forked from OSchip/llvm-project
551 lines
18 KiB
C++
551 lines
18 KiB
C++
//===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Small functions that help with Scop and LLVM-IR.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/Support/ScopHelper.h"
|
|
#include "polly/Options.h"
|
|
#include "polly/ScopInfo.h"
|
|
#include "polly/Support/SCEVValidator.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/RegionInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
using namespace llvm;
|
|
using namespace polly;
|
|
|
|
#define DEBUG_TYPE "polly-scop-helper"
|
|
|
|
static cl::opt<bool> PollyAllowErrorBlocks(
|
|
"polly-allow-error-blocks",
|
|
cl::desc("Allow to speculate on the execution of 'error blocks'."),
|
|
cl::Hidden, cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
bool polly::hasInvokeEdge(const PHINode *PN) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i)))
|
|
if (II->getParent() == PN->getIncomingBlock(i))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Ensures that there is just one predecessor to the entry node from outside the
|
|
// region.
|
|
// The identity of the region entry node is preserved.
|
|
static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI,
|
|
RegionInfo *RI) {
|
|
BasicBlock *EnteringBB = R->getEnteringBlock();
|
|
BasicBlock *Entry = R->getEntry();
|
|
|
|
// Before (one of):
|
|
//
|
|
// \ / //
|
|
// EnteringBB //
|
|
// | \------> //
|
|
// \ / | //
|
|
// Entry <--\ Entry <--\ //
|
|
// / \ / / \ / //
|
|
// .... .... //
|
|
|
|
// Create single entry edge if the region has multiple entry edges.
|
|
if (!EnteringBB) {
|
|
SmallVector<BasicBlock *, 4> Preds;
|
|
for (BasicBlock *P : predecessors(Entry))
|
|
if (!R->contains(P))
|
|
Preds.push_back(P);
|
|
|
|
BasicBlock *NewEntering =
|
|
SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI);
|
|
|
|
if (RI) {
|
|
// The exit block of predecessing regions must be changed to NewEntering
|
|
for (BasicBlock *ExitPred : predecessors(NewEntering)) {
|
|
Region *RegionOfPred = RI->getRegionFor(ExitPred);
|
|
if (RegionOfPred->getExit() != Entry)
|
|
continue;
|
|
|
|
while (!RegionOfPred->isTopLevelRegion() &&
|
|
RegionOfPred->getExit() == Entry) {
|
|
RegionOfPred->replaceExit(NewEntering);
|
|
RegionOfPred = RegionOfPred->getParent();
|
|
}
|
|
}
|
|
|
|
// Make all ancestors use EnteringBB as entry; there might be edges to it
|
|
Region *AncestorR = R->getParent();
|
|
RI->setRegionFor(NewEntering, AncestorR);
|
|
while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) {
|
|
AncestorR->replaceEntry(NewEntering);
|
|
AncestorR = AncestorR->getParent();
|
|
}
|
|
}
|
|
|
|
EnteringBB = NewEntering;
|
|
}
|
|
assert(R->getEnteringBlock() == EnteringBB);
|
|
|
|
// After:
|
|
//
|
|
// \ / //
|
|
// EnteringBB //
|
|
// | //
|
|
// | //
|
|
// Entry <--\ //
|
|
// / \ / //
|
|
// .... //
|
|
}
|
|
|
|
// Ensure that the region has a single block that branches to the exit node.
