forked from OSchip/llvm-project
875 lines
28 KiB
C++
875 lines
28 KiB
C++
//===-- SILowerI1Copies.cpp - Lower I1 Copies -----------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass lowers all occurrences of i1 values (with a vreg_1 register class)
|
|
// to lane masks (32 / 64-bit scalar registers). The pass assumes machine SSA
|
|
// form and a wave-level control flow graph.
|
|
//
|
|
// Before this pass, values that are semantically i1 and are defined and used
|
|
// within the same basic block are already represented as lane masks in scalar
|
|
// registers. However, values that cross basic blocks are always transferred
|
|
// between basic blocks in vreg_1 virtual registers and are lowered by this
|
|
// pass.
|
|
//
|
|
// The only instructions that use or define vreg_1 virtual registers are COPY,
|
|
// PHI, and IMPLICIT_DEF.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachinePostDominators.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineSSAUpdater.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
#define DEBUG_TYPE "si-i1-copies"
|
|
|
|
using namespace llvm;
|
|
|
|
static unsigned createLaneMaskReg(MachineFunction &MF);
|
|
static unsigned insertUndefLaneMask(MachineBasicBlock &MBB);
|
|
|
|
namespace {
|
|
|
|
class SILowerI1Copies : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
private:
|
|
bool IsWave32 = false;
|
|
MachineFunction *MF = nullptr;
|
|
MachineDominatorTree *DT = nullptr;
|
|
MachinePostDominatorTree *PDT = nullptr;
|
|
MachineRegisterInfo *MRI = nullptr;
|
|
const GCNSubtarget *ST = nullptr;
|
|
const SIInstrInfo *TII = nullptr;
|
|
|
|
unsigned ExecReg;
|
|
unsigned MovOp;
|
|
unsigned AndOp;
|
|
unsigned OrOp;
|
|
unsigned XorOp;
|
|
unsigned AndN2Op;
|
|
unsigned OrN2Op;
|
|
|
|
DenseSet<unsigned> ConstrainRegs;
|
|
|
|
public:
|
|
SILowerI1Copies() : MachineFunctionPass(ID) {
|
|
initializeSILowerI1CopiesPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
StringRef getPassName() const override { return "SI Lower i1 Copies"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addRequired<MachinePostDominatorTree>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
private:
|
|
void lowerCopiesFromI1();
|
|
void lowerPhis();
|
|
void lowerCopiesToI1();
|
|
bool isConstantLaneMask(unsigned Reg, bool &Val) const;
|
|
void buildMergeLaneMasks(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I, const DebugLoc &DL,
|
|
unsigned DstReg, unsigned PrevReg, unsigned CurReg);
|
|
MachineBasicBlock::iterator
|
|
getSaluInsertionAtEnd(MachineBasicBlock &MBB) const;
|
|
|
|
bool isVreg1(unsigned Reg) const {
|
|
return Register::isVirtualRegister(Reg) &&
|
|
MRI->getRegClass(Reg) == &AMDGPU::VReg_1RegClass;
|
|
}
|
|
|
|
bool isLaneMaskReg(unsigned Reg) const {
|
|
return TII->getRegisterInfo().isSGPRReg(*MRI, Reg) &&
|
|
TII->getRegisterInfo().getRegSizeInBits(Reg, *MRI) ==
|
|
ST->getWavefrontSize();
|
|
}
|
|
};
|
|
|
|
/// Helper class that determines the relationship between incoming values of a
|
|
/// phi in the control flow graph to determine where an incoming value can
|
|
/// simply be taken as a scalar lane mask as-is, and where it needs to be
|
|
/// merged with another, previously defined lane mask.
|
|
///
|
|
/// The approach is as follows:
|
|
/// - Determine all basic blocks which, starting from the incoming blocks,
|
|
/// a wave may reach before entering the def block (the block containing the
|
|
/// phi).
|
|
/// - If an incoming block has no predecessors in this set, we can take the
|
|
/// incoming value as a scalar lane mask as-is.
|
|
/// -- A special case of this is when the def block has a self-loop.
|
|
/// - Otherwise, the incoming value needs to be merged with a previously
|
|
/// defined lane mask.
|
|
/// - If there is a path into the set of reachable blocks that does _not_ go
|
|
/// through an incoming block where we can take the scalar lane mask as-is,
|
|
/// we need to invent an available value for the SSAUpdater. Choices are
|
|
/// 0 and undef, with differing consequences for how to merge values etc.
|
|
///
|
|
/// TODO: We could use region analysis to quickly skip over SESE regions during
|
|
/// the traversal.
