[42];", arrayType()));
EXPECT_TRUE(matches("void f(int b) { int a[b]; }", arrayType()));
EXPECT_TRUE(notMatches("struct A {}; A a[7];",
arrayType(hasElementType(builtinType()))));
EXPECT_TRUE(matches(
"int const a[] = { 2, 3 };",
qualType(arrayType(hasElementType(builtinType())))));
EXPECT_TRUE(matches(
"int const a[] = { 2, 3 };",
qualType(isConstQualified(), arrayType(hasElementType(builtinType())))));
EXPECT_TRUE(matches(
"typedef const int T; T x[] = { 1, 2 };",
qualType(isConstQualified(), arrayType())));
EXPECT_TRUE(notMatches(
"int a[] = { 2, 3 };",
qualType(isConstQualified(), arrayType(hasElementType(builtinType())))));
EXPECT_TRUE(notMatches(
"int a[] = { 2, 3 };",
qualType(arrayType(hasElementType(isConstQualified(), builtinType())))));
EXPECT_TRUE(notMatches(
"int const a[] = { 2, 3 };",
qualType(arrayType(hasElementType(builtinType())),
unless(isConstQualified()))));
EXPECT_TRUE(matches("int a[2];",
constantArrayType(hasElementType(builtinType()))));
EXPECT_TRUE(matches("const int a = 0;", qualType(isInteger())));
}
TEST(TypeMatching, MatchesComplexTypes) {
EXPECT_TRUE(matches("_Complex float f;", complexType()));
EXPECT_TRUE(matches(
"_Complex float f;",
complexType(hasElementType(builtinType()))));
EXPECT_TRUE(notMatches(
"_Complex float f;",
complexType(hasElementType(isInteger()))));
}
TEST(TypeMatching, MatchesConstantArrayTypes) {
EXPECT_TRUE(matches("int a[2];", constantArrayType()));
EXPECT_TRUE(notMatches(
"void f() { int a[] = { 2, 3 }; int b[a[0]]; }",
constantArrayType(hasElementType(builtinType()))));
EXPECT_TRUE(matches("int a[42];", constantArrayType(hasSize(42))));
EXPECT_TRUE(matches("int b[2*21];", constantArrayType(hasSize(42))));
EXPECT_TRUE(notMatches("int c[41], d[43];", constantArrayType(hasSize(42))));
}
TEST(TypeMatching, MatchesDependentSizedArrayTypes) {
EXPECT_TRUE(matches(
"template <typename T, int Size> class array { T data[Size]; };",
dependentSizedArrayType()));
EXPECT_TRUE(notMatches(
"int a[42]; int b[] = { 2, 3 }; void f() { int c[b[0]]; }",
dependentSizedArrayType()));
}
TEST(TypeMatching, MatchesIncompleteArrayType) {
EXPECT_TRUE(matches("int a[] = { 2, 3 };", incompleteArrayType()));
EXPECT_TRUE(matches("void f(int a[]) {}", incompleteArrayType()));
EXPECT_TRUE(notMatches("int a[42]; void f() { int b[a[0]]; }",
incompleteArrayType()));
}
TEST(TypeMatching, MatchesVariableArrayType) {
EXPECT_TRUE(matches("void f(int b) { int a[b]; }", variableArrayType()));
EXPECT_TRUE(notMatches("int a[] = {2, 3}; int b[42];", variableArrayType()));
EXPECT_TRUE(matches(
"void f(int b) { int a[b]; }",
variableArrayType(hasSizeExpr(ignoringImpCasts(declRefExpr(to(
varDecl(hasName("b")))))))));
}
TEST(TypeMatching, MatchesAtomicTypes) {
if (llvm::Triple(llvm::sys::getDefaultTargetTriple()).getOS() !=
llvm::Triple::Win32) {
// FIXME: Make this work for MSVC.
