llvm-project/flang/lib/Semantics/check-declarations.cpp

2381 lines
94 KiB
C++

//===-- lib/Semantics/check-declarations.cpp ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Static declaration checking
#include "check-declarations.h"
#include "pointer-assignment.h"
#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/tools.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include "flang/Semantics/type.h"
#include <algorithm>
#include <map>
#include <string>
namespace Fortran::semantics {
namespace characteristics = evaluate::characteristics;
using characteristics::DummyArgument;
using characteristics::DummyDataObject;
using characteristics::DummyProcedure;
using characteristics::FunctionResult;
using characteristics::Procedure;
class CheckHelper {
public:
explicit CheckHelper(SemanticsContext &c) : context_{c} {}
SemanticsContext &context() { return context_; }
void Check() { Check(context_.globalScope()); }
void Check(const ParamValue &, bool canBeAssumed);
void Check(const Bound &bound) { CheckSpecExpr(bound.GetExplicit()); }
void Check(const ShapeSpec &spec) {
Check(spec.lbound());
Check(spec.ubound());
}
void Check(const ArraySpec &);
void Check(const DeclTypeSpec &, bool canHaveAssumedTypeParameters);
void Check(const Symbol &);
void Check(const Scope &);
const Procedure *Characterize(const Symbol &);
private:
template <typename A> void CheckSpecExpr(const A &x) {
evaluate::CheckSpecificationExpr(x, DEREF(scope_), foldingContext_);
}
void CheckValue(const Symbol &, const DerivedTypeSpec *);
void CheckVolatile(const Symbol &, const DerivedTypeSpec *);
void CheckPointer(const Symbol &);
void CheckPassArg(
const Symbol &proc, const Symbol *interface, const WithPassArg &);
void CheckProcBinding(const Symbol &, const ProcBindingDetails &);
void CheckObjectEntity(const Symbol &, const ObjectEntityDetails &);
void CheckPointerInitialization(const Symbol &);
void CheckArraySpec(const Symbol &, const ArraySpec &);
void CheckProcEntity(const Symbol &, const ProcEntityDetails &);
void CheckSubprogram(const Symbol &, const SubprogramDetails &);
void CheckAssumedTypeEntity(const Symbol &, const ObjectEntityDetails &);
void CheckDerivedType(const Symbol &, const DerivedTypeDetails &);
bool CheckFinal(
const Symbol &subroutine, SourceName, const Symbol &derivedType);
bool CheckDistinguishableFinals(const Symbol &f1, SourceName f1name,
const Symbol &f2, SourceName f2name, const Symbol &derivedType);
void CheckGeneric(const Symbol &, const GenericDetails &);
void CheckHostAssoc(const Symbol &, const HostAssocDetails &);
bool CheckDefinedOperator(
SourceName, GenericKind, const Symbol &, const Procedure &);
std::optional<parser::MessageFixedText> CheckNumberOfArgs(
const GenericKind &, std::size_t);
bool CheckDefinedOperatorArg(
const SourceName &, const Symbol &, const Procedure &, std::size_t);
bool CheckDefinedAssignment(const Symbol &, const Procedure &);
bool CheckDefinedAssignmentArg(const Symbol &, const DummyArgument &, int);
void CheckSpecificsAreDistinguishable(const Symbol &, const GenericDetails &);
void CheckEquivalenceSet(const EquivalenceSet &);
void CheckBlockData(const Scope &);
void CheckGenericOps(const Scope &);
bool CheckConflicting(const Symbol &, Attr, Attr);
void WarnMissingFinal(const Symbol &);
bool InPure() const {
return innermostSymbol_ && IsPureProcedure(*innermostSymbol_);
}
bool InElemental() const {
return innermostSymbol_ && innermostSymbol_->attrs().test(Attr::ELEMENTAL);
}
bool InFunction() const {
return innermostSymbol_ && IsFunction(*innermostSymbol_);
}
template <typename... A>
void SayWithDeclaration(const Symbol &symbol, A &&...x) {
if (parser::Message * msg{messages_.Say(std::forward<A>(x)...)}) {
if (messages_.at().begin() != symbol.name().begin()) {
evaluate::AttachDeclaration(*msg, symbol);
}
}
}
bool IsResultOkToDiffer(const FunctionResult &);
void CheckBindCName(const Symbol &);
// Check functions for defined I/O procedures
void CheckDefinedIoProc(
const Symbol &, const GenericDetails &, GenericKind::DefinedIo);
bool CheckDioDummyIsData(const Symbol &, const Symbol *, std::size_t);
void CheckDioDummyIsDerived(
const Symbol &, const Symbol &, GenericKind::DefinedIo ioKind);
void CheckDioDummyIsDefaultInteger(const Symbol &, const Symbol &);
void CheckDioDummyIsScalar(const Symbol &, const Symbol &);
void CheckDioDummyAttrs(const Symbol &, const Symbol &, Attr);
void CheckDioDtvArg(const Symbol &, const Symbol *, GenericKind::DefinedIo);
void CheckDefaultIntegerArg(const Symbol &, const Symbol *, Attr);
void CheckDioAssumedLenCharacterArg(
const Symbol &, const Symbol *, std::size_t, Attr);
void CheckDioVlistArg(const Symbol &, const Symbol *, std::size_t);
void CheckDioArgCount(
const Symbol &, GenericKind::DefinedIo ioKind, std::size_t);
struct TypeWithDefinedIo {
const DerivedTypeSpec *type;
GenericKind::DefinedIo ioKind;
const Symbol &proc;
};
void CheckAlreadySeenDefinedIo(
const DerivedTypeSpec *, GenericKind::DefinedIo, const Symbol &);
SemanticsContext &context_;
evaluate::FoldingContext &foldingContext_{context_.foldingContext()};
parser::ContextualMessages &messages_{foldingContext_.messages()};
const Scope *scope_{nullptr};
bool scopeIsUninstantiatedPDT_{false};
// This symbol is the one attached to the innermost enclosing scope
// that has a symbol.