|
|
///
|
|
class PhiIncomingAnalysis {
|
|
MachinePostDominatorTree &PDT;
|
|
|
|
// For each reachable basic block, whether it is a source in the induced
|
|
// subgraph of the CFG.
|
|
DenseMap<MachineBasicBlock *, bool> ReachableMap;
|
|
SmallVector<MachineBasicBlock *, 4> ReachableOrdered;
|
|
SmallVector<MachineBasicBlock *, 4> Stack;
|
|
SmallVector<MachineBasicBlock *, 4> Predecessors;
|
|
|
|
public:
|
|
PhiIncomingAnalysis(MachinePostDominatorTree &PDT) : PDT(PDT) {}
|
|
|
|
/// Returns whether \p MBB is a source in the induced subgraph of reachable
|
|
/// blocks.
|
|
bool isSource(MachineBasicBlock &MBB) const {
|
|
return ReachableMap.find(&MBB)->second;
|
|
}
|
|
|
|
ArrayRef<MachineBasicBlock *> predecessors() const { return Predecessors; }
|
|
|
|
void analyze(MachineBasicBlock &DefBlock,
|
|
ArrayRef<MachineBasicBlock *> IncomingBlocks) {
|
|
assert(Stack.empty());
|
|
ReachableMap.clear();
|
|
ReachableOrdered.clear();
|
|
Predecessors.clear();
|
|
|
|
// Insert the def block first, so that it acts as an end point for the
|
|
// traversal.
|
|
ReachableMap.try_emplace(&DefBlock, false);
|
|
ReachableOrdered.push_back(&DefBlock);
|
|
|
|
for (MachineBasicBlock *MBB : IncomingBlocks) {
|
|
if (MBB == &DefBlock) {
|
|
ReachableMap[&DefBlock] = true; // self-loop on DefBlock
|
|
continue;
|
|
}
|
|
|
|
ReachableMap.try_emplace(MBB, false);
|
|
ReachableOrdered.push_back(MBB);
|
|
|
|
// If this block has a divergent terminator and the def block is its
|
|
// post-dominator, the wave may first visit the other successors.
|
|
bool Divergent = false;
|
|
for (MachineInstr &MI : MBB->terminators()) {
|
|
if (MI.getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO ||
|
|
MI.getOpcode() == AMDGPU::SI_IF ||
|
|
MI.getOpcode() == AMDGPU::SI_ELSE ||
|
|
MI.getOpcode() == AMDGPU::SI_LOOP) {
|
|
Divergent = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Divergent && PDT.dominates(&DefBlock, MBB)) {
|
|
for (MachineBasicBlock *Succ : MBB->successors())
|
|
Stack.push_back(Succ);
|
|
}
|
|
}
|
|
|
|
while (!Stack.empty()) {
|
|
MachineBasicBlock *MBB = Stack.pop_back_val();
|
|
if (!ReachableMap.try_emplace(MBB, false).second)
|
|
continue;
|
|
ReachableOrdered.push_back(MBB);
|
|
|
|
for (MachineBasicBlock *Succ : MBB->successors())
|
|
Stack.push_back(Succ);
|
|
}
|
|
|
|
for (MachineBasicBlock *MBB : ReachableOrdered) {
|
|
bool HaveReachablePred = false;
|
|
for (MachineBasicBlock *Pred : MBB->predecessors()) {
|
|
if (ReachableMap.count(Pred)) {
|
|
HaveReachablePred = true;
|
|
} else {
|
|
Stack.push_back(Pred);
|
|
}
|
|
}
|
|
if (!HaveReachablePred)
|
|
ReachableMap[MBB] = true;
|
|
if (HaveReachablePred) {
|
|
for (MachineBasicBlock *UnreachablePred : Stack) {
|
|
if (llvm::find(Predecessors, UnreachablePred) == Predecessors.end())
|
|
Predecessors.push_back(UnreachablePred);
|
|
}
|
|
}
|
|
Stack.clear();
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Helper class that detects loops which require us to lower an i1 COPY into
|
|
/// bitwise manipulation.
|
|
///
|
|
/// Unfortunately, we cannot use LoopInfo because LoopInfo does not distinguish
|
|
/// between loops with the same header. Consider this example:
|
|
///
|
|
/// A-+-+
|
|
/// | | |
|
|
/// B-+ |
|
|
/// | |
|
|
/// C---+
|
|
///
|
|
/// A is the header of a loop containing A, B, and C as far as LoopInfo is
|
|
/// concerned. However, an i1 COPY in B that is used in C must be lowered to
|
|
/// bitwise operations to combine results from different loop iterations when
|
|
/// B has a divergent branch (since by default we will compile this code such
|
|
/// that threads in a wave are merged at the entry of C).