EXPECT_TRUE(matches("_Atomic(int) i;", atomicType()));
EXPECT_TRUE(matches("_Atomic(int) i;",
atomicType(hasValueType(isInteger()))));
EXPECT_TRUE(notMatches("_Atomic(float) f;",
atomicType(hasValueType(isInteger()))));
}
}
TEST(TypeMatching, MatchesAutoTypes) {
EXPECT_TRUE(matches("auto i = 2;", autoType()));
EXPECT_TRUE(matches("int v[] = { 2, 3 }; void f() { for (int i : v) {} }",
autoType()));
// FIXME: Matching against the type-as-written can't work here, because the
// type as written was not deduced.
//EXPECT_TRUE(matches("auto a = 1;",
// autoType(hasDeducedType(isInteger()))));
//EXPECT_TRUE(notMatches("auto b = 2.0;",
// autoType(hasDeducedType(isInteger()))));
}
TEST(TypeMatching, MatchesFunctionTypes) {
EXPECT_TRUE(matches("int (*f)(int);", functionType()));
EXPECT_TRUE(matches("void f(int i) {}", functionType()));
}
TEST(TypeMatching, MatchesParenType) {
EXPECT_TRUE(
matches("int (*array)[4];", varDecl(hasType(pointsTo(parenType())))));
EXPECT_TRUE(notMatches("int *array[4];", varDecl(hasType(parenType()))));
EXPECT_TRUE(matches(
"int (*ptr_to_func)(int);",
varDecl(hasType(pointsTo(parenType(innerType(functionType())))))));
EXPECT_TRUE(notMatches(
"int (*ptr_to_array)[4];",
varDecl(hasType(pointsTo(parenType(innerType(functionType())))))));
}
TEST(TypeMatching, PointerTypes) {
// FIXME: Reactive when these tests can be more specific (not matching
// implicit code on certain platforms), likely when we have hasDescendant for
// Types/TypeLocs.
//EXPECT_TRUE(matchAndVerifyResultTrue(
// "int* a;",
// pointerTypeLoc(pointeeLoc(typeLoc().bind("loc"))),
// new VerifyIdIsBoundTo<TypeLoc>("loc", 1)));
//EXPECT_TRUE(matchAndVerifyResultTrue(
// "int* a;",
// pointerTypeLoc().bind("loc"),
// new VerifyIdIsBoundTo<TypeLoc>("loc", 1)));
EXPECT_TRUE(matches(
"int** a;",
loc(pointerType(pointee(qualType())))));
EXPECT_TRUE(matches(
"int** a;",
loc(pointerType(pointee(pointerType())))));
EXPECT_TRUE(matches(
"int* b; int* * const a = &b;",
loc(qualType(isConstQualified(), pointerType()))));
std::string Fragment = "struct A { int i; }; int A::* ptr = &A::i;";
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ptr"),
hasType(blockPointerType()))));
EXPECT_TRUE(matches(Fragment, varDecl(hasName("ptr"),
hasType(memberPointerType()))));
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ptr"),
hasType(pointerType()))));
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ptr"),
hasType(referenceType()))));
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ptr"),
hasType(lValueReferenceType()))));
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ptr"),
hasType(rValueReferenceType()))));
Fragment = "int *ptr;";
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ptr"),
hasType(blockPointerType()))));
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ptr"),
hasType(memberPointerType()))));
EXPECT_TRUE(matches(Fragment, varDecl(hasName("ptr"),
hasType(pointerType()))));
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ptr"),
hasType(referenceType()))));
Fragment = "int a; int &ref = a;";
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ref"),
hasType(blockPointerType()))));
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ref"),
hasType(memberPointerType()))));
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ref"),
hasType(pointerType()))));
EXPECT_TRUE(matches(Fragment, varDecl(hasName("ref"),
hasType(referenceType()))));
EXPECT_TRUE(matches(Fragment, varDecl(hasName("ref"),
hasType(lValueReferenceType()))));
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ref"),
hasType(rValueReferenceType()))));
Fragment = "int &&ref = 2;";