const Symbol *innermostSymbol_{nullptr};
// Cache of calls to Procedure::Characterize(Symbol)
std::map<SymbolRef, std::optional<Procedure>, SymbolAddressCompare>
characterizeCache_;
// Collection of symbols with BIND(C) names
std::map<std::string, SymbolRef> bindC_;
// Derived types that have defined input/output procedures
std::vector<TypeWithDefinedIo> seenDefinedIoTypes_;
};
class DistinguishabilityHelper {
public:
DistinguishabilityHelper(SemanticsContext &context) : context_{context} {}
void Add(const Symbol &, GenericKind, const Symbol &, const Procedure &);
void Check(const Scope &);
private:
void SayNotDistinguishable(const Scope &, const SourceName &, GenericKind,
const Symbol &, const Symbol &);
void AttachDeclaration(parser::Message &, const Scope &, const Symbol &);
SemanticsContext &context_;
struct ProcedureInfo {
GenericKind kind;
const Symbol &symbol;
const Procedure &procedure;
};
std::map<SourceName, std::vector<ProcedureInfo>> nameToInfo_;
};
void CheckHelper::Check(const ParamValue &value, bool canBeAssumed) {
if (value.isAssumed()) {
if (!canBeAssumed) { // C795, C721, C726
messages_.Say(
"An assumed (*) type parameter may be used only for a (non-statement"
" function) dummy argument, associate name, named constant, or"
" external function result"_err_en_US);
}
} else {
CheckSpecExpr(value.GetExplicit());
}
}
void CheckHelper::Check(const ArraySpec &shape) {
for (const auto &spec : shape) {
Check(spec);
}
}
void CheckHelper::Check(
const DeclTypeSpec &type, bool canHaveAssumedTypeParameters) {
if (type.category() == DeclTypeSpec::Character) {
Check(type.characterTypeSpec().length(), canHaveAssumedTypeParameters);
} else if (const DerivedTypeSpec * derived{type.AsDerived()}) {
for (auto &parm : derived->parameters()) {
Check(parm.second, canHaveAssumedTypeParameters);
}
}
}
void CheckHelper::Check(const Symbol &symbol) {
if (context_.HasError(symbol)) {
return;
}
auto restorer{messages_.SetLocation(symbol.name())};
context_.set_location(symbol.name());
const DeclTypeSpec *type{symbol.GetType()};
const DerivedTypeSpec *derived{type ? type->AsDerived() : nullptr};
bool isDone{false};
std::visit(
common::visitors{
[&](const UseDetails &x) { isDone = true; },
[&](const HostAssocDetails &x) {
CheckHostAssoc(symbol, x);
isDone = true;
},
[&](const ProcBindingDetails &x) {
CheckProcBinding(symbol, x);
isDone = true;
},
[&](const ObjectEntityDetails &x) { CheckObjectEntity(symbol, x); },
[&](const ProcEntityDetails &x) { CheckProcEntity(symbol, x); },
[&](const SubprogramDetails &x) { CheckSubprogram(symbol, x); },
[&](const DerivedTypeDetails &x) { CheckDerivedType(symbol, x); },
[&](const GenericDetails &x) { CheckGeneric(symbol, x); },
[](const auto &) {},
},
symbol.details());
if (symbol.attrs().test(Attr::VOLATILE)) {
CheckVolatile(symbol, derived);
}
CheckBindCName(symbol);
if (isDone) {
return; // following checks do not apply
}
if (IsPointer(symbol)) {
CheckPointer(symbol);
}
if (InPure()) {
if (IsSaved(symbol)) {
if (IsInitialized(symbol)) {
messages_.Say(
"A pure subprogram may not initialize a variable"_err_en_US);
} else {
messages_.Say(
"A pure subprogram may not have a variable with the SAVE attribute"_err_en_US);
}
}
if (symbol.attrs().test(Attr::VOLATILE)) {
messages_.Say(
"A pure subprogram may not have a variable with the VOLATILE attribute"_err_en_US);
}
if (IsProcedure(symbol) && !IsPureProcedure(symbol) && IsDummy(symbol)) {
messages_.Say(
"A dummy procedure of a pure subprogram must be pure"_err_en_US);
}
if (!IsDummy(symbol) && !IsFunctionResult(symbol)) {
if (IsPolymorphicAllocatable(symbol)) {
SayWithDeclaration(symbol,
"Deallocation of polymorphic object '%s' is not permitted in a pure subprogram"_err_en_US,
symbol.name());
} else if (derived) {
if (auto bad{FindPolymorphicAllocatableUltimateComponent(*derived)}) {
SayWithDeclaration(*bad,
"Deallocation of polymorphic object '%s%s' is not permitted in a pure subprogram"_err_en_US,
symbol.name(), bad.BuildResultDesignatorName());
}
}
}
}
if (type) { // Section 7.2, paragraph 7
bool canHaveAssumedParameter{IsNamedConstant(symbol) ||
(IsAssumedLengthCharacter(symbol) && // C722
IsExternal(symbol)) ||
symbol.test(Symbol::Flag::ParentComp)};
if (!IsStmtFunctionDummy(symbol)) { // C726
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
canHaveAssumedParameter |= object->isDummy() ||
(object->isFuncResult() &&
type->category() == DeclTypeSpec::Character) ||
IsStmtFunctionResult(symbol); // Avoids multiple messages
} else {
canHaveAssumedParameter |= symbol.has<AssocEntityDetails>();
}
}
Check(*type, canHaveAssumedParameter);
if (InPure() && InFunction() && IsFunctionResult(symbol)) {
if (derived && HasImpureFinal(*derived)) { // C1584
messages_.Say(
"Result of pure function may not have an impure FINAL subroutine"_err_en_US);
}
if (type->IsPolymorphic() && IsAllocatable(symbol)) { // C1585
messages_.Say(
"Result of pure function may not be both polymorphic and ALLOCATABLE"_err_en_US);
}
if (derived) {
if (auto bad{FindPolymorphicAllocatableUltimateComponent(*derived)}) {
SayWithDeclaration(*bad,
"Result of pure function may not have polymorphic ALLOCATABLE ultimate component '%s'"_err_en_US,
bad.BuildResultDesignatorName());
}
}
}
}
if (IsAssumedLengthCharacter(symbol) && IsExternal(symbol)) { // C723
if (symbol.attrs().test(Attr::RECURSIVE)) {
messages_.Say(