|
|
///
|
|
/// The following rule is implemented to determine whether bitwise operations
|
|
/// are required: use the bitwise lowering for a def in block B if a backward
|
|
/// edge to B is reachable without going through the nearest common
|
|
/// post-dominator of B and all uses of the def.
|
|
///
|
|
/// TODO: This rule is conservative because it does not check whether the
|
|
/// relevant branches are actually divergent.
|
|
///
|
|
/// The class is designed to cache the CFG traversal so that it can be re-used
|
|
/// for multiple defs within the same basic block.
|
|
///
|
|
/// TODO: We could use region analysis to quickly skip over SESE regions during
|
|
/// the traversal.
|
|
///
|
|
class LoopFinder {
|
|
MachineDominatorTree &DT;
|
|
MachinePostDominatorTree &PDT;
|
|
|
|
// All visited / reachable block, tagged by level (level 0 is the def block,
|
|
// level 1 are all blocks reachable including but not going through the def
|
|
// block's IPDOM, etc.).
|
|
DenseMap<MachineBasicBlock *, unsigned> Visited;
|
|
|
|
// Nearest common dominator of all visited blocks by level (level 0 is the
|
|
// def block). Used for seeding the SSAUpdater.
|
|
SmallVector<MachineBasicBlock *, 4> CommonDominators;
|
|
|
|
// Post-dominator of all visited blocks.
|
|
MachineBasicBlock *VisitedPostDom = nullptr;
|
|
|
|
// Level at which a loop was found: 0 is not possible; 1 = a backward edge is
|
|
// reachable without going through the IPDOM of the def block (if the IPDOM
|
|
// itself has an edge to the def block, the loop level is 2), etc.
|
|
unsigned FoundLoopLevel = ~0u;
|
|
|
|
MachineBasicBlock *DefBlock = nullptr;
|
|
SmallVector<MachineBasicBlock *, 4> Stack;
|
|
SmallVector<MachineBasicBlock *, 4> NextLevel;
|
|
|
|
public:
|
|
LoopFinder(MachineDominatorTree &DT, MachinePostDominatorTree &PDT)
|
|
: DT(DT), PDT(PDT) {}
|
|
|
|
void initialize(MachineBasicBlock &MBB) {
|
|
Visited.clear();
|
|
CommonDominators.clear();
|
|
Stack.clear();
|
|
NextLevel.clear();
|
|
VisitedPostDom = nullptr;
|
|
FoundLoopLevel = ~0u;
|
|
|
|
DefBlock = &MBB;
|
|
}
|
|
|
|
/// Check whether a backward edge can be reached without going through the
|
|
/// given \p PostDom of the def block.
|
|
///
|
|
/// Return the level of \p PostDom if a loop was found, or 0 otherwise.
|
|
unsigned findLoop(MachineBasicBlock *PostDom) {
|
|
MachineDomTreeNode *PDNode = PDT.getNode(DefBlock);
|
|
|
|
if (!VisitedPostDom)
|
|
advanceLevel();
|
|
|
|
unsigned Level = 0;
|
|
while (PDNode->getBlock() != PostDom) {
|
|
if (PDNode->getBlock() == VisitedPostDom)
|
|
advanceLevel();
|
|
PDNode = PDNode->getIDom();
|
|
Level++;
|
|
if (FoundLoopLevel == Level)
|
|
return Level;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// Add undef values dominating the loop and the optionally given additional
|
|
/// blocks, so that the SSA updater doesn't have to search all the way to the
|
|
/// function entry.
|
|
void addLoopEntries(unsigned LoopLevel, MachineSSAUpdater &SSAUpdater,
|
|
ArrayRef<MachineBasicBlock *> Blocks = {}) {
|
|
assert(LoopLevel < CommonDominators.size());
|
|
|
|
MachineBasicBlock *Dom = CommonDominators[LoopLevel];
|
|
for (MachineBasicBlock *MBB : Blocks)
|
|
Dom = DT.findNearestCommonDominator(Dom, MBB);
|
|
|
|
if (!inLoopLevel(*Dom, LoopLevel, Blocks)) {
|
|
SSAUpdater.AddAvailableValue(Dom, insertUndefLaneMask(*Dom));
|
|
} else {
|
|
// The dominator is part of the loop or the given blocks, so add the
|
|
// undef value to unreachable predecessors instead.