|
|
static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI,
|
|
RegionInfo *RI) {
|
|
BasicBlock *ExitBB = R->getExit();
|
|
BasicBlock *ExitingBB = R->getExitingBlock();
|
|
|
|
// Before:
|
|
//
|
|
// (Region) ______/ //
|
|
// \ | / //
|
|
// ExitBB //
|
|
// / \ //
|
|
|
|
if (!ExitingBB) {
|
|
SmallVector<BasicBlock *, 4> Preds;
|
|
for (BasicBlock *P : predecessors(ExitBB))
|
|
if (R->contains(P))
|
|
Preds.push_back(P);
|
|
|
|
// Preds[0] Preds[1] otherBB //
|
|
// \ | ________/ //
|
|
// \ | / //
|
|
// BB //
|
|
ExitingBB =
|
|
SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI);
|
|
// Preds[0] Preds[1] otherBB //
|
|
// \ / / //
|
|
// BB.region_exiting / //
|
|
// \ / //
|
|
// BB //
|
|
|
|
if (RI)
|
|
RI->setRegionFor(ExitingBB, R);
|
|
|
|
// Change the exit of nested regions, but not the region itself,
|
|
R->replaceExitRecursive(ExitingBB);
|
|
R->replaceExit(ExitBB);
|
|
}
|
|
assert(ExitingBB == R->getExitingBlock());
|
|
|
|
// After:
|
|
//
|
|
// \ / //
|
|
// ExitingBB _____/ //
|
|
// \ / //
|
|
// ExitBB //
|
|
// / \ //
|
|
}
|
|
|
|
void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI,
|
|
RegionInfo *RI) {
|
|
assert(R && !R->isTopLevelRegion());
|
|
assert(!RI || RI == R->getRegionInfo());
|
|
assert((!RI || DT) &&
|
|
"RegionInfo requires DominatorTree to be updated as well");
|
|
|
|
simplifyRegionEntry(R, DT, LI, RI);
|
|
simplifyRegionExit(R, DT, LI, RI);
|
|
assert(R->isSimple());
|
|
}
|
|
|
|
// Split the block into two successive blocks.
|
|
//
|
|
// Like llvm::SplitBlock, but also preserves RegionInfo
|
|
static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt,
|
|
DominatorTree *DT, llvm::LoopInfo *LI,
|
|
RegionInfo *RI) {
|
|
assert(Old && SplitPt);
|
|
|
|
// Before:
|
|
//
|
|
// \ / //
|
|
// Old //
|
|
// / \ //
|
|
|
|
BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI);
|
|
|
|
if (RI) {
|
|
Region *R = RI->getRegionFor(Old);
|
|
RI->setRegionFor(NewBlock, R);
|
|
}
|
|
|
|
// After:
|
|
//
|
|
// \ / //
|
|
// Old //
|
|
// | //
|
|
// NewBlock //
|
|
// / \ //
|
|
|
|
return NewBlock;
|
|
}
|
|
|
|
void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) {
|
|
// Find first non-alloca instruction. Every basic block has a non-alloc
|
|
// instruction, as every well formed basic block has a terminator.
|
|
BasicBlock::iterator I = EntryBlock->begin();
|
|
while (isa<AllocaInst>(I))
|
|
++I;
|
|
|
|
auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
|
auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>();
|
|
auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
|
|
RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>();
|
|
RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr;
|
|
|
|
// splitBlock updates DT, LI and RI.
|
|
splitBlock(EntryBlock, &*I, DT, LI, RI);
|
|
}
|
|
|
|
/// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem
|
|
/// instruction but just use it, if it is referenced as a SCEVUnknown. We want
|
|
/// however to generate new code if the instruction is in the analyzed region
|
|
/// and we generate code outside/in front of that region. Hence, we generate the
|
|
/// code for the SDiv/SRem operands in front of the analyzed region and then
|
|
/// create a new SDiv/SRem operation there too.
|
|
struct ScopExpander : SCEVVisitor<ScopExpander, const SCEV *> {
|
|
friend struct SCEVVisitor<ScopExpander, const SCEV *>;
|
|
|
|
explicit ScopExpander(const Region &R, ScalarEvolution &SE,
|
|
const DataLayout &DL, const char *Name, ValueMapT *VMap,
|
|
BasicBlock *RTCBB)
|
|
: Expander(SCEVExpander(SE, DL, Name)), SE(SE), Name(Name), R(R),
|
|
VMap(VMap), RTCBB(RTCBB) {}
|
|
|
|
Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) {
|
|
// If we generate code in the region we will immediately fall back to the
|
|
// SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if
|
|
// needed replace them by copies computed in the entering block.