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ref"),
hasType(blockPointerType()))));
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ref"),
hasType(memberPointerType()))));
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ref"),
hasType(pointerType()))));
EXPECT_TRUE(matches(Fragment, varDecl(hasName("ref"),
hasType(referenceType()))));
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("ref"),
hasType(lValueReferenceType()))));
EXPECT_TRUE(matches(Fragment, varDecl(hasName("ref"),
hasType(rValueReferenceType()))));
}
TEST(TypeMatching, AutoRefTypes) {
std::string Fragment = "auto a = 1;"
"auto b = a;"
"auto &c = a;"
"auto &&d = c;"
"auto &&e = 2;";
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("a"),
hasType(referenceType()))));
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("b"),
hasType(referenceType()))));
EXPECT_TRUE(matches(Fragment, varDecl(hasName("c"),
hasType(referenceType()))));
EXPECT_TRUE(matches(Fragment, varDecl(hasName("c"),
hasType(lValueReferenceType()))));
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("c"),
hasType(rValueReferenceType()))));
EXPECT_TRUE(matches(Fragment, varDecl(hasName("d"),
hasType(referenceType()))));
EXPECT_TRUE(matches(Fragment, varDecl(hasName("d"),
hasType(lValueReferenceType()))));
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("d"),
hasType(rValueReferenceType()))));
EXPECT_TRUE(matches(Fragment, varDecl(hasName("e"),
hasType(referenceType()))));
EXPECT_TRUE(notMatches(Fragment, varDecl(hasName("e"),
hasType(lValueReferenceType()))));
EXPECT_TRUE(matches(Fragment, varDecl(hasName("e"),
hasType(rValueReferenceType()))));
}
TEST(TypeMatching, PointeeTypes) {
EXPECT_TRUE(matches("int b; int &a = b;",
referenceType(pointee(builtinType()))));
EXPECT_TRUE(matches("int *a;", pointerType(pointee(builtinType()))));
EXPECT_TRUE(matches("int *a;",
loc(pointerType(pointee(builtinType())))));
EXPECT_TRUE(matches(
"int const *A;",
pointerType(pointee(isConstQualified(), builtinType()))));
EXPECT_TRUE(notMatches(
"int *A;",
pointerType(pointee(isConstQualified(), builtinType()))));
}
TEST(TypeMatching, MatchesPointersToConstTypes) {
EXPECT_TRUE(matches("int b; int * const a = &b;",
loc(pointerType())));
EXPECT_TRUE(matches("int b; int * const a = &b;",
loc(pointerType())));
EXPECT_TRUE(matches(
"int b; const int * a = &b;",
loc(pointerType(pointee(builtinType())))));
EXPECT_TRUE(matches(
"int b; const int * a = &b;",
pointerType(pointee(builtinType()))));
}
TEST(TypeMatching, MatchesTypedefTypes) {
EXPECT_TRUE(matches("typedef int X; X a;", varDecl(hasName("a"),
hasType(typedefType()))));
}
TEST(TypeMatching, MatchesTemplateSpecializationType) {
EXPECT_TRUE(matches("template <typename T> class A{}; A<int> a;",
templateSpecializationType()));
}
TEST(TypeMatching, MatchesRecordType) {
EXPECT_TRUE(matches("class C{}; C c;", recordType()));
EXPECT_TRUE(matches("struct S{}; S s;",
recordType(hasDeclaration(recordDecl(hasName("S"))))));
EXPECT_TRUE(notMatches("int i;",
recordType(hasDeclaration(recordDecl(hasName("S"))))));
}
TEST(TypeMatching, MatchesElaboratedType) {
EXPECT_TRUE(matches(
"namespace N {"
" namespace M {"
" class D {};"
" }"
"}"
"N::M::D d;", elaboratedType()));
EXPECT_TRUE(matches("class C {} c;", elaboratedType()));
EXPECT_TRUE(notMatches("class C {}; C c;", elaboratedType()));
}
TEST(ElaboratedTypeNarrowing, hasQualifier) {
EXPECT_TRUE(matches(
"namespace N {"
" namespace M {"
" class D {};"
" }"
"}"
"N::M::D d;",
elaboratedType(hasQualifier(hasPrefix(specifiesNamespace(hasName("N")))))));
EXPECT_TRUE(notMatches(
"namespace M {"
" class D {};"
"}"