|
|
for (MachineBasicBlock *Pred : Dom->predecessors()) {
|
|
if (!inLoopLevel(*Pred, LoopLevel, Blocks))
|
|
SSAUpdater.AddAvailableValue(Pred, insertUndefLaneMask(*Pred));
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
bool inLoopLevel(MachineBasicBlock &MBB, unsigned LoopLevel,
|
|
ArrayRef<MachineBasicBlock *> Blocks) const {
|
|
auto DomIt = Visited.find(&MBB);
|
|
if (DomIt != Visited.end() && DomIt->second <= LoopLevel)
|
|
return true;
|
|
|
|
if (llvm::find(Blocks, &MBB) != Blocks.end())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void advanceLevel() {
|
|
MachineBasicBlock *VisitedDom;
|
|
|
|
if (!VisitedPostDom) {
|
|
VisitedPostDom = DefBlock;
|
|
VisitedDom = DefBlock;
|
|
Stack.push_back(DefBlock);
|
|
} else {
|
|
VisitedPostDom = PDT.getNode(VisitedPostDom)->getIDom()->getBlock();
|
|
VisitedDom = CommonDominators.back();
|
|
|
|
for (unsigned i = 0; i < NextLevel.size();) {
|
|
if (PDT.dominates(VisitedPostDom, NextLevel[i])) {
|
|
Stack.push_back(NextLevel[i]);
|
|
|
|
NextLevel[i] = NextLevel.back();
|
|
NextLevel.pop_back();
|
|
} else {
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned Level = CommonDominators.size();
|
|
while (!Stack.empty()) {
|
|
MachineBasicBlock *MBB = Stack.pop_back_val();
|
|
if (!PDT.dominates(VisitedPostDom, MBB))
|
|
NextLevel.push_back(MBB);
|
|
|
|
Visited[MBB] = Level;
|
|
VisitedDom = DT.findNearestCommonDominator(VisitedDom, MBB);
|
|
|
|
for (MachineBasicBlock *Succ : MBB->successors()) {
|
|
if (Succ == DefBlock) {
|
|
if (MBB == VisitedPostDom)
|
|
FoundLoopLevel = std::min(FoundLoopLevel, Level + 1);
|
|
else
|
|
FoundLoopLevel = std::min(FoundLoopLevel, Level);
|
|
continue;
|
|
}
|
|
|
|
if (Visited.try_emplace(Succ, ~0u).second) {
|
|
if (MBB == VisitedPostDom)
|
|
NextLevel.push_back(Succ);
|
|
else
|
|
Stack.push_back(Succ);
|
|
}
|
|
}
|
|
}
|
|
|
|
CommonDominators.push_back(VisitedDom);
|
|
}
|
|
};
|
|
|
|
} // End anonymous namespace.
|
|
|
|
INITIALIZE_PASS_BEGIN(SILowerI1Copies, DEBUG_TYPE, "SI Lower i1 Copies", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
|
|
INITIALIZE_PASS_END(SILowerI1Copies, DEBUG_TYPE, "SI Lower i1 Copies", false,
|
|
false)
|
|
|
|
char SILowerI1Copies::ID = 0;
|
|
|
|
char &llvm::SILowerI1CopiesID = SILowerI1Copies::ID;
|
|
|
|
FunctionPass *llvm::createSILowerI1CopiesPass() {
|
|
return new SILowerI1Copies();
|
|
}
|
|
|
|
static unsigned createLaneMaskReg(MachineFunction &MF) {
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
return MRI.createVirtualRegister(ST.isWave32() ? &AMDGPU::SReg_32RegClass
|
|
: &AMDGPU::SReg_64RegClass);
|
|
}
|
|
|
|
static unsigned insertUndefLaneMask(MachineBasicBlock &MBB) {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
unsigned UndefReg = createLaneMaskReg(MF);
|
|
BuildMI(MBB, MBB.getFirstTerminator(), {}, TII->get(AMDGPU::IMPLICIT_DEF),
|
|
UndefReg);
|
|
return UndefReg;
|
|
}
|
|
|
|
/// Lower all instructions that def or use vreg_1 registers.
|
|
///
|
|
/// In a first pass, we lower COPYs from vreg_1 to vector registers, as can
|
|
/// occur around inline assembly. We do this first, before vreg_1 registers
|
|
/// are changed to scalar mask registers.
|
|
///
|
|
/// Then we lower all defs of vreg_1 registers. Phi nodes are lowered before
|
|
/// all others, because phi lowering looks through copies and can therefore
|
|
/// often make copy lowering unnecessary.