"An assumed-length CHARACTER(*) function cannot be RECURSIVE"_err_en_US);
}
if (symbol.Rank() > 0) {
messages_.Say(
"An assumed-length CHARACTER(*) function cannot return an array"_err_en_US);
}
if (symbol.attrs().test(Attr::PURE)) {
messages_.Say(
"An assumed-length CHARACTER(*) function cannot be PURE"_err_en_US);
}
if (symbol.attrs().test(Attr::ELEMENTAL)) {
messages_.Say(
"An assumed-length CHARACTER(*) function cannot be ELEMENTAL"_err_en_US);
}
if (const Symbol * result{FindFunctionResult(symbol)}) {
if (IsPointer(*result)) {
messages_.Say(
"An assumed-length CHARACTER(*) function cannot return a POINTER"_err_en_US);
}
}
}
if (symbol.attrs().test(Attr::VALUE)) {
CheckValue(symbol, derived);
}
if (symbol.attrs().test(Attr::CONTIGUOUS) && IsPointer(symbol) &&
symbol.Rank() == 0) { // C830
messages_.Say("CONTIGUOUS POINTER must be an array"_err_en_US);
}
if (IsDummy(symbol)) {
if (IsNamedConstant(symbol)) {
messages_.Say(
"A dummy argument may not also be a named constant"_err_en_US);
}
if (!symbol.test(Symbol::Flag::InDataStmt) /*caught elsewhere*/ &&
IsSaved(symbol)) {
messages_.Say(
"A dummy argument may not have the SAVE attribute"_err_en_US);
}
} else if (IsFunctionResult(symbol)) {
if (!symbol.test(Symbol::Flag::InDataStmt) /*caught elsewhere*/ &&
IsSaved(symbol)) {
messages_.Say(
"A function result may not have the SAVE attribute"_err_en_US);
}
}
if (symbol.owner().IsDerivedType() &&
(symbol.attrs().test(Attr::CONTIGUOUS) &&
!(IsPointer(symbol) && symbol.Rank() > 0))) { // C752
messages_.Say(
"A CONTIGUOUS component must be an array with the POINTER attribute"_err_en_US);
}
if (symbol.owner().IsModule() && IsAutomatic(symbol)) {
messages_.Say(
"Automatic data object '%s' may not appear in the specification part"
" of a module"_err_en_US,
symbol.name());
}
}
void CheckHelper::CheckValue(
const Symbol &symbol, const DerivedTypeSpec *derived) { // C863 - C865
if (!IsDummy(symbol)) {
messages_.Say(
"VALUE attribute may apply only to a dummy argument"_err_en_US);
}
if (IsProcedure(symbol)) {
messages_.Say(
"VALUE attribute may apply only to a dummy data object"_err_en_US);
}
if (IsAssumedSizeArray(symbol)) {
messages_.Say(
"VALUE attribute may not apply to an assumed-size array"_err_en_US);
}
if (evaluate::IsCoarray(symbol)) {
messages_.Say("VALUE attribute may not apply to a coarray"_err_en_US);
}
if (IsAllocatable(symbol)) {
messages_.Say("VALUE attribute may not apply to an ALLOCATABLE"_err_en_US);
} else if (IsPointer(symbol)) {
messages_.Say("VALUE attribute may not apply to a POINTER"_err_en_US);
}
if (IsIntentInOut(symbol)) {
messages_.Say(
"VALUE attribute may not apply to an INTENT(IN OUT) argument"_err_en_US);
} else if (IsIntentOut(symbol)) {
messages_.Say(
"VALUE attribute may not apply to an INTENT(OUT) argument"_err_en_US);
}
if (symbol.attrs().test(Attr::VOLATILE)) {
messages_.Say("VALUE attribute may not apply to a VOLATILE"_err_en_US);
}
if (innermostSymbol_ && IsBindCProcedure(*innermostSymbol_) &&
IsOptional(symbol)) {
messages_.Say(
"VALUE attribute may not apply to an OPTIONAL in a BIND(C) procedure"_err_en_US);
}
if (derived) {
if (FindCoarrayUltimateComponent(*derived)) {
messages_.Say(
"VALUE attribute may not apply to a type with a coarray ultimate component"_err_en_US);
}
}
}
void CheckHelper::CheckAssumedTypeEntity( // C709
const Symbol &symbol, const ObjectEntityDetails &details) {
if (const DeclTypeSpec * type{symbol.GetType()};
type && type->category() == DeclTypeSpec::TypeStar) {
if (!IsDummy(symbol)) {
messages_.Say(
"Assumed-type entity '%s' must be a dummy argument"_err_en_US,
symbol.name());
} else {
if (symbol.attrs().test(Attr::ALLOCATABLE)) {
messages_.Say("Assumed-type argument '%s' cannot have the ALLOCATABLE"
" attribute"_err_en_US,
symbol.name());
}
if (symbol.attrs().test(Attr::POINTER)) {
messages_.Say("Assumed-type argument '%s' cannot have the POINTER"
" attribute"_err_en_US,
symbol.name());
}
if (symbol.attrs().test(Attr::VALUE)) {
messages_.Say("Assumed-type argument '%s' cannot have the VALUE"
" attribute"_err_en_US,
symbol.name());
}
if (symbol.attrs().test(Attr::INTENT_OUT)) {
messages_.Say(
"Assumed-type argument '%s' cannot be INTENT(OUT)"_err_en_US,
symbol.name());
}
if (evaluate::IsCoarray(symbol)) {
messages_.Say(
"Assumed-type argument '%s' cannot be a coarray"_err_en_US,
symbol.name());
}
if (details.IsArray() && details.shape().IsExplicitShape()) {
messages_.Say(
"Assumed-type array argument 'arg8' must be assumed shape,"
" assumed size, or assumed rank"_err_en_US,
symbol.name());
}
}
}
}
void CheckHelper::CheckObjectEntity(
const Symbol &symbol, const ObjectEntityDetails &details) {
CheckArraySpec(symbol, details.shape());
Check(details.shape());
Check(details.coshape());
CheckAssumedTypeEntity(symbol, details);
WarnMissingFinal(symbol);
if (!details.coshape().empty()) {
bool isDeferredCoshape{details.coshape().CanBeDeferredShape()};
if (IsAllocatable(symbol)) {
if (!isDeferredCoshape) { // C827
messages_.Say("'%s' is an ALLOCATABLE coarray and must have a deferred"
" coshape"_err_en_US,
symbol.name());
}
} else if (symbol.owner().IsDerivedType()) { // C746
std::string deferredMsg{
isDeferredCoshape ? "" : " and have a deferred coshape"};
messages_.Say("Component '%s' is a coarray and must have the ALLOCATABLE"
" attribute%s"_err_en_US,
symbol.name(), deferredMsg);
} else {
if (!details.coshape().CanBeAssumedSize()) { // C828
messages_.Say(
