llvm-project/lldb/source/Core/ValueObjectVariable.cpp

388 lines
13 KiB
C++

//===-- ValueObjectVariable.cpp ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/ValueObjectVariable.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "lldb/Core/Module.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectList.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Symbol/SymbolContextScope.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Symbol/Variable.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
using namespace lldb_private;
lldb::ValueObjectSP
ValueObjectVariable::Create(ExecutionContextScope *exe_scope,
const lldb::VariableSP &var_sp) {
return (new ValueObjectVariable(exe_scope, var_sp))->GetSP();
}
ValueObjectVariable::ValueObjectVariable(ExecutionContextScope *exe_scope,
const lldb::VariableSP &var_sp)
: ValueObject(exe_scope), m_variable_sp(var_sp) {
// Do not attempt to construct one of these objects with no variable!
assert(m_variable_sp.get() != NULL);
m_name = var_sp->GetName();
}
ValueObjectVariable::~ValueObjectVariable() {}
CompilerType ValueObjectVariable::GetCompilerTypeImpl() {
Type *var_type = m_variable_sp->GetType();
if (var_type)
return var_type->GetForwardCompilerType();
return CompilerType();
}
ConstString ValueObjectVariable::GetTypeName() {
Type *var_type = m_variable_sp->GetType();
if (var_type)
return var_type->GetName();
return ConstString();
}
ConstString ValueObjectVariable::GetDisplayTypeName() {
Type *var_type = m_variable_sp->GetType();
if (var_type)
return var_type->GetForwardCompilerType().GetDisplayTypeName();
return ConstString();
}
ConstString ValueObjectVariable::GetQualifiedTypeName() {
Type *var_type = m_variable_sp->GetType();
if (var_type)
return var_type->GetQualifiedName();
return ConstString();
}
size_t ValueObjectVariable::CalculateNumChildren(uint32_t max) {
CompilerType type(GetCompilerType());
if (!type.IsValid())
return 0;
const bool omit_empty_base_classes = true;
auto child_count = type.GetNumChildren(omit_empty_base_classes);
return child_count <= max ? child_count : max;
}
uint64_t ValueObjectVariable::GetByteSize() {
ExecutionContext exe_ctx(GetExecutionContextRef());
CompilerType type(GetCompilerType());
if (!type.IsValid())
return 0;
return type.GetByteSize(exe_ctx.GetBestExecutionContextScope());
}
lldb::ValueType ValueObjectVariable::GetValueType() const {
if (m_variable_sp)
return m_variable_sp->GetScope();
return lldb::eValueTypeInvalid;
}
bool ValueObjectVariable::UpdateValue() {
SetValueIsValid(false);
m_error.Clear();
Variable *variable = m_variable_sp.get();
DWARFExpression &expr = variable->LocationExpression();
if (variable->GetLocationIsConstantValueData()) {
// expr doesn't contain DWARF bytes, it contains the constant variable
// value bytes themselves...
if (expr.GetExpressionData(m_data))
m_value.SetContext(Value::eContextTypeVariable, variable);
else
m_error.SetErrorString("empty constant data");
// constant bytes can't be edited - sorry
m_resolved_value.SetContext(Value::eContextTypeInvalid, NULL);
} else {
lldb::addr_t loclist_base_load_addr = LLDB_INVALID_ADDRESS;
ExecutionContext exe_ctx(GetExecutionContextRef());
Target *target = exe_ctx.GetTargetPtr();
if (target) {
m_data.SetByteOrder(target->GetArchitecture().GetByteOrder());
m_data.SetAddressByteSize(target->GetArchitecture().GetAddressByteSize());
}
if (expr.IsLocationList()) {
SymbolContext sc;
variable->CalculateSymbolContext(&sc);
if (sc.function)
loclist_base_load_addr =
sc.function->GetAddressRange().GetBaseAddress().GetLoadAddress(
target);
}
Value old_value(m_value);
if (expr.Evaluate(&exe_ctx, nullptr, nullptr, nullptr,
loclist_base_load_addr, nullptr, nullptr, m_value,
&m_error)) {
m_resolved_value = m_value;
m_value.SetContext(Value::eContextTypeVariable, variable);
CompilerType compiler_type = GetCompilerType();
if (compiler_type.IsValid())
m_value.SetCompilerType(compiler_type);
Value::ValueType value_type = m_value.GetValueType();
Process *process = exe_ctx.GetProcessPtr();
const bool process_is_alive = process && process->IsAlive();
const uint32_t type_info = compiler_type.GetTypeInfo();
const bool is_pointer_or_ref =
(type_info & (lldb::eTypeIsPointer | lldb::eTypeIsReference)) != 0;
switch (value_type) {
case Value::eValueTypeFileAddress:
// If this type is a pointer, then its children will be considered load
// addresses
// if the pointer or reference is dereferenced, but only if the process
// is alive.