|
|
bool SILowerI1Copies::runOnMachineFunction(MachineFunction &TheMF) {
|
|
MF = &TheMF;
|
|
MRI = &MF->getRegInfo();
|
|
DT = &getAnalysis<MachineDominatorTree>();
|
|
PDT = &getAnalysis<MachinePostDominatorTree>();
|
|
|
|
ST = &MF->getSubtarget<GCNSubtarget>();
|
|
TII = ST->getInstrInfo();
|
|
IsWave32 = ST->isWave32();
|
|
|
|
if (IsWave32) {
|
|
ExecReg = AMDGPU::EXEC_LO;
|
|
MovOp = AMDGPU::S_MOV_B32;
|
|
AndOp = AMDGPU::S_AND_B32;
|
|
OrOp = AMDGPU::S_OR_B32;
|
|
XorOp = AMDGPU::S_XOR_B32;
|
|
AndN2Op = AMDGPU::S_ANDN2_B32;
|
|
OrN2Op = AMDGPU::S_ORN2_B32;
|
|
} else {
|
|
ExecReg = AMDGPU::EXEC;
|
|
MovOp = AMDGPU::S_MOV_B64;
|
|
AndOp = AMDGPU::S_AND_B64;
|
|
OrOp = AMDGPU::S_OR_B64;
|
|
XorOp = AMDGPU::S_XOR_B64;
|
|
AndN2Op = AMDGPU::S_ANDN2_B64;
|
|
OrN2Op = AMDGPU::S_ORN2_B64;
|
|
}
|
|
|
|
lowerCopiesFromI1();
|
|
lowerPhis();
|
|
lowerCopiesToI1();
|
|
|
|
for (unsigned Reg : ConstrainRegs)
|
|
MRI->constrainRegClass(Reg, &AMDGPU::SReg_1_XEXECRegClass);
|
|
ConstrainRegs.clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static bool isVRegCompatibleReg(const SIRegisterInfo &TRI,
|
|
const MachineRegisterInfo &MRI,
|
|
Register Reg) {
|
|
unsigned Size = TRI.getRegSizeInBits(Reg, MRI);
|
|
return Size == 1 || Size == 32;
|
|
}
|
|
#endif
|
|
|
|
void SILowerI1Copies::lowerCopiesFromI1() {
|
|
SmallVector<MachineInstr *, 4> DeadCopies;
|
|
|
|
for (MachineBasicBlock &MBB : *MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (MI.getOpcode() != AMDGPU::COPY)
|
|
continue;
|
|
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
if (!isVreg1(SrcReg))
|
|
continue;
|
|
|
|
if (isLaneMaskReg(DstReg) || isVreg1(DstReg))
|
|
continue;
|
|
|
|
// Copy into a 32-bit vector register.
|
|
LLVM_DEBUG(dbgs() << "Lower copy from i1: " << MI);
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
assert(isVRegCompatibleReg(TII->getRegisterInfo(), *MRI, DstReg));
|
|
assert(!MI.getOperand(0).getSubReg());
|
|
|
|
ConstrainRegs.insert(SrcReg);
|
|
BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
|
|
.addImm(0)
|
|
.addImm(0)
|
|
.addImm(0)
|
|
.addImm(-1)
|
|
.addReg(SrcReg);
|
|
DeadCopies.push_back(&MI);
|
|
}
|
|
|
|
for (MachineInstr *MI : DeadCopies)
|
|
MI->eraseFromParent();
|
|
DeadCopies.clear();
|
|
}
|
|
}
|
|
|
|
void SILowerI1Copies::lowerPhis() {
|
|
MachineSSAUpdater SSAUpdater(*MF);
|
|
LoopFinder LF(*DT, *PDT);
|
|
PhiIncomingAnalysis PIA(*PDT);
|
|
SmallVector<MachineInstr *, 4> Vreg1Phis;
|
|
SmallVector<MachineBasicBlock *, 4> IncomingBlocks;
|
|
SmallVector<unsigned, 4> IncomingRegs;
|
|
SmallVector<unsigned, 4> IncomingUpdated;
|
|
#ifndef NDEBUG
|
|
DenseSet<unsigned> PhiRegisters;
|
|
#endif
|
|
|
|
for (MachineBasicBlock &MBB : *MF) {
|
|
for (MachineInstr &MI : MBB.phis()) {
|
|
if (isVreg1(MI.getOperand(0).getReg()))
|
|
Vreg1Phis.push_back(&MI);
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock *PrevMBB = nullptr;
|
|
for (MachineInstr *MI : Vreg1Phis) {
|
|
MachineBasicBlock &MBB = *MI->getParent();
|
|
if (&MBB != PrevMBB) {
|
|
LF.initialize(MBB);
|
|
PrevMBB = &MBB;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Lower PHI: " << *MI);
|
|
|
|
Register DstReg = MI->getOperand(0).getReg();
|
|
MRI->setRegClass(DstReg, IsWave32 ? &AMDGPU::SReg_32RegClass
|
|
: &AMDGPU::SReg_64RegClass);
|
|
|
|
// Collect incoming values.