"M::D d;",
elaboratedType(hasQualifier(hasPrefix(specifiesNamespace(hasName("N")))))));
EXPECT_TRUE(notMatches(
"struct D {"
"} d;",
elaboratedType(hasQualifier(nestedNameSpecifier()))));
}
TEST(ElaboratedTypeNarrowing, namesType) {
EXPECT_TRUE(matches(
"namespace N {"
" namespace M {"
" class D {};"
" }"
"}"
"N::M::D d;",
elaboratedType(elaboratedType(namesType(recordType(
hasDeclaration(namedDecl(hasName("D")))))))));
EXPECT_TRUE(notMatches(
"namespace M {"
" class D {};"
"}"
"M::D d;",
elaboratedType(elaboratedType(namesType(typedefType())))));
}
TEST(NNS, MatchesNestedNameSpecifiers) {
EXPECT_TRUE(matches("namespace ns { struct A {}; } ns::A a;",
nestedNameSpecifier()));
EXPECT_TRUE(matches("template <typename T> class A { typename T::B b; };",
nestedNameSpecifier()));
EXPECT_TRUE(matches("struct A { void f(); }; void A::f() {}",
nestedNameSpecifier()));
EXPECT_TRUE(matches(
"struct A { static void f() {} }; void g() { A::f(); }",
nestedNameSpecifier()));
EXPECT_TRUE(notMatches(
"struct A { static void f() {} }; void g(A* a) { a->f(); }",
nestedNameSpecifier()));
}
TEST(NullStatement, SimpleCases) {
EXPECT_TRUE(matches("void f() {int i;;}", nullStmt()));
EXPECT_TRUE(notMatches("void f() {int i;}", nullStmt()));
}
TEST(NNS, MatchesTypes) {
NestedNameSpecifierMatcher Matcher = nestedNameSpecifier(
specifiesType(hasDeclaration(recordDecl(hasName("A")))));
EXPECT_TRUE(matches("struct A { struct B {}; }; A::B b;", Matcher));
EXPECT_TRUE(matches("struct A { struct B { struct C {}; }; }; A::B::C c;",
Matcher));
EXPECT_TRUE(notMatches("namespace A { struct B {}; } A::B b;", Matcher));
}
TEST(NNS, MatchesNamespaceDecls) {
NestedNameSpecifierMatcher Matcher = nestedNameSpecifier(
specifiesNamespace(hasName("ns")));
EXPECT_TRUE(matches("namespace ns { struct A {}; } ns::A a;", Matcher));
EXPECT_TRUE(notMatches("namespace xx { struct A {}; } xx::A a;", Matcher));
EXPECT_TRUE(notMatches("struct ns { struct A {}; }; ns::A a;", Matcher));
}
TEST(NNS, BindsNestedNameSpecifiers) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"namespace ns { struct E { struct B {}; }; } ns::E::B b;",
nestedNameSpecifier(specifiesType(asString("struct ns::E"))).bind("nns"),
new VerifyIdIsBoundTo<NestedNameSpecifier>("nns", "ns::struct E::")));
}
TEST(NNS, BindsNestedNameSpecifierLocs) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"namespace ns { struct B {}; } ns::B b;",
loc(nestedNameSpecifier()).bind("loc"),
new VerifyIdIsBoundTo<NestedNameSpecifierLoc>("loc", 1)));
}
TEST(NNS, MatchesNestedNameSpecifierPrefixes) {
EXPECT_TRUE(matches(
"struct A { struct B { struct C {}; }; }; A::B::C c;",
nestedNameSpecifier(hasPrefix(specifiesType(asString("struct A"))))));
EXPECT_TRUE(matches(
"struct A { struct B { struct C {}; }; }; A::B::C c;",
nestedNameSpecifierLoc(hasPrefix(
specifiesTypeLoc(loc(qualType(asString("struct A"))))))));
}
TEST(NNS, DescendantsOfNestedNameSpecifiers) {
std::string Fragment =
"namespace a { struct A { struct B { struct C {}; }; }; };"
"void f() { a::A::B::C c; }";
EXPECT_TRUE(matches(
Fragment,
nestedNameSpecifier(specifiesType(asString("struct a::A::B")),
hasDescendant(nestedNameSpecifier(
specifiesNamespace(hasName("a")))))));
EXPECT_TRUE(notMatches(
Fragment,
nestedNameSpecifier(specifiesType(asString("struct a::A::B")),
has(nestedNameSpecifier(
specifiesNamespace(hasName("a")))))));
EXPECT_TRUE(matches(
Fragment,
nestedNameSpecifier(specifiesType(asString("struct a::A")),
has(nestedNameSpecifier(
specifiesNamespace(hasName("a")))))));
// Not really useful because a NestedNameSpecifier can af at most one child,
// but to complete the interface.