//
// There could be global variables like in the following code:
// struct LinkedListNode { Foo* foo; LinkedListNode* next; };
// Foo g_foo1;
// Foo g_foo2;
// LinkedListNode g_second_node = { &g_foo2, NULL };
// LinkedListNode g_first_node = { &g_foo1, &g_second_node };
//
// When we aren't running, we should be able to look at these variables
// using
// the "target variable" command. Children of the "g_first_node" always
// will
// be of the same address type as the parent. But children of the "next"
// member of
// LinkedListNode will become load addresses if we have a live process,
// or remain
// what a file address if it what a file address.
if (process_is_alive && is_pointer_or_ref)
SetAddressTypeOfChildren(eAddressTypeLoad);
else
SetAddressTypeOfChildren(eAddressTypeFile);
break;
case Value::eValueTypeHostAddress:
// Same as above for load addresses, except children of pointer or refs
// are always
// load addresses. Host addresses are used to store freeze dried
// variables. If this
// type is a struct, the entire struct contents will be copied into the
// heap of the
// LLDB process, but we do not currrently follow any pointers.
if (is_pointer_or_ref)
SetAddressTypeOfChildren(eAddressTypeLoad);
else
SetAddressTypeOfChildren(eAddressTypeHost);
break;
case Value::eValueTypeLoadAddress:
case Value::eValueTypeScalar:
case Value::eValueTypeVector:
SetAddressTypeOfChildren(eAddressTypeLoad);
break;
}
switch (value_type) {
case Value::eValueTypeVector:
// fall through
case Value::eValueTypeScalar:
// The variable value is in the Scalar value inside the m_value.
// We can point our m_data right to it.
m_error =
m_value.GetValueAsData(&exe_ctx, m_data, 0, GetModule().get());
break;
case Value::eValueTypeFileAddress:
case Value::eValueTypeLoadAddress:
case Value::eValueTypeHostAddress:
// The DWARF expression result was an address in the inferior
// process. If this variable is an aggregate type, we just need
// the address as the main value as all child variable objects
// will rely upon this location and add an offset and then read
// their own values as needed. If this variable is a simple
// type, we read all data for it into m_data.
// Make sure this type has a value before we try and read it
// If we have a file address, convert it to a load address if we can.
if (value_type == Value::eValueTypeFileAddress && process_is_alive) {
lldb::addr_t file_addr =
m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
if (file_addr != LLDB_INVALID_ADDRESS) {
SymbolContext var_sc;
variable->CalculateSymbolContext(&var_sc);
if (var_sc.module_sp) {
ObjectFile *objfile = var_sc.module_sp->GetObjectFile();
if (objfile) {
Address so_addr(file_addr, objfile->GetSectionList());
lldb::addr_t load_addr = so_addr.GetLoadAddress(target);
if (load_addr != LLDB_INVALID_ADDRESS) {
m_value.SetValueType(Value::eValueTypeLoadAddress);
m_value.GetScalar() = load_addr;
}
}
}
}
}
if (!CanProvideValue()) {
// this value object represents an aggregate type whose
// children have values, but this object does not. So we
// say we are changed if our location has changed.