|
|
for (unsigned i = 1; i < MI->getNumOperands(); i += 2) {
|
|
assert(i + 1 < MI->getNumOperands());
|
|
Register IncomingReg = MI->getOperand(i).getReg();
|
|
MachineBasicBlock *IncomingMBB = MI->getOperand(i + 1).getMBB();
|
|
MachineInstr *IncomingDef = MRI->getUniqueVRegDef(IncomingReg);
|
|
|
|
if (IncomingDef->getOpcode() == AMDGPU::COPY) {
|
|
IncomingReg = IncomingDef->getOperand(1).getReg();
|
|
assert(isLaneMaskReg(IncomingReg) || isVreg1(IncomingReg));
|
|
assert(!IncomingDef->getOperand(1).getSubReg());
|
|
} else if (IncomingDef->getOpcode() == AMDGPU::IMPLICIT_DEF) {
|
|
continue;
|
|
} else {
|
|
assert(IncomingDef->isPHI() || PhiRegisters.count(IncomingReg));
|
|
}
|
|
|
|
IncomingBlocks.push_back(IncomingMBB);
|
|
IncomingRegs.push_back(IncomingReg);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
PhiRegisters.insert(DstReg);
|
|
#endif
|
|
|
|
// Phis in a loop that are observed outside the loop receive a simple but
|
|
// conservatively correct treatment.
|
|
std::vector<MachineBasicBlock *> DomBlocks = {&MBB};
|
|
for (MachineInstr &Use : MRI->use_instructions(DstReg))
|
|
DomBlocks.push_back(Use.getParent());
|
|
|
|
MachineBasicBlock *PostDomBound =
|
|
PDT->findNearestCommonDominator(DomBlocks);
|
|
unsigned FoundLoopLevel = LF.findLoop(PostDomBound);
|
|
|
|
SSAUpdater.Initialize(DstReg);
|
|
|
|
if (FoundLoopLevel) {
|
|
LF.addLoopEntries(FoundLoopLevel, SSAUpdater, IncomingBlocks);
|
|
|
|
for (unsigned i = 0; i < IncomingRegs.size(); ++i) {
|
|
IncomingUpdated.push_back(createLaneMaskReg(*MF));
|
|
SSAUpdater.AddAvailableValue(IncomingBlocks[i],
|
|
IncomingUpdated.back());
|
|
}
|
|
|
|
for (unsigned i = 0; i < IncomingRegs.size(); ++i) {
|
|
MachineBasicBlock &IMBB = *IncomingBlocks[i];
|
|
buildMergeLaneMasks(
|
|
IMBB, getSaluInsertionAtEnd(IMBB), {}, IncomingUpdated[i],
|
|
SSAUpdater.GetValueInMiddleOfBlock(&IMBB), IncomingRegs[i]);
|
|
}
|
|
} else {
|
|
// The phi is not observed from outside a loop. Use a more accurate
|
|
// lowering.