|
|
if (!R.contains(I))
|
|
E = visit(E);
|
|
return Expander.expandCodeFor(E, Ty, I);
|
|
}
|
|
|
|
private:
|
|
SCEVExpander Expander;
|
|
ScalarEvolution &SE;
|
|
const char *Name;
|
|
const Region &R;
|
|
ValueMapT *VMap;
|
|
BasicBlock *RTCBB;
|
|
|
|
const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst,
|
|
Instruction *IP) {
|
|
if (!Inst || !R.contains(Inst))
|
|
return E;
|
|
|
|
assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() &&
|
|
!isa<PHINode>(Inst));
|
|
|
|
auto *InstClone = Inst->clone();
|
|
for (auto &Op : Inst->operands()) {
|
|
assert(SE.isSCEVable(Op->getType()));
|
|
auto *OpSCEV = SE.getSCEV(Op);
|
|
auto *OpClone = expandCodeFor(OpSCEV, Op->getType(), IP);
|
|
InstClone->replaceUsesOfWith(Op, OpClone);
|
|
}
|
|
|
|
InstClone->setName(Name + Inst->getName());
|
|
InstClone->insertBefore(IP);
|
|
return SE.getSCEV(InstClone);
|
|
}
|
|
|
|
const SCEV *visitUnknown(const SCEVUnknown *E) {
|
|
|
|
// If a value mapping was given try if the underlying value is remapped.
|
|
Value *NewVal = VMap ? VMap->lookup(E->getValue()) : nullptr;
|
|
if (NewVal) {
|
|
auto *NewE = SE.getSCEV(NewVal);
|
|
|
|
// While the mapped value might be different the SCEV representation might
|
|
// not be. To this end we will check before we go into recursion here.
|
|
if (E != NewE)
|
|
return visit(NewE);
|
|
}
|
|
|
|
Instruction *Inst = dyn_cast<Instruction>(E->getValue());
|
|
Instruction *IP;
|
|
if (Inst && !R.contains(Inst))
|
|
IP = Inst;
|
|
else if (Inst && RTCBB->getParent() == Inst->getFunction())
|
|
IP = RTCBB->getTerminator();
|
|
else
|
|
IP = RTCBB->getParent()->getEntryBlock().getTerminator();
|
|
|
|
if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
|
|
Inst->getOpcode() != Instruction::SDiv))
|
|
return visitGenericInst(E, Inst, IP);
|
|
|
|
const SCEV *LHSScev = SE.getSCEV(Inst->getOperand(0));
|
|
const SCEV *RHSScev = SE.getSCEV(Inst->getOperand(1));
|
|
|
|
if (!SE.isKnownNonZero(RHSScev))
|
|
RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1));
|
|
|
|
Value *LHS = expandCodeFor(LHSScev, E->getType(), IP);
|
|
Value *RHS = expandCodeFor(RHSScev, E->getType(), IP);
|
|
|
|
Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(),
|
|
LHS, RHS, Inst->getName() + Name, IP);
|
|
return SE.getSCEV(Inst);
|
|
}
|
|
|
|
/// The following functions will just traverse the SCEV and rebuild it with
|
|
/// the new operands returned by the traversal.
