llvm-project/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp

560 lines
21 KiB
C++

//===-- ARMTargetTransformInfo.cpp - ARM specific TTI pass ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements a TargetTransformInfo analysis pass specific to the
/// ARM target machine. It uses the target's detailed information to provide
/// more precise answers to certain TTI queries, while letting the target
/// independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "armtti"
#include "ARM.h"
#include "ARMTargetMachine.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/CostTable.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;
// Declare the pass initialization routine locally as target-specific passes
// don't havve a target-wide initialization entry point, and so we rely on the
// pass constructor initialization.
namespace llvm {
void initializeARMTTIPass(PassRegistry &);
}
namespace {
class ARMTTI LLVM_FINAL : public ImmutablePass, public TargetTransformInfo {
const ARMBaseTargetMachine *TM;
const ARMSubtarget *ST;
const ARMTargetLowering *TLI;
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
/// are set if the result needs to be inserted and/or extracted from vectors.
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
public:
ARMTTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
llvm_unreachable("This pass cannot be directly constructed");
}
ARMTTI(const ARMBaseTargetMachine *TM)
: ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
TLI(TM->getTargetLowering()) {
initializeARMTTIPass(*PassRegistry::getPassRegistry());
}
virtual void initializePass() LLVM_OVERRIDE {
pushTTIStack(this);
}
virtual void finalizePass() {
popTTIStack();
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const LLVM_OVERRIDE {
TargetTransformInfo::getAnalysisUsage(AU);
}
/// Pass identification.
static char ID;
/// Provide necessary pointer adjustments for the two base classes.
virtual void *getAdjustedAnalysisPointer(const void *ID) LLVM_OVERRIDE {
if (ID == &TargetTransformInfo::ID)
return (TargetTransformInfo*)this;
return this;
}
/// \name Scalar TTI Implementations
/// @{
using TargetTransformInfo::getIntImmCost;
virtual unsigned
getIntImmCost(const APInt &Imm, Type *Ty) const LLVM_OVERRIDE;
/// @}
/// \name Vector TTI Implementations
/// @{
unsigned getNumberOfRegisters(bool Vector) const {
if (Vector) {
if (ST->hasNEON())
return 16;
return 0;
}
if (ST->isThumb1Only())
return 8;
return 16;
}
unsigned getRegisterBitWidth(bool Vector) const {
if (Vector) {
if (ST->hasNEON())
return 128;
return 0;
}
return 32;
}
unsigned getMaximumUnrollFactor() const {
// These are out of order CPUs:
if (ST->isCortexA15() || ST->isSwift())
return 2;
return 1;
}
unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
int Index, Type *SubTp) const;
unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src) const;
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const;
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const;
unsigned getAddressComputationCost(Type *Val, bool IsComplex) const;
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
OperandValueKind Op1Info = OK_AnyValue,
OperandValueKind Op2Info = OK_AnyValue) const;
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
unsigned AddressSpace) const;
/// @}
};
} // end anonymous namespace
INITIALIZE_AG_PASS(ARMTTI, TargetTransformInfo, "armtti",
"ARM Target Transform Info", true, true, false)
char ARMTTI::ID = 0;
ImmutablePass *
llvm::createARMTargetTransformInfoPass(const ARMBaseTargetMachine *TM) {
return new ARMTTI(TM);
}
unsigned ARMTTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
assert(Ty->isIntegerTy());
unsigned Bits = Ty->getPrimitiveSizeInBits();
if (Bits == 0 || Bits > 32)
return 4;
int32_t SImmVal = Imm.getSExtValue();
uint32_t ZImmVal = Imm.getZExtValue();
if (!ST->isThumb()) {
if ((SImmVal >= 0 && SImmVal < 65536) ||
(ARM_AM::getSOImmVal(ZImmVal) != -1) ||
(ARM_AM::getSOImmVal(~ZImmVal) != -1))
return 1;
return ST->hasV6T2Ops() ? 2 : 3;
} else if (ST->isThumb2()) {
if ((SImmVal >= 0 && SImmVal < 65536) ||
(ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
(ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
return 1;
return ST->hasV6T2Ops() ? 2 : 3;
} else /*Thumb1*/ {
if (SImmVal >= 0 && SImmVal < 256)
return 1;
if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
return 2;
// Load from constantpool.
return 3;
}
return 2;
}
unsigned ARMTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src) const {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// Single to/from double precision conversions.
static const CostTblEntry<MVT::SimpleValueType> NEONFltDblTbl[] = {
// Vector fptrunc/fpext conversions.