|
|
PIA.analyze(MBB, IncomingBlocks);
|
|
|
|
for (MachineBasicBlock *MBB : PIA.predecessors())
|
|
SSAUpdater.AddAvailableValue(MBB, insertUndefLaneMask(*MBB));
|
|
|
|
for (unsigned i = 0; i < IncomingRegs.size(); ++i) {
|
|
MachineBasicBlock &IMBB = *IncomingBlocks[i];
|
|
if (PIA.isSource(IMBB)) {
|
|
IncomingUpdated.push_back(0);
|
|
SSAUpdater.AddAvailableValue(&IMBB, IncomingRegs[i]);
|
|
} else {
|
|
IncomingUpdated.push_back(createLaneMaskReg(*MF));
|
|
SSAUpdater.AddAvailableValue(&IMBB, IncomingUpdated.back());
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0; i < IncomingRegs.size(); ++i) {
|
|
if (!IncomingUpdated[i])
|
|
continue;
|
|
|
|
MachineBasicBlock &IMBB = *IncomingBlocks[i];
|
|
buildMergeLaneMasks(
|
|
IMBB, getSaluInsertionAtEnd(IMBB), {}, IncomingUpdated[i],
|
|
SSAUpdater.GetValueInMiddleOfBlock(&IMBB), IncomingRegs[i]);
|
|
}
|
|
}
|
|
|
|
unsigned NewReg = SSAUpdater.GetValueInMiddleOfBlock(&MBB);
|
|
if (NewReg != DstReg) {
|
|
MRI->replaceRegWith(NewReg, DstReg);
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
IncomingBlocks.clear();
|
|
IncomingRegs.clear();
|
|
IncomingUpdated.clear();
|
|
}
|
|
}
|
|
|
|
void SILowerI1Copies::lowerCopiesToI1() {
|
|
MachineSSAUpdater SSAUpdater(*MF);
|
|
LoopFinder LF(*DT, *PDT);
|
|
SmallVector<MachineInstr *, 4> DeadCopies;
|
|
|
|
for (MachineBasicBlock &MBB : *MF) {
|
|
LF.initialize(MBB);
|
|
|
|
for (MachineInstr &MI : MBB) {
|
|
if (MI.getOpcode() != AMDGPU::IMPLICIT_DEF &&
|
|
MI.getOpcode() != AMDGPU::COPY)
|
|
continue;
|
|
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
if (!isVreg1(DstReg))
|
|
continue;
|
|
|
|
if (MRI->use_empty(DstReg)) {
|
|
DeadCopies.push_back(&MI);
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Lower Other: " << MI);
|
|
|
|
MRI->setRegClass(DstReg, IsWave32 ? &AMDGPU::SReg_32RegClass
|
|
: &AMDGPU::SReg_64RegClass);
|
|
if (MI.getOpcode() == AMDGPU::IMPLICIT_DEF)
|
|
continue;
|
|
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
assert(!MI.getOperand(1).getSubReg());
|
|
|
|
if (!Register::isVirtualRegister(SrcReg) ||
|
|
(!isLaneMaskReg(SrcReg) && !isVreg1(SrcReg))) {
|
|
assert(TII->getRegisterInfo().getRegSizeInBits(SrcReg, *MRI) == 32);
|
|
unsigned TmpReg = createLaneMaskReg(*MF);
|
|
BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_CMP_NE_U32_e64), TmpReg)
|
|
.addReg(SrcReg)
|
|
.addImm(0);
|
|
MI.getOperand(1).setReg(TmpReg);
|
|
SrcReg = TmpReg;
|
|
}
|
|
|
|
// Defs in a loop that are observed outside the loop must be transformed
|
|
// into appropriate bit manipulation.
|
|
std::vector<MachineBasicBlock *> DomBlocks = {&MBB};
|
|
for (MachineInstr &Use : MRI->use_instructions(DstReg))
|
|
DomBlocks.push_back(Use.getParent());
|
|
|
|
MachineBasicBlock *PostDomBound =
|
|
PDT->findNearestCommonDominator(DomBlocks);
|
|
unsigned FoundLoopLevel = LF.findLoop(PostDomBound);
|
|
if (FoundLoopLevel) {
|
|
SSAUpdater.Initialize(DstReg);
|
|
SSAUpdater.AddAvailableValue(&MBB, DstReg);
|
|
LF.addLoopEntries(FoundLoopLevel, SSAUpdater);
|
|
|
|
buildMergeLaneMasks(MBB, MI, DL, DstReg,
|
|
SSAUpdater.GetValueInMiddleOfBlock(&MBB), SrcReg);
|
|
DeadCopies.push_back(&MI);
|
|
}
|
|
}
|
|
|
|
for (MachineInstr *MI : DeadCopies)
|
|
MI->eraseFromParent();
|
|
DeadCopies.clear();
|
|
}
|
|
}
|
|
|
|
bool SILowerI1Copies::isConstantLaneMask(unsigned Reg, bool &Val) const {
|
|
const MachineInstr *MI;
|
|
for (;;) {
|
|
MI = MRI->getUniqueVRegDef(Reg);
|
|
if (MI->getOpcode() != AMDGPU::COPY)
|
|
break;
|
|
|
|
Reg = MI->getOperand(1).getReg();
|
|
if (!Register::isVirtualRegister(Reg))
|
|
return false;
|
|
if (!isLaneMaskReg(Reg))
|
|
return false;
|
|
}
|
|
|
|
if (MI->getOpcode() != MovOp)
|
|
return false;
|
|
|
|
if (!MI->getOperand(1).isImm())
|
|
return false;
|
|
|
|
int64_t Imm = MI->getOperand(1).getImm();
|
|
if (Imm == 0) {
|
|
Val = false;
|
|
return true;
|
|
}
|
|
if (Imm == -1) {
|
|
Val = true;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void instrDefsUsesSCC(const MachineInstr &MI, bool &Def, bool &Use) {
|
|
Def = false;
|
|
Use = false;
|
|
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (MO.isReg() && MO.getReg() == AMDGPU::SCC) {
|
|
if (MO.isUse())
|
|
Use = true;
|
|
else
|
|
Def = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return a point at the end of the given \p MBB to insert SALU instructions
|
|
/// for lane mask calculation. Take terminators and SCC into account.