|
|
///
|
|
///{
|
|
const SCEV *visitConstant(const SCEVConstant *E) { return E; }
|
|
const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) {
|
|
return SE.getTruncateExpr(visit(E->getOperand()), E->getType());
|
|
}
|
|
const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) {
|
|
return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType());
|
|
}
|
|
const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) {
|
|
return SE.getSignExtendExpr(visit(E->getOperand()), E->getType());
|
|
}
|
|
const SCEV *visitUDivExpr(const SCEVUDivExpr *E) {
|
|
auto *RHSScev = visit(E->getRHS());
|
|
if (!SE.isKnownNonZero(RHSScev))
|
|
RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1));
|
|
return SE.getUDivExpr(visit(E->getLHS()), RHSScev);
|
|
}
|
|
const SCEV *visitAddExpr(const SCEVAddExpr *E) {
|
|
SmallVector<const SCEV *, 4> NewOps;
|
|
for (const SCEV *Op : E->operands())
|
|
NewOps.push_back(visit(Op));
|
|
return SE.getAddExpr(NewOps);
|
|
}
|
|
const SCEV *visitMulExpr(const SCEVMulExpr *E) {
|
|
SmallVector<const SCEV *, 4> NewOps;
|
|
for (const SCEV *Op : E->operands())
|
|
NewOps.push_back(visit(Op));
|
|
return SE.getMulExpr(NewOps);
|
|
}
|
|
const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) {
|
|
SmallVector<const SCEV *, 4> NewOps;
|
|
for (const SCEV *Op : E->operands())
|
|
NewOps.push_back(visit(Op));
|
|
return SE.getUMaxExpr(NewOps);
|
|
}
|
|
const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) {
|
|
SmallVector<const SCEV *, 4> NewOps;
|
|
for (const SCEV *Op : E->operands())
|
|
NewOps.push_back(visit(Op));
|
|
return SE.getSMaxExpr(NewOps);
|
|
}
|
|
const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
|
|
SmallVector<const SCEV *, 4> NewOps;
|
|
for (const SCEV *Op : E->operands())
|
|
NewOps.push_back(visit(Op));
|
|
return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags());
|
|
}
|
|
///}
|
|
};
|
|
|
|
Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL,
|
|
const char *Name, const SCEV *E, Type *Ty,
|
|
Instruction *IP, ValueMapT *VMap,
|
|
BasicBlock *RTCBB) {
|
|
ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap, RTCBB);
|
|
return Expander.expandCodeFor(E, Ty, IP);
|
|
}
|
|
|
|
bool polly::isErrorBlock(BasicBlock &BB, const Region &R, LoopInfo &LI,
|
|
const DominatorTree &DT) {
|
|
if (!PollyAllowErrorBlocks)
|
|
return false;
|
|
|
|
if (isa<UnreachableInst>(BB.getTerminator()))
|
|
return true;
|
|
|
|
if (LI.isLoopHeader(&BB))
|
|
return false;
|
|
|
|
// Basic blocks that are always executed are not considered error blocks,
|
|
// as their execution can not be a rare event.
|
|
bool DominatesAllPredecessors = true;
|
|
for (auto Pred : predecessors(R.getExit()))
|
|
if (R.contains(Pred) && !DT.dominates(&BB, Pred))
|
|
DominatesAllPredecessors = false;
|
|
|
|
if (DominatesAllPredecessors)
|
|
return false;
|
|
|
|
// FIXME: This is a simple heuristic to determine if the load is executed
|
|
// in a conditional. However, we actually would need the control
|
|
// condition, i.e., the post dominance frontier. Alternatively we
|
|
// could walk up the dominance tree until we find a block that is
|
|
// not post dominated by the load and check if it is a conditional
|
|
// or a loop header.
|
|
auto *DTNode = DT.getNode(&BB);
|
|
auto *IDomBB = DTNode->getIDom()->getBlock();
|
|
if (LI.isLoopHeader(IDomBB))
|
|
return false;
|
|
|
|
for (Instruction &Inst : BB)
|
|
if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
|
|
if (isIgnoredIntrinsic(CI))
|
|
return false;
|
|
|
|
if (!CI->doesNotAccessMemory())
|
|
return true;
|
|
if (CI->doesNotReturn())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Value *polly::getConditionFromTerminator(TerminatorInst *TI) {
|
|
if (BranchInst *BR = dyn_cast<BranchInst>(TI)) {
|
|
if (BR->isUnconditional())
|
|
return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext()));
|
|
|
|
return BR->getCondition();
|
|
}
|
|
|
|
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
|
|
return SI->getCondition();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI,
|
|
ScalarEvolution &SE) {
|
|
Loop *L = LI.getLoopFor(LInst->getParent());
|
|
const SCEV *PtrSCEV = SE.getSCEVAtScope(LInst->getPointerOperand(), L);
|
|
while (L && R.contains(L)) {
|
|
if (!SE.isLoopInvariant(PtrSCEV, L))
|
|
return false;
|
|
L = L->getParentLoop();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool polly::isIgnoredIntrinsic(const Value *V) {
|
|
if (auto *IT = dyn_cast<IntrinsicInst>(V)) {
|
|
switch (IT->getIntrinsicID()) {
|
|
// Lifetime markers are supported/ignored.