"'%s' is a non-ALLOCATABLE coarray and must have an explicit coshape"_err_en_US,
symbol.name());
}
}
if (const DeclTypeSpec * type{details.type()}) {
if (IsBadCoarrayType(type->AsDerived())) { // C747 & C824
messages_.Say(
"Coarray '%s' may not have type TEAM_TYPE, C_PTR, or C_FUNPTR"_err_en_US,
symbol.name());
}
}
}
if (details.isDummy()) {
if (symbol.attrs().test(Attr::INTENT_OUT)) {
if (FindUltimateComponent(symbol, [](const Symbol &x) {
return evaluate::IsCoarray(x) && IsAllocatable(x);
})) { // C846
messages_.Say(
"An INTENT(OUT) dummy argument may not be, or contain, an ALLOCATABLE coarray"_err_en_US);
}
if (IsOrContainsEventOrLockComponent(symbol)) { // C847
messages_.Say(
"An INTENT(OUT) dummy argument may not be, or contain, EVENT_TYPE or LOCK_TYPE"_err_en_US);
}
}
if (InPure() && !IsStmtFunction(DEREF(innermostSymbol_)) &&
!IsPointer(symbol) && !IsIntentIn(symbol) &&
!symbol.attrs().test(Attr::VALUE)) {
if (InFunction()) { // C1583
messages_.Say(
"non-POINTER dummy argument of pure function must be INTENT(IN) or VALUE"_err_en_US);
} else if (IsIntentOut(symbol)) {
if (const DeclTypeSpec * type{details.type()}) {
if (type && type->IsPolymorphic()) { // C1588
messages_.Say(
"An INTENT(OUT) dummy argument of a pure subroutine may not be polymorphic"_err_en_US);
} else if (const DerivedTypeSpec * derived{type->AsDerived()}) {
if (FindUltimateComponent(*derived, [](const Symbol &x) {
const DeclTypeSpec *type{x.GetType()};
return type && type->IsPolymorphic();
})) { // C1588
messages_.Say(
"An INTENT(OUT) dummy argument of a pure subroutine may not have a polymorphic ultimate component"_err_en_US);
}
if (HasImpureFinal(*derived)) { // C1587
messages_.Say(
"An INTENT(OUT) dummy argument of a pure subroutine may not have an impure FINAL subroutine"_err_en_US);
}
}
}
} else if (!IsIntentInOut(symbol)) { // C1586
messages_.Say(
"non-POINTER dummy argument of pure subroutine must have INTENT() or VALUE attribute"_err_en_US);
}
}
} else if (symbol.attrs().test(Attr::INTENT_IN) ||
symbol.attrs().test(Attr::INTENT_OUT) ||
symbol.attrs().test(Attr::INTENT_INOUT)) {
messages_.Say("INTENT attributes may apply only to a dummy "
"argument"_err_en_US); // C843
} else if (IsOptional(symbol)) {
messages_.Say("OPTIONAL attribute may apply only to a dummy "
"argument"_err_en_US); // C849
}
if (InElemental()) {
if (details.isDummy()) { // C15100
if (details.shape().Rank() > 0) {
messages_.Say(
"A dummy argument of an ELEMENTAL procedure must be scalar"_err_en_US);
}
if (IsAllocatable(symbol)) {
messages_.Say(
"A dummy argument of an ELEMENTAL procedure may not be ALLOCATABLE"_err_en_US);
}
if (evaluate::IsCoarray(symbol)) {
messages_.Say(
"A dummy argument of an ELEMENTAL procedure may not be a coarray"_err_en_US);
}
if (IsPointer(symbol)) {
messages_.Say(
"A dummy argument of an ELEMENTAL procedure may not be a POINTER"_err_en_US);
}
if (!symbol.attrs().HasAny(Attrs{Attr::VALUE, Attr::INTENT_IN,
Attr::INTENT_INOUT, Attr::INTENT_OUT})) { // C15102
messages_.Say(
"A dummy argument of an ELEMENTAL procedure must have an INTENT() or VALUE attribute"_err_en_US);
}
} else if (IsFunctionResult(symbol)) { // C15101
if (details.shape().Rank() > 0) {
messages_.Say(
"The result of an ELEMENTAL function must be scalar"_err_en_US);
}
if (IsAllocatable(symbol)) {
messages_.Say(
"The result of an ELEMENTAL function may not be ALLOCATABLE"_err_en_US);
}
if (IsPointer(symbol)) {
messages_.Say(
"The result of an ELEMENTAL function may not be a POINTER"_err_en_US);
}
}
}
if (HasDeclarationInitializer(symbol)) { // C808; ignore DATA initialization
CheckPointerInitialization(symbol);
if (IsAutomatic(symbol)) {
messages_.Say(
"An automatic variable or component must not be initialized"_err_en_US);
} else if (IsDummy(symbol)) {
messages_.Say("A dummy argument must not be initialized"_err_en_US);
} else if (IsFunctionResult(symbol)) {
messages_.Say("A function result must not be initialized"_err_en_US);
} else if (IsInBlankCommon(symbol)) {
messages_.Say(
"A variable in blank COMMON should not be initialized"_port_en_US);
}
}
if (symbol.owner().kind() == Scope::Kind::BlockData) {
if (IsAllocatable(symbol)) {
messages_.Say(
"An ALLOCATABLE variable may not appear in a BLOCK DATA subprogram"_err_en_US);
} else if (IsInitialized(symbol) && !FindCommonBlockContaining(symbol)) {
messages_.Say(
"An initialized variable in BLOCK DATA must be in a COMMON block"_err_en_US);
}
}
if (const DeclTypeSpec * type{details.type()}) { // C708
if (type->IsPolymorphic() &&
!(type->IsAssumedType() || IsAllocatableOrPointer(symbol) ||
IsDummy(symbol))) {
messages_.Say("CLASS entity '%s' must be a dummy argument or have "
"ALLOCATABLE or POINTER attribute"_err_en_US,
symbol.name());
}
}
}
void CheckHelper::CheckPointerInitialization(const Symbol &symbol) {
if (IsPointer(symbol) && !context_.HasError(symbol) &&
!scopeIsUninstantiatedPDT_) {
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (object->init()) { // C764, C765; C808
if (auto designator{evaluate::AsGenericExpr(symbol)}) {
auto restorer{messages_.SetLocation(symbol.name())};
context_.set_location(symbol.name());
CheckInitialTarget(foldingContext_, *designator, *object->init());
}
}
} else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
if (proc->init() && *proc->init()) {
// C1519 - must be nonelemental external or module procedure,
// or an unrestricted specific intrinsic function.