SetValueDidChange(value_type != old_value.GetValueType() ||
m_value.GetScalar() != old_value.GetScalar());
} else {
// Copy the Value and set the context to use our Variable
// so it can extract read its value into m_data appropriately
Value value(m_value);
value.SetContext(Value::eContextTypeVariable, variable);
m_error =
value.GetValueAsData(&exe_ctx, m_data, 0, GetModule().get());
SetValueDidChange(value_type != old_value.GetValueType() ||
m_value.GetScalar() != old_value.GetScalar());
}
break;
}
SetValueIsValid(m_error.Success());
} else {
// could not find location, won't allow editing
m_resolved_value.SetContext(Value::eContextTypeInvalid, NULL);
}
}
return m_error.Success();
}
bool ValueObjectVariable::IsInScope() {
const ExecutionContextRef &exe_ctx_ref = GetExecutionContextRef();
if (exe_ctx_ref.HasFrameRef()) {
ExecutionContext exe_ctx(exe_ctx_ref);
StackFrame *frame = exe_ctx.GetFramePtr();
if (frame) {
return m_variable_sp->IsInScope(frame);
} else {
// This ValueObject had a frame at one time, but now we
// can't locate it, so return false since we probably aren't
// in scope.
return false;
}
}
// We have a variable that wasn't tied to a frame, which
// means it is a global and is always in scope.
return true;
}
lldb::ModuleSP ValueObjectVariable::GetModule() {
if (m_variable_sp) {
SymbolContextScope *sc_scope = m_variable_sp->GetSymbolContextScope();
if (sc_scope) {
return sc_scope->CalculateSymbolContextModule();
}
}
return lldb::ModuleSP();
}
SymbolContextScope *ValueObjectVariable::GetSymbolContextScope() {
if (m_variable_sp)
return m_variable_sp->GetSymbolContextScope();
return NULL;
}
bool ValueObjectVariable::GetDeclaration(Declaration &decl) {
if (m_variable_sp) {
decl = m_variable_sp->GetDeclaration();
return true;
}
return false;
}
const char *ValueObjectVariable::GetLocationAsCString() {
if (m_resolved_value.GetContextType() == Value::eContextTypeRegisterInfo)
return GetLocationAsCStringImpl(m_resolved_value, m_data);
else
return ValueObject::GetLocationAsCString();
}
bool ValueObjectVariable::SetValueFromCString(const char *value_str,
Error &error) {
if (!UpdateValueIfNeeded()) {
error.SetErrorString("unable to update value before writing");
return false;
}
if (m_resolved_value.GetContextType() == Value::eContextTypeRegisterInfo) {
RegisterInfo *reg_info = m_resolved_value.GetRegisterInfo();
ExecutionContext exe_ctx(GetExecutionContextRef());
RegisterContext *reg_ctx = exe_ctx.GetRegisterContext();
RegisterValue reg_value;
if (!reg_info || !reg_ctx) {
error.SetErrorString("unable to retrieve register info");
return false;
}
error = reg_value.SetValueFromString(reg_info, llvm::StringRef(value_str));
if (error.Fail())
return false;
if (reg_ctx->WriteRegister(reg_info, reg_value)) {
SetNeedsUpdate();
return true;
} else {
error.SetErrorString("unable to write back to register");
return false;
}
} else
return ValueObject::SetValueFromCString(value_str, error);
}
bool ValueObjectVariable::SetData(DataExtractor &data, Error &error) {
if (!UpdateValueIfNeeded()) {
error.SetErrorString("unable to update value before writing");
return false;
}
if (m_resolved_value.GetContextType() == Value::eContextTypeRegisterInfo) {
RegisterInfo *reg_info = m_resolved_value.GetRegisterInfo();
ExecutionContext exe_ctx(GetExecutionContextRef());
RegisterContext *reg_ctx = exe_ctx.GetRegisterContext();
RegisterValue reg_value;
if (!reg_info || !reg_ctx) {
error.SetErrorString("unable to retrieve register info");
return false;
}
error = reg_value.SetValueFromData(reg_info, data, 0, true);
if (error.Fail())
return false;
if (reg_ctx->WriteRegister(reg_info, reg_value)) {
SetNeedsUpdate();
return true;
} else {
error.SetErrorString("unable to write back to register");
return false;
}
} else
return ValueObject::SetData(data, error);
}