EXPECT_TRUE(matchAndVerifyResultTrue(
Fragment,
nestedNameSpecifier(specifiesType(asString("struct a::A::B")),
forEach(nestedNameSpecifier().bind("x"))),
new VerifyIdIsBoundTo<NestedNameSpecifier>("x", 1)));
}
TEST(NNS, NestedNameSpecifiersAsDescendants) {
std::string Fragment =
"namespace a { struct A { struct B { struct C {}; }; }; };"
"void f() { a::A::B::C c; }";
EXPECT_TRUE(matches(
Fragment,
decl(hasDescendant(nestedNameSpecifier(specifiesType(
asString("struct a::A")))))));
EXPECT_TRUE(matchAndVerifyResultTrue(
Fragment,
functionDecl(hasName("f"),
forEachDescendant(nestedNameSpecifier().bind("x"))),
// Nested names: a, a::A and a::A::B.
new VerifyIdIsBoundTo<NestedNameSpecifier>("x", 3)));
}
TEST(NNSLoc, DescendantsOfNestedNameSpecifierLocs) {
std::string Fragment =
"namespace a { struct A { struct B { struct C {}; }; }; };"
"void f() { a::A::B::C c; }";
EXPECT_TRUE(matches(
Fragment,
nestedNameSpecifierLoc(loc(specifiesType(asString("struct a::A::B"))),
hasDescendant(loc(nestedNameSpecifier(
specifiesNamespace(hasName("a"))))))));
EXPECT_TRUE(notMatches(
Fragment,
nestedNameSpecifierLoc(loc(specifiesType(asString("struct a::A::B"))),
has(loc(nestedNameSpecifier(
specifiesNamespace(hasName("a"))))))));
EXPECT_TRUE(matches(
Fragment,
nestedNameSpecifierLoc(loc(specifiesType(asString("struct a::A"))),
has(loc(nestedNameSpecifier(
specifiesNamespace(hasName("a"))))))));
EXPECT_TRUE(matchAndVerifyResultTrue(
Fragment,
nestedNameSpecifierLoc(loc(specifiesType(asString("struct a::A::B"))),
forEach(nestedNameSpecifierLoc().bind("x"))),
new VerifyIdIsBoundTo<NestedNameSpecifierLoc>("x", 1)));
}
TEST(NNSLoc, NestedNameSpecifierLocsAsDescendants) {
std::string Fragment =
"namespace a { struct A { struct B { struct C {}; }; }; };"
"void f() { a::A::B::C c; }";
EXPECT_TRUE(matches(
Fragment,
decl(hasDescendant(loc(nestedNameSpecifier(specifiesType(
asString("struct a::A"))))))));
EXPECT_TRUE(matchAndVerifyResultTrue(
Fragment,
functionDecl(hasName("f"),
forEachDescendant(nestedNameSpecifierLoc().bind("x"))),
// Nested names: a, a::A and a::A::B.