const Symbol &ultimate{(*proc->init())->GetUltimate()};
if (ultimate.attrs().test(Attr::INTRINSIC)) {
if (const auto intrinsic{
context_.intrinsics().IsSpecificIntrinsicFunction(
ultimate.name().ToString())};
!intrinsic || intrinsic->isRestrictedSpecific) { // C1030
context_.Say(
"Intrinsic procedure '%s' is not an unrestricted specific "
"intrinsic permitted for use as the initializer for procedure "
"pointer '%s'"_err_en_US,
ultimate.name(), symbol.name());
}
} else if (!ultimate.attrs().test(Attr::EXTERNAL) &&
ultimate.owner().kind() != Scope::Kind::Module) {
context_.Say("Procedure pointer '%s' initializer '%s' is neither "
"an external nor a module procedure"_err_en_US,
symbol.name(), ultimate.name());
} else if (ultimate.attrs().test(Attr::ELEMENTAL)) {
context_.Say("Procedure pointer '%s' cannot be initialized with the "
"elemental procedure '%s"_err_en_US,
symbol.name(), ultimate.name());
} else {
// TODO: Check the "shalls" in the 15.4.3.6 paragraphs 7-10.
}
}
}
}
}
// The six different kinds of array-specs:
// array-spec -> explicit-shape-list | deferred-shape-list
// | assumed-shape-list | implied-shape-list
// | assumed-size | assumed-rank
// explicit-shape -> [ lb : ] ub
// deferred-shape -> :
// assumed-shape -> [ lb ] :
// implied-shape -> [ lb : ] *
// assumed-size -> [ explicit-shape-list , ] [ lb : ] *
// assumed-rank -> ..
// Note:
// - deferred-shape is also an assumed-shape
// - A single "*" or "lb:*" might be assumed-size or implied-shape-list
void CheckHelper::CheckArraySpec(
const Symbol &symbol, const ArraySpec &arraySpec) {
if (arraySpec.Rank() == 0) {
return;
}
bool isExplicit{arraySpec.IsExplicitShape()};
bool canBeDeferred{arraySpec.CanBeDeferredShape()};
bool canBeImplied{arraySpec.CanBeImpliedShape()};
bool canBeAssumedShape{arraySpec.CanBeAssumedShape()};
bool canBeAssumedSize{arraySpec.CanBeAssumedSize()};
bool isAssumedRank{arraySpec.IsAssumedRank()};
std::optional<parser::MessageFixedText> msg;
if (symbol.test(Symbol::Flag::CrayPointee) && !isExplicit &&
!canBeAssumedSize) {
msg = "Cray pointee '%s' must have must have explicit shape or"
" assumed size"_err_en_US;
} else if (IsAllocatableOrPointer(symbol) && !canBeDeferred &&
!isAssumedRank) {
if (symbol.owner().IsDerivedType()) { // C745
if (IsAllocatable(symbol)) {
msg = "Allocatable array component '%s' must have"
" deferred shape"_err_en_US;
} else {
msg = "Array pointer component '%s' must have deferred shape"_err_en_US;
}
} else {
if (IsAllocatable(symbol)) { // C832
msg = "Allocatable array '%s' must have deferred shape or"
" assumed rank"_err_en_US;
} else {
msg = "Array pointer '%s' must have deferred shape or"
" assumed rank"_err_en_US;
}
}
} else if (IsDummy(symbol)) {
if (canBeImplied && !canBeAssumedSize) { // C836
msg = "Dummy array argument '%s' may not have implied shape"_err_en_US;
}
} else if (canBeAssumedShape && !canBeDeferred) {
msg = "Assumed-shape array '%s' must be a dummy argument"_err_en_US;
} else if (canBeAssumedSize && !canBeImplied) { // C833
msg = "Assumed-size array '%s' must be a dummy argument"_err_en_US;
} else if (isAssumedRank) { // C837
msg = "Assumed-rank array '%s' must be a dummy argument"_err_en_US;
} else if (canBeImplied) {
if (!IsNamedConstant(symbol)) { // C835, C836
msg = "Implied-shape array '%s' must be a named constant or a "
"dummy argument"_err_en_US;
}
} else if (IsNamedConstant(symbol)) {
if (!isExplicit && !canBeImplied) {
msg = "Named constant '%s' array must have constant or"
" implied shape"_err_en_US;
}
} else if (!IsAllocatableOrPointer(symbol) && !isExplicit) {
if (symbol.owner().IsDerivedType()) { // C749
msg = "Component array '%s' without ALLOCATABLE or POINTER attribute must"
" have explicit shape"_err_en_US;
} else { // C816
msg = "Array '%s' without ALLOCATABLE or POINTER attribute must have"
" explicit shape"_err_en_US;
}
}
if (msg) {
context_.Say(std::move(*msg), symbol.name());
}
}
void CheckHelper::CheckProcEntity(
const Symbol &symbol, const ProcEntityDetails &details) {
if (details.isDummy()) {
if (!symbol.attrs().test(Attr::POINTER) && // C843
(symbol.attrs().test(Attr::INTENT_IN) ||
symbol.attrs().test(Attr::INTENT_OUT) ||
symbol.attrs().test(Attr::INTENT_INOUT))) {
messages_.Say("A dummy procedure without the POINTER attribute"
" may not have an INTENT attribute"_err_en_US);
}
if (InElemental()) { // C15100
messages_.Say(
"An ELEMENTAL subprogram may not have a dummy procedure"_err_en_US);
}
const Symbol *interface { details.interface().symbol() };
if (!symbol.attrs().test(Attr::INTRINSIC) &&
(symbol.attrs().test(Attr::ELEMENTAL) ||
(interface && !interface->attrs().test(Attr::INTRINSIC) &&
interface->attrs().test(Attr::ELEMENTAL)))) {
// There's no explicit constraint or "shall" that we can find in the
// standard for this check, but it seems to be implied in multiple
// sites, and ELEMENTAL non-intrinsic actual arguments *are*
// explicitly forbidden. But we allow "PROCEDURE(SIN)::dummy"
// because it is explicitly legal to *pass* the specific intrinsic
// function SIN as an actual argument.