|
|
case llvm::Intrinsic::lifetime_start:
|
|
case llvm::Intrinsic::lifetime_end:
|
|
// Invariant markers are supported/ignored.
|
|
case llvm::Intrinsic::invariant_start:
|
|
case llvm::Intrinsic::invariant_end:
|
|
// Some misc annotations are supported/ignored.
|
|
case llvm::Intrinsic::var_annotation:
|
|
case llvm::Intrinsic::ptr_annotation:
|
|
case llvm::Intrinsic::annotation:
|
|
case llvm::Intrinsic::donothing:
|
|
case llvm::Intrinsic::assume:
|
|
case llvm::Intrinsic::expect:
|
|
// Some debug info intrisics are supported/ignored.
|
|
case llvm::Intrinsic::dbg_value:
|
|
case llvm::Intrinsic::dbg_declare:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool polly::canSynthesize(const Value *V, const Scop &S,
|
|
const llvm::LoopInfo *LI, ScalarEvolution *SE,
|
|
Loop *Scope) {
|
|
if (!V || !SE->isSCEVable(V->getType()))
|
|
return false;
|
|
|
|
if (const SCEV *Scev = SE->getSCEVAtScope(const_cast<Value *>(V), Scope))
|
|
if (!isa<SCEVCouldNotCompute>(Scev))
|
|
if (!hasScalarDepsInsideRegion(Scev, &S.getRegion(), Scope, false))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
llvm::BasicBlock *polly::getUseBlock(llvm::Use &U) {
|
|
Instruction *UI = dyn_cast<Instruction>(U.getUser());
|
|
if (!UI)
|
|
return nullptr;
|
|
|
|
if (PHINode *PHI = dyn_cast<PHINode>(UI))
|
|
return PHI->getIncomingBlock(U);
|
|
|
|
return UI->getParent();
|
|
}
|
|
|
|
std::tuple<std::vector<const SCEV *>, std::vector<int>>
|
|
polly::getIndexExpressionsFromGEP(GetElementPtrInst *GEP, ScalarEvolution &SE) {
|
|
std::vector<const SCEV *> Subscripts;
|
|
std::vector<int> Sizes;
|
|
|
|
Type *Ty = GEP->getPointerOperandType();
|
|
|
|
bool DroppedFirstDim = false;
|
|
|
|
for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
|
|
|
|
const SCEV *Expr = SE.getSCEV(GEP->getOperand(i));
|
|
|
|
if (i == 1) {
|
|
if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
|
|
Ty = PtrTy->getElementType();
|
|
} else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
|
|
Ty = ArrayTy->getElementType();
|
|
} else {
|
|
Subscripts.clear();
|
|
Sizes.clear();
|
|
break;
|
|
}
|
|
if (auto *Const = dyn_cast<SCEVConstant>(Expr))
|
|
if (Const->getValue()->isZero()) {
|
|
DroppedFirstDim = true;
|
|
continue;
|
|
}
|
|
Subscripts.push_back(Expr);
|
|
continue;
|
|
}
|
|
|
|
auto *ArrayTy = dyn_cast<ArrayType>(Ty);
|
|
if (!ArrayTy) {
|
|
Subscripts.clear();
|
|
Sizes.clear();
|
|
break;
|
|
}
|
|
|
|
Subscripts.push_back(Expr);
|
|
if (!(DroppedFirstDim && i == 2))
|
|
Sizes.push_back(ArrayTy->getNumElements());
|
|
|
|
Ty = ArrayTy->getElementType();
|
|
}
|
|
|
|
return std::make_tuple(Subscripts, Sizes);
|
|
}
|