{ ISD::FP_ROUND, MVT::v2f64, 2 },
{ ISD::FP_EXTEND, MVT::v2f32, 2 },
{ ISD::FP_EXTEND, MVT::v4f32, 4 }
};
if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
ISD == ISD::FP_EXTEND)) {
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
int Idx = CostTableLookup(NEONFltDblTbl, ISD, LT.second);
if (Idx != -1)
return LT.first * NEONFltDblTbl[Idx].Cost;
}
EVT SrcTy = TLI->getValueType(Src);
EVT DstTy = TLI->getValueType(Dst);
if (!SrcTy.isSimple() || !DstTy.isSimple())
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
// Some arithmetic, load and store operations have specific instructions
// to cast up/down their types automatically at no extra cost.
// TODO: Get these tables to know at least what the related operations are.
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
NEONVectorConversionTbl[] = {
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
{ ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
// The number of vmovl instructions for the extension.
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
// Operations that we legalize using splitting.
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
// Vector float <-> i32 conversions.
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
{ ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 },
{ ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 },
{ ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
{ ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
// Vector double <-> i32 conversions.
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
{ ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 },
{ ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 },
{ ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 },
{ ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 }
};
if (SrcTy.isVector() && ST->hasNEON()) {
int Idx = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
DstTy.getSimpleVT(), SrcTy.getSimpleVT());
if (Idx != -1)
return NEONVectorConversionTbl[Idx].Cost;
}
// Scalar float to integer conversions.
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
NEONFloatConversionTbl[] = {
{ ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 },
{ ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 },
{ ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 },
{ ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 },
{ ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 },
{ ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 },
{ ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 },
{ ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 },
{ ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 },
{ ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 },
{ ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 },
{ ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 },
{ ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 },
{ ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 },
{ ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 },
{ ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 },
{ ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 },
{ ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 },
{ ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 },
{ ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 }
};
if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
int Idx = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
DstTy.getSimpleVT(), SrcTy.getSimpleVT());
if (Idx != -1)
return NEONFloatConversionTbl[Idx].Cost;
}
// Scalar integer to float conversions.
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
NEONIntegerConversionTbl[] = {
{ ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 },
{ ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 },
{ ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 },
{ ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 },
{ ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 },
{ ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 },
{ ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 },
{ ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 },
{ ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 },
{ ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 },
{ ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 },
{ ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 },
{ ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 },
{ ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 },
{ ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 },
{ ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 },
{ ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 },
{ ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 },
{ ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 },
{ ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 }
};
if (SrcTy.isInteger() && ST->hasNEON()) {
int Idx = ConvertCostTableLookup(NEONIntegerConversionTbl, ISD,
DstTy.getSimpleVT(), SrcTy.getSimpleVT());
if (Idx != -1)
return NEONIntegerConversionTbl[Idx].Cost;
}
// Scalar integer conversion costs.
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
ARMIntegerConversionTbl[] = {
// i16 -> i64 requires two dependent operations.
{ ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
// Truncates on i64 are assumed to be free.
{ ISD::TRUNCATE, MVT::i32, MVT::i64, 0 },
{ ISD::TRUNCATE, MVT::i16, MVT::i64, 0 },
{ ISD::TRUNCATE, MVT::i8, MVT::i64, 0 },
{ ISD::TRUNCATE, MVT::i1, MVT::i64, 0 }
};
if (SrcTy.isInteger()) {
int Idx = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
DstTy.getSimpleVT(), SrcTy.getSimpleVT());
if (Idx != -1)
return ARMIntegerConversionTbl[Idx].Cost;
}
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
}
unsigned ARMTTI::getVectorInstrCost(unsigned Opcode, Type *ValTy,
unsigned Index) const {
// Penalize inserting into an D-subregister. We end up with a three times
// lower estimated throughput on swift.
if (ST->isSwift() &&
Opcode == Instruction::InsertElement &&
ValTy->isVectorTy() &&
ValTy->getScalarSizeInBits() <= 32)
return 3;
return TargetTransformInfo::getVectorInstrCost(Opcode, ValTy, Index);
}
unsigned ARMTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy) const {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
// On NEON a a vector select gets lowered to vbsl.
if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
// Lowering of some vector selects is currently far from perfect.