new VerifyIdIsBoundTo<NestedNameSpecifierLoc>("x", 3)));
}
template <typename T> class VerifyMatchOnNode : public BoundNodesCallback {
public:
VerifyMatchOnNode(StringRef Id, const internal::Matcher<T> &InnerMatcher,
StringRef InnerId)
: Id(Id), InnerMatcher(InnerMatcher), InnerId(InnerId) {
}
virtual bool run(const BoundNodes *Nodes) { return false; }
virtual bool run(const BoundNodes *Nodes, ASTContext *Context) {
const T *Node = Nodes->getNodeAs<T>(Id);
return selectFirst<T>(InnerId, match(InnerMatcher, *Node, *Context)) !=
nullptr;
}
private:
std::string Id;
internal::Matcher<T> InnerMatcher;
std::string InnerId;
};
TEST(MatchFinder, CanMatchDeclarationsRecursively) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"class X { class Y {}; };", recordDecl(hasName("::X")).bind("X"),
new VerifyMatchOnNode<clang::Decl>(
"X", decl(hasDescendant(recordDecl(hasName("X::Y")).bind("Y"))),
"Y")));
EXPECT_TRUE(matchAndVerifyResultFalse(
"class X { class Y {}; };", recordDecl(hasName("::X")).bind("X"),
new VerifyMatchOnNode<clang::Decl>(
"X", decl(hasDescendant(recordDecl(hasName("X::Z")).bind("Z"))),
"Z")));
}
TEST(MatchFinder, CanMatchStatementsRecursively) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"void f() { if (1) { for (;;) { } } }", ifStmt().bind("if"),
new VerifyMatchOnNode<clang::Stmt>(
"if", stmt(hasDescendant(forStmt().bind("for"))), "for")));
EXPECT_TRUE(matchAndVerifyResultFalse(
"void f() { if (1) { for (;;) { } } }", ifStmt().bind("if"),
new VerifyMatchOnNode<clang::Stmt>(
"if", stmt(hasDescendant(declStmt().bind("decl"))), "decl")));
}
TEST(MatchFinder, CanMatchSingleNodesRecursively) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"class X { class Y {}; };", recordDecl(hasName("::X")).bind("X"),
new VerifyMatchOnNode<clang::Decl>(
"X", recordDecl(has(recordDecl(hasName("X::Y")).bind("Y"))), "Y")));
EXPECT_TRUE(matchAndVerifyResultFalse(
"class X { class Y {}; };", recordDecl(hasName("::X")).bind("X"),
new VerifyMatchOnNode<clang::Decl>(
"X", recordDecl(has(recordDecl(hasName("X::Z")).bind("Z"))), "Z")));
}
template <typename T>
class VerifyAncestorHasChildIsEqual : public BoundNodesCallback {
public:
virtual bool run(const BoundNodes *Nodes) { return false; }
virtual bool run(const BoundNodes *Nodes, ASTContext *Context) {
const T *Node = Nodes->getNodeAs<T>("");
return verify(*Nodes, *Context, Node);
}
bool verify(const BoundNodes &Nodes, ASTContext &Context, const Stmt *Node) {
// Use the original typed pointer to verify we can pass pointers to subtypes
// to equalsNode.
const T *TypedNode = cast<T>(Node);
return selectFirst<T>(
"", match(stmt(hasParent(
stmt(has(stmt(equalsNode(TypedNode)))).bind(""))),
*Node, Context)) != nullptr;
}
bool verify(const BoundNodes &Nodes, ASTContext &Context, const Decl *Node) {
// Use the original typed pointer to verify we can pass pointers to subtypes
// to equalsNode.