messages_.Say("A dummy procedure may not be ELEMENTAL"_err_en_US);
}
} else if (symbol.attrs().test(Attr::INTENT_IN) ||
symbol.attrs().test(Attr::INTENT_OUT) ||
symbol.attrs().test(Attr::INTENT_INOUT)) {
messages_.Say("INTENT attributes may apply only to a dummy "
"argument"_err_en_US); // C843
} else if (IsOptional(symbol)) {
messages_.Say("OPTIONAL attribute may apply only to a dummy "
"argument"_err_en_US); // C849
} else if (symbol.owner().IsDerivedType()) {
if (!symbol.attrs().test(Attr::POINTER)) { // C756
const auto &name{symbol.name()};
messages_.Say(name,
"Procedure component '%s' must have POINTER attribute"_err_en_US,
name);
}
CheckPassArg(symbol, details.interface().symbol(), details);
}
if (symbol.attrs().test(Attr::POINTER)) {
CheckPointerInitialization(symbol);
if (const Symbol * interface{details.interface().symbol()}) {
if (interface->attrs().test(Attr::INTRINSIC)) {
if (const auto intrinsic{
context_.intrinsics().IsSpecificIntrinsicFunction(
interface->name().ToString())};
!intrinsic || intrinsic->isRestrictedSpecific) { // C1515
messages_.Say(
"Intrinsic procedure '%s' is not an unrestricted specific "
"intrinsic permitted for use as the definition of the interface "
"to procedure pointer '%s'"_err_en_US,
interface->name(), symbol.name());
}
} else if (interface->attrs().test(Attr::ELEMENTAL)) {
messages_.Say("Procedure pointer '%s' may not be ELEMENTAL"_err_en_US,
symbol.name()); // C1517
}
}
} else if (symbol.attrs().test(Attr::SAVE)) {
messages_.Say(
"Procedure '%s' with SAVE attribute must also have POINTER attribute"_err_en_US,
symbol.name());
}
}
// When a module subprogram has the MODULE prefix the following must match
// with the corresponding separate module procedure interface body:
// - C1549: characteristics and dummy argument names
// - C1550: binding label
// - C1551: NON_RECURSIVE prefix
class SubprogramMatchHelper {
public:
explicit SubprogramMatchHelper(CheckHelper &checkHelper)
: checkHelper{checkHelper} {}
void Check(const Symbol &, const Symbol &);
private:
SemanticsContext &context() { return checkHelper.context(); }
void CheckDummyArg(const Symbol &, const Symbol &, const DummyArgument &,
const DummyArgument &);
void CheckDummyDataObject(const Symbol &, const Symbol &,
const DummyDataObject &, const DummyDataObject &);
void CheckDummyProcedure(const Symbol &, const Symbol &,
const DummyProcedure &, const DummyProcedure &);
bool CheckSameIntent(
const Symbol &, const Symbol &, common::Intent, common::Intent);
template <typename... A>
void Say(
const Symbol &, const Symbol &, parser::MessageFixedText &&, A &&...);
template <typename ATTRS>
bool CheckSameAttrs(const Symbol &, const Symbol &, ATTRS, ATTRS);
bool ShapesAreCompatible(const DummyDataObject &, const DummyDataObject &);
evaluate::Shape FoldShape(const evaluate::Shape &);
std::string AsFortran(DummyDataObject::Attr attr) {
return parser::ToUpperCaseLetters(DummyDataObject::EnumToString(attr));
}
std::string AsFortran(DummyProcedure::Attr attr) {
return parser::ToUpperCaseLetters(DummyProcedure::EnumToString(attr));
}
CheckHelper &checkHelper;
};
// 15.6.2.6 para 3 - can the result of an ENTRY differ from its function?
bool CheckHelper::IsResultOkToDiffer(const FunctionResult &result) {
if (result.attrs.test(FunctionResult::Attr::Allocatable) ||
result.attrs.test(FunctionResult::Attr::Pointer)) {
return false;
}
const auto *typeAndShape{result.GetTypeAndShape()};
if (!typeAndShape || typeAndShape->Rank() != 0) {
return false;
}
auto category{typeAndShape->type().category()};
if (category == TypeCategory::Character ||
category == TypeCategory::Derived) {
return false;
}
int kind{typeAndShape->type().kind()};
return kind == context_.GetDefaultKind(category) ||
(category == TypeCategory::Real &&
kind == context_.doublePrecisionKind());
}
void CheckHelper::CheckSubprogram(
const Symbol &symbol, const SubprogramDetails &details) {
if (const Symbol * iface{FindSeparateModuleSubprogramInterface(&symbol)}) {
SubprogramMatchHelper{*this}.Check(symbol, *iface);
}
if (const Scope * entryScope{details.entryScope()}) {
// ENTRY 15.6.2.6, esp. C1571
std::optional<parser::MessageFixedText> error;
const Symbol *subprogram{entryScope->symbol()};
const SubprogramDetails *subprogramDetails{nullptr};
if (subprogram) {
subprogramDetails = subprogram->detailsIf<SubprogramDetails>();
}
if (entryScope->kind() != Scope::Kind::Subprogram) {
error = "ENTRY may appear only in a subroutine or function"_err_en_US;
} else if (!(entryScope->parent().IsGlobal() ||
entryScope->parent().IsModule() ||
entryScope->parent().IsSubmodule())) {
error = "ENTRY may not appear in an internal subprogram"_err_en_US;
} else if (FindSeparateModuleSubprogramInterface(subprogram)) {
error = "ENTRY may not appear in a separate module procedure"_err_en_US;
} else if (subprogramDetails && details.isFunction() &&
subprogramDetails->isFunction() &&
!context_.HasError(details.result()) &&
!context_.HasError(subprogramDetails->result())) {
auto result{FunctionResult::Characterize(
details.result(), context_.foldingContext())};
auto subpResult{FunctionResult::Characterize(
subprogramDetails->result(), context_.foldingContext())};
if (result && subpResult && *result != *subpResult &&
(!IsResultOkToDiffer(*result) || !IsResultOkToDiffer(*subpResult))) {
error =