|
|
MachineBasicBlock::iterator
|
|
SILowerI1Copies::getSaluInsertionAtEnd(MachineBasicBlock &MBB) const {
|
|
auto InsertionPt = MBB.getFirstTerminator();
|
|
bool TerminatorsUseSCC = false;
|
|
for (auto I = InsertionPt, E = MBB.end(); I != E; ++I) {
|
|
bool DefsSCC;
|
|
instrDefsUsesSCC(*I, DefsSCC, TerminatorsUseSCC);
|
|
if (TerminatorsUseSCC || DefsSCC)
|
|
break;
|
|
}
|
|
|
|
if (!TerminatorsUseSCC)
|
|
return InsertionPt;
|
|
|
|
while (InsertionPt != MBB.begin()) {
|
|
InsertionPt--;
|
|
|
|
bool DefSCC, UseSCC;
|
|
instrDefsUsesSCC(*InsertionPt, DefSCC, UseSCC);
|
|
if (DefSCC)
|
|
return InsertionPt;
|
|
}
|
|
|
|
// We should have at least seen an IMPLICIT_DEF or COPY
|
|
llvm_unreachable("SCC used by terminator but no def in block");
|
|
}
|
|
|
|
void SILowerI1Copies::buildMergeLaneMasks(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
const DebugLoc &DL, unsigned DstReg,
|
|
unsigned PrevReg, unsigned CurReg) {
|
|
bool PrevVal;
|
|
bool PrevConstant = isConstantLaneMask(PrevReg, PrevVal);
|
|
bool CurVal;
|
|
bool CurConstant = isConstantLaneMask(CurReg, CurVal);
|
|
|
|
if (PrevConstant && CurConstant) {
|
|
if (PrevVal == CurVal) {
|
|
BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg).addReg(CurReg);
|
|
} else if (CurVal) {
|
|
BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg).addReg(ExecReg);
|
|
} else {
|
|
BuildMI(MBB, I, DL, TII->get(XorOp), DstReg)
|
|
.addReg(ExecReg)
|
|
.addImm(-1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
unsigned PrevMaskedReg = 0;
|
|
unsigned CurMaskedReg = 0;
|
|
if (!PrevConstant) {
|
|
if (CurConstant && CurVal) {
|
|
PrevMaskedReg = PrevReg;
|
|
} else {
|
|
PrevMaskedReg = createLaneMaskReg(*MF);
|
|
BuildMI(MBB, I, DL, TII->get(AndN2Op), PrevMaskedReg)
|
|
.addReg(PrevReg)
|
|
.addReg(ExecReg);
|
|
}
|
|
}
|
|
if (!CurConstant) {
|
|
// TODO: check whether CurReg is already masked by EXEC
|
|
if (PrevConstant && PrevVal) {
|
|
CurMaskedReg = CurReg;
|
|
} else {
|
|
CurMaskedReg = createLaneMaskReg(*MF);
|
|
BuildMI(MBB, I, DL, TII->get(AndOp), CurMaskedReg)
|
|
.addReg(CurReg)
|
|
.addReg(ExecReg);
|
|
}
|
|
}
|
|
|
|
if (PrevConstant && !PrevVal) {
|
|
BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg)
|
|
.addReg(CurMaskedReg);
|
|
} else if (CurConstant && !CurVal) {
|
|
BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg)
|
|
.addReg(PrevMaskedReg);
|
|
} else if (PrevConstant && PrevVal) {
|
|
BuildMI(MBB, I, DL, TII->get(OrN2Op), DstReg)
|
|
.addReg(CurMaskedReg)
|
|
.addReg(ExecReg);
|
|
} else {
|
|
BuildMI(MBB, I, DL, TII->get(OrOp), DstReg)
|
|
.addReg(PrevMaskedReg)
|
|
.addReg(CurMaskedReg ? CurMaskedReg : ExecReg);
|
|
}
|
|
}
|