const T *TypedNode = cast<T>(Node);
return selectFirst<T>(
"", match(decl(hasParent(
decl(has(decl(equalsNode(TypedNode)))).bind(""))),
*Node, Context)) != nullptr;
}
};
TEST(IsEqualTo, MatchesNodesByIdentity) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"class X { class Y {}; };", recordDecl(hasName("::X::Y")).bind(""),
new VerifyAncestorHasChildIsEqual<CXXRecordDecl>()));
EXPECT_TRUE(matchAndVerifyResultTrue(
"void f() { if (true) if(true) {} }", ifStmt().bind(""),
new VerifyAncestorHasChildIsEqual<IfStmt>()));
}
TEST(MatchFinder, CheckProfiling) {
MatchFinder::MatchFinderOptions Options;
llvm::StringMap<llvm::TimeRecord> Records;
Options.CheckProfiling.emplace(Records);
MatchFinder Finder(std::move(Options));
struct NamedCallback : public MatchFinder::MatchCallback {
void run(const MatchFinder::MatchResult &Result) override {}
StringRef getID() const override { return "MyID"; }
} Callback;
Finder.addMatcher(decl(), &Callback);
std::unique_ptr<FrontendActionFactory> Factory(
newFrontendActionFactory(&Finder));
ASSERT_TRUE(tooling::runToolOnCode(Factory->create(), "int x;"));
EXPECT_EQ(1u, Records.size());
EXPECT_EQ("MyID", Records.begin()->getKey());
}
class VerifyStartOfTranslationUnit : public MatchFinder::MatchCallback {
public:
VerifyStartOfTranslationUnit() : Called(false) {}
virtual void run(const MatchFinder::MatchResult &Result) {
EXPECT_TRUE(Called);
}
virtual void onStartOfTranslationUnit() {
Called = true;
}
bool Called;
};
TEST(MatchFinder, InterceptsStartOfTranslationUnit) {
MatchFinder Finder;
VerifyStartOfTranslationUnit VerifyCallback;
Finder.addMatcher(decl(), &VerifyCallback);
std::unique_ptr<FrontendActionFactory> Factory(
newFrontendActionFactory(&Finder));
ASSERT_TRUE(tooling::runToolOnCode(Factory->create(), "int x;"));
EXPECT_TRUE(VerifyCallback.Called);
VerifyCallback.Called = false;
std::unique_ptr<ASTUnit> AST(tooling::buildASTFromCode("int x;"));
ASSERT_TRUE(AST.get());
Finder.matchAST(AST->getASTContext());
EXPECT_TRUE(VerifyCallback.Called);
}
class VerifyEndOfTranslationUnit : public MatchFinder::MatchCallback {
public:
VerifyEndOfTranslationUnit() : Called(false) {}
virtual void run(const MatchFinder::MatchResult &Result) {
EXPECT_FALSE(Called);
}
virtual void onEndOfTranslationUnit() {
Called = true;
}
bool Called;
};
TEST(MatchFinder, InterceptsEndOfTranslationUnit) {
MatchFinder Finder;
VerifyEndOfTranslationUnit VerifyCallback;
Finder.addMatcher(decl(), &VerifyCallback);
std::unique_ptr<FrontendActionFactory> Factory(
newFrontendActionFactory(&Finder));
ASSERT_TRUE(tooling::runToolOnCode(Factory->create(), "int x;"));
EXPECT_TRUE(VerifyCallback.Called);
VerifyCallback.Called = false;
std::unique_ptr<ASTUnit> AST(tooling::buildASTFromCode("int x;"));
ASSERT_TRUE(AST.get());
Finder.matchAST(AST->getASTContext());
EXPECT_TRUE(VerifyCallback.Called);
}
TEST(EqualsBoundNodeMatcher, QualType) {
EXPECT_TRUE(matches(
"int i = 1;", varDecl(hasType(qualType().bind("type")),
hasInitializer(ignoringParenImpCasts(
hasType(qualType(equalsBoundNode("type"))))))));
EXPECT_TRUE(notMatches("int i = 1.f;",
varDecl(hasType(qualType().bind("type")),
hasInitializer(ignoringParenImpCasts(hasType(
qualType(equalsBoundNode("type"))))))));
}
TEST(EqualsBoundNodeMatcher, NonMatchingTypes) {