"Result of ENTRY is not compatible with result of containing function"_err_en_US;
}
}
if (error) {
if (auto *msg{messages_.Say(symbol.name(), *error)}) {
if (subprogram) {
msg->Attach(subprogram->name(), "Containing subprogram"_en_US);
}
}
}
}
if (symbol.attrs().test(Attr::ELEMENTAL)) {
// See comment on the similar check in CheckProcEntity()
if (details.isDummy()) {
messages_.Say("A dummy procedure may not be ELEMENTAL"_err_en_US);
} else {
for (const Symbol *dummy : details.dummyArgs()) {
if (!dummy) { // C15100
messages_.Say(
"An ELEMENTAL subroutine may not have an alternate return dummy argument"_err_en_US);
}
}
}
}
}
void CheckHelper::CheckDerivedType(
const Symbol &derivedType, const DerivedTypeDetails &details) {
if (details.isForwardReferenced() && !context_.HasError(derivedType)) {
messages_.Say("The derived type '%s' has not been defined"_err_en_US,
derivedType.name());
}
const Scope *scope{derivedType.scope()};
if (!scope) {
CHECK(details.isForwardReferenced());
return;
}
CHECK(scope->symbol() == &derivedType);
CHECK(scope->IsDerivedType());
if (derivedType.attrs().test(Attr::ABSTRACT) && // C734
(derivedType.attrs().test(Attr::BIND_C) || details.sequence())) {
messages_.Say("An ABSTRACT derived type must be extensible"_err_en_US);
}
if (const DeclTypeSpec * parent{FindParentTypeSpec(derivedType)}) {
const DerivedTypeSpec *parentDerived{parent->AsDerived()};
if (!IsExtensibleType(parentDerived)) { // C705
messages_.Say("The parent type is not extensible"_err_en_US);
}
if (!derivedType.attrs().test(Attr::ABSTRACT) && parentDerived &&
parentDerived->typeSymbol().attrs().test(Attr::ABSTRACT)) {
ScopeComponentIterator components{*parentDerived};
for (const Symbol &component : components) {
if (component.attrs().test(Attr::DEFERRED)) {
if (scope->FindComponent(component.name()) == &component) {
SayWithDeclaration(component,
"Non-ABSTRACT extension of ABSTRACT derived type '%s' lacks a binding for DEFERRED procedure '%s'"_err_en_US,
parentDerived->typeSymbol().name(), component.name());
}
}
}
}
DerivedTypeSpec derived{derivedType.name(), derivedType};
derived.set_scope(*scope);
if (FindCoarrayUltimateComponent(derived) && // C736
!(parentDerived && FindCoarrayUltimateComponent(*parentDerived))) {
messages_.Say(
"Type '%s' has a coarray ultimate component so the type at the base "
"of its type extension chain ('%s') must be a type that has a "
"coarray ultimate component"_err_en_US,
derivedType.name(), scope->GetDerivedTypeBase().GetSymbol()->name());
}
if (FindEventOrLockPotentialComponent(derived) && // C737
!(FindEventOrLockPotentialComponent(*parentDerived) ||
IsEventTypeOrLockType(parentDerived))) {
messages_.Say(
"Type '%s' has an EVENT_TYPE or LOCK_TYPE component, so the type "
"at the base of its type extension chain ('%s') must either have an "
"EVENT_TYPE or LOCK_TYPE component, or be EVENT_TYPE or "
"LOCK_TYPE"_err_en_US,
derivedType.name(), scope->GetDerivedTypeBase().GetSymbol()->name());
}
}
if (HasIntrinsicTypeName(derivedType)) { // C729
messages_.Say("A derived type name cannot be the name of an intrinsic"
" type"_err_en_US);
}
std::map<SourceName, SymbolRef> previous;
for (const auto &pair : details.finals()) {
SourceName source{pair.first};
const Symbol &ref{*pair.second};
if (CheckFinal(ref, source, derivedType) &&
std::all_of(previous.begin(), previous.end(),
[&](std::pair<SourceName, SymbolRef> prev) {
return CheckDistinguishableFinals(
ref, source, *prev.second, prev.first, derivedType);
})) {
previous.emplace(source, ref);
}
}
}
// C786
bool CheckHelper::CheckFinal(
const Symbol &subroutine, SourceName finalName, const Symbol &derivedType) {
if (!IsModuleProcedure(subroutine)) {
SayWithDeclaration(subroutine, finalName,
"FINAL subroutine '%s' of derived type '%s' must be a module procedure"_err_en_US,
subroutine.name(), derivedType.name());
return false;
}
const Procedure *proc{Characterize(subroutine)};
if (!proc) {
return false; // error recovery
}
if (!proc->IsSubroutine()) {
SayWithDeclaration(subroutine, finalName,
"FINAL subroutine '%s' of derived type '%s' must be a subroutine"_err_en_US,
subroutine.name(), derivedType.name());
return false;
}
if (proc->dummyArguments.size() != 1) {
SayWithDeclaration(subroutine, finalName,
"FINAL subroutine '%s' of derived type '%s' must have a single dummy argument"_err_en_US,
subroutine.name(), derivedType.name());
return false;
}
const auto &arg{proc->dummyArguments[0]};
const Symbol *errSym{&subroutine};
if (const auto *details{subroutine.detailsIf<SubprogramDetails>()}) {
if (!details->dummyArgs().empty()) {
if (const Symbol * argSym{details->dummyArgs()[0]}) {
errSym = argSym;
}
}
}
const auto *ddo{std::get_if<DummyDataObject>(&arg.u)};
if (!ddo) {
SayWithDeclaration(subroutine, finalName,
"FINAL subroutine '%s' of derived type '%s' must have a single dummy argument that is a data object"_err_en_US,
subroutine.name(), derivedType.name());
return false;
}
bool ok{true};
if (arg.IsOptional()) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must not have an OPTIONAL dummy argument"_err_en_US,
subroutine.name(), derivedType.name());
ok = false;
}
if (ddo->attrs.test(DummyDataObject::Attr::Allocatable)) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must not have an ALLOCATABLE dummy argument"_err_en_US,
subroutine.name(), derivedType.name());
ok = false;