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
NEONVectorSelectTbl[] = {
{ ISD::SELECT, MVT::v16i1, MVT::v16i16, 2*16 + 1 + 3*1 + 4*1 },
{ ISD::SELECT, MVT::v8i1, MVT::v8i32, 4*8 + 1*3 + 1*4 + 1*2 },
{ ISD::SELECT, MVT::v16i1, MVT::v16i32, 4*16 + 1*6 + 1*8 + 1*4 },
{ ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
{ ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
{ ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
};
EVT SelCondTy = TLI->getValueType(CondTy);
EVT SelValTy = TLI->getValueType(ValTy);
if (SelCondTy.isSimple() && SelValTy.isSimple()) {
int Idx = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
SelCondTy.getSimpleVT(),
SelValTy.getSimpleVT());
if (Idx != -1)
return NEONVectorSelectTbl[Idx].Cost;
}
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
return LT.first;
}
return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
}
unsigned ARMTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
// Address computations in vectorized code with non-consecutive addresses will
// likely result in more instructions compared to scalar code where the
// computation can more often be merged into the index mode. The resulting
// extra micro-ops can significantly decrease throughput.
unsigned NumVectorInstToHideOverhead = 10;
if (Ty->isVectorTy() && IsComplex)
return NumVectorInstToHideOverhead;
// In many cases the address computation is not merged into the instruction
// addressing mode.
return 1;
}
unsigned ARMTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
Type *SubTp) const {
// We only handle costs of reverse shuffles for now.
if (Kind != SK_Reverse)
return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
static const CostTblEntry<MVT::SimpleValueType> NEONShuffleTbl[] = {
// Reverse shuffle cost one instruction if we are shuffling within a double
// word (vrev) or two if we shuffle a quad word (vrev, vext).
{ ISD::VECTOR_SHUFFLE, MVT::v2i32, 1 },
{ ISD::VECTOR_SHUFFLE, MVT::v2f32, 1 },
{ ISD::VECTOR_SHUFFLE, MVT::v2i64, 1 },
{ ISD::VECTOR_SHUFFLE, MVT::v2f64, 1 },
{ ISD::VECTOR_SHUFFLE, MVT::v4i32, 2 },
{ ISD::VECTOR_SHUFFLE, MVT::v4f32, 2 },
{ ISD::VECTOR_SHUFFLE, MVT::v8i16, 2 },
{ ISD::VECTOR_SHUFFLE, MVT::v16i8, 2 }
};
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
int Idx = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
if (Idx == -1)
return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
return LT.first * NEONShuffleTbl[Idx].Cost;
}
unsigned ARMTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
OperandValueKind Op1Info,
OperandValueKind Op2Info) const {
int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
const unsigned FunctionCallDivCost = 20;
const unsigned ReciprocalDivCost = 10;
static const CostTblEntry<MVT::SimpleValueType> CostTbl[] = {
// Division.
// These costs are somewhat random. Choose a cost of 20 to indicate that
// vectorizing devision (added function call) is going to be very expensive.
// Double registers types.
{ ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
{ ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
{ ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
{ ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
{ ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
{ ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
{ ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
{ ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
{ ISD::SDIV, MVT::v4i16, ReciprocalDivCost},
{ ISD::UDIV, MVT::v4i16, ReciprocalDivCost},
{ ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
{ ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
{ ISD::SDIV, MVT::v8i8, ReciprocalDivCost},
{ ISD::UDIV, MVT::v8i8, ReciprocalDivCost},
{ ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost},
{ ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost},
// Quad register types.
{ ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
{ ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
{ ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
{ ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
{ ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
{ ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
{ ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
{ ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
{ ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
{ ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
{ ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
{ ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
{ ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
{ ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
{ ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
{ ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
// Multiplication.
};
int Idx = -1;
if (ST->hasNEON())
Idx = CostTableLookup(CostTbl, ISDOpcode, LT.second);
if (Idx != -1)
return LT.first * CostTbl[Idx].Cost;
unsigned Cost =
TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
// This is somewhat of a hack. The problem that we are facing is that SROA
// creates a sequence of shift, and, or instructions to construct values.
// These sequences are recognized by the ISel and have zero-cost. Not so for
// the vectorized code. Because we have support for v2i64 but not i64 those
// sequences look particularly beneficial to vectorize.
// To work around this we increase the cost of v2i64 operations to make them
// seem less beneficial.
if (LT.second == MVT::v2i64 &&
Op2Info == TargetTransformInfo::OK_UniformConstantValue)
Cost += 4;
return Cost;
}
unsigned ARMTTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
unsigned AddressSpace) const {
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
if (Src->isVectorTy() && Alignment != 16 &&
Src->getVectorElementType()->isDoubleTy()) {
// Unaligned loads/stores are extremely inefficient.
// We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
return LT.first * 4;
}
return LT.first;
}