EXPECT_TRUE(notMatches(
"int i = 1;", varDecl(namedDecl(hasName("i")).bind("name"),
hasInitializer(ignoringParenImpCasts(
hasType(qualType(equalsBoundNode("type"))))))));
}
TEST(EqualsBoundNodeMatcher, Stmt) {
EXPECT_TRUE(
matches("void f() { if(true) {} }",
stmt(allOf(ifStmt().bind("if"),
hasParent(stmt(has(stmt(equalsBoundNode("if")))))))));
EXPECT_TRUE(notMatches(
"void f() { if(true) { if (true) {} } }",
stmt(allOf(ifStmt().bind("if"), has(stmt(equalsBoundNode("if")))))));
}
TEST(EqualsBoundNodeMatcher, Decl) {
EXPECT_TRUE(matches(
"class X { class Y {}; };",
decl(allOf(recordDecl(hasName("::X::Y")).bind("record"),
hasParent(decl(has(decl(equalsBoundNode("record")))))))));
EXPECT_TRUE(notMatches("class X { class Y {}; };",
decl(allOf(recordDecl(hasName("::X")).bind("record"),
has(decl(equalsBoundNode("record")))))));
}
TEST(EqualsBoundNodeMatcher, Type) {
EXPECT_TRUE(matches(
"class X { int a; int b; };",
recordDecl(
has(fieldDecl(hasName("a"), hasType(type().bind("t")))),
has(fieldDecl(hasName("b"), hasType(type(equalsBoundNode("t"))))))));
EXPECT_TRUE(notMatches(
"class X { int a; double b; };",
recordDecl(
has(fieldDecl(hasName("a"), hasType(type().bind("t")))),
has(fieldDecl(hasName("b"), hasType(type(equalsBoundNode("t"))))))));
}
TEST(EqualsBoundNodeMatcher, UsingForEachDescendant) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"int f() {"
" if (1) {"
" int i = 9;"
" }"
" int j = 10;"
" {"
" float k = 9.0;"
" }"
" return 0;"
"}",
// Look for variable declarations within functions whose type is the same
// as the function return type.
functionDecl(returns(qualType().bind("type")),
forEachDescendant(varDecl(hasType(
qualType(equalsBoundNode("type")))).bind("decl"))),
// Only i and j should match, not k.
new VerifyIdIsBoundTo<VarDecl>("decl", 2)));
}
TEST(EqualsBoundNodeMatcher, FiltersMatchedCombinations) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"void f() {"
" int x;"
" double d;"
" x = d + x - d + x;"
"}",
functionDecl(
hasName("f"), forEachDescendant(varDecl().bind("d")),
forEachDescendant(declRefExpr(to(decl(equalsBoundNode("d")))))),
new VerifyIdIsBoundTo<VarDecl>("d", 5)));
}
TEST(EqualsBoundNodeMatcher, UnlessDescendantsOfAncestorsMatch) {
EXPECT_TRUE(matchAndVerifyResultTrue(
"struct StringRef { int size() const; const char* data() const; };"
"void f(StringRef v) {"
" v.data();"
"}",
memberCallExpr(
callee(methodDecl(hasName("data"))),
on(declRefExpr(to(varDecl(hasType(recordDecl(hasName("StringRef"))))
.bind("var")))),
unless(hasAncestor(stmt(hasDescendant(memberCallExpr(
callee(methodDecl(anyOf(hasName("size"), hasName("length")))),
on(declRefExpr(to(varDecl(equalsBoundNode("var")))))))))))
.bind("data"),
new VerifyIdIsBoundTo<Expr>("data", 1)));
EXPECT_FALSE(matches(
"struct StringRef { int size() const; const char* data() const; };"
"void f(StringRef v) {"
" v.data();"
" v.size();"
"}",
memberCallExpr(
callee(methodDecl(hasName("data"))),
on(declRefExpr(to(varDecl(hasType(recordDecl(hasName("StringRef"))))
.bind("var")))),
unless(hasAncestor(stmt(hasDescendant(memberCallExpr(
callee(methodDecl(anyOf(hasName("size"), hasName("length")))),
on(declRefExpr(to(varDecl(equalsBoundNode("var")))))))))))
.bind("data")));
}
} // end namespace ast_matchers
} // end namespace clang