}
if (ddo->attrs.test(DummyDataObject::Attr::Pointer)) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must not have a POINTER dummy argument"_err_en_US,
subroutine.name(), derivedType.name());
ok = false;
}
if (ddo->intent == common::Intent::Out) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must not have a dummy argument with INTENT(OUT)"_err_en_US,
subroutine.name(), derivedType.name());
ok = false;
}
if (ddo->attrs.test(DummyDataObject::Attr::Value)) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must not have a dummy argument with the VALUE attribute"_err_en_US,
subroutine.name(), derivedType.name());
ok = false;
}
if (ddo->type.corank() > 0) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must not have a coarray dummy argument"_err_en_US,
subroutine.name(), derivedType.name());
ok = false;
}
if (ddo->type.type().IsPolymorphic()) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must not have a polymorphic dummy argument"_err_en_US,
subroutine.name(), derivedType.name());
ok = false;
} else if (ddo->type.type().category() != TypeCategory::Derived ||
&ddo->type.type().GetDerivedTypeSpec().typeSymbol() != &derivedType) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must have a TYPE(%s) dummy argument"_err_en_US,
subroutine.name(), derivedType.name(), derivedType.name());
ok = false;
} else { // check that all LEN type parameters are assumed
for (auto ref : OrderParameterDeclarations(derivedType)) {
if (IsLenTypeParameter(*ref)) {
const auto *value{
ddo->type.type().GetDerivedTypeSpec().FindParameter(ref->name())};
if (!value || !value->isAssumed()) {
SayWithDeclaration(*errSym, finalName,
"FINAL subroutine '%s' of derived type '%s' must have a dummy argument with an assumed LEN type parameter '%s=*'"_err_en_US,
subroutine.name(), derivedType.name(), ref->name());
ok = false;
}
}
}
}
return ok;
}
bool CheckHelper::CheckDistinguishableFinals(const Symbol &f1,
SourceName f1Name, const Symbol &f2, SourceName f2Name,
const Symbol &derivedType) {
const Procedure *p1{Characterize(f1)};
const Procedure *p2{Characterize(f2)};
if (p1 && p2) {
if (characteristics::Distinguishable(
context_.languageFeatures(), *p1, *p2)) {
return true;
}
if (auto *msg{messages_.Say(f1Name,
"FINAL subroutines '%s' and '%s' of derived type '%s' cannot be distinguished by rank or KIND type parameter value"_err_en_US,
f1Name, f2Name, derivedType.name())}) {
msg->Attach(f2Name, "FINAL declaration of '%s'"_en_US, f2.name())
.Attach(f1.name(), "Definition of '%s'"_en_US, f1Name)
.Attach(f2.name(), "Definition of '%s'"_en_US, f2Name);
}
}
return false;
}
void CheckHelper::CheckHostAssoc(
const Symbol &symbol, const HostAssocDetails &details) {
const Symbol &hostSymbol{details.symbol()};
if (hostSymbol.test(Symbol::Flag::ImplicitOrError)) {
if (details.implicitOrSpecExprError) {
messages_.Say("Implicitly typed local entity '%s' not allowed in"
" specification expression"_err_en_US,
symbol.name());
} else if (details.implicitOrExplicitTypeError) {
messages_.Say(
"No explicit type declared for '%s'"_err_en_US, symbol.name());
}
}
}
void CheckHelper::CheckGeneric(
const Symbol &symbol, const GenericDetails &details) {
CheckSpecificsAreDistinguishable(symbol, details);
std::visit(common::visitors{
[&](const GenericKind::DefinedIo &io) {
CheckDefinedIoProc(symbol, details, io);
},
[](const auto &) {},
},
details.kind().u);
}
// Check that the specifics of this generic are distinguishable from each other
void CheckHelper::CheckSpecificsAreDistinguishable(
const Symbol &generic, const GenericDetails &details) {
GenericKind kind{details.kind()};
const SymbolVector &specifics{details.specificProcs()};
std::size_t count{specifics.size()};
if (count < 2 || !kind.IsName()) {
return;
}
DistinguishabilityHelper helper{context_};
for (const Symbol &specific : specifics) {
if (const Procedure * procedure{Characterize(specific)}) {
helper.Add(generic, kind, specific, *procedure);
}
}
helper.Check(generic.owner());
}
static bool ConflictsWithIntrinsicAssignment(const Procedure &proc) {
auto lhs{std::get<DummyDataObject>(proc.dummyArguments[0].u).type};
auto rhs{std::get<DummyDataObject>(proc.dummyArguments[1].u).type};
return Tristate::No ==
IsDefinedAssignment(lhs.type(), lhs.Rank(), rhs.type(), rhs.Rank());
}
static bool ConflictsWithIntrinsicOperator(
const GenericKind &kind, const Procedure &proc) {
if (!kind.IsIntrinsicOperator()) {
return false;
}
auto arg0{std::get<DummyDataObject>(proc.dummyArguments[0].u).type};
auto type0{arg0.type()};
if (proc.dummyArguments.size() == 1) { // unary
return std::visit(
common::visitors{
[&](common::NumericOperator) { return IsIntrinsicNumeric(type0); },
[&](common::LogicalOperator) { return IsIntrinsicLogical(type0); },
[](const auto &) -> bool { DIE("bad generic kind"); },
},
kind.u);
} else { // binary
int rank0{arg0.Rank()};
auto arg1{std::get<DummyDataObject>(proc.dummyArguments[1].u).type};
auto type1{arg1.type()};
int rank1{arg1.Rank()};
return std::visit(
common::visitors{
[&](common::NumericOperator) {
return IsIntrinsicNumeric(type0, rank0, type1, rank1);
},
[&](common::LogicalOperator) {
return IsIntrinsicLogical(type0, rank0, type1, rank1);
},
[&](common::RelationalOperator opr) {
return IsIntrinsicRelational(opr, type0, rank0, type1, rank1);
},
[&](GenericKind::OtherKind x) {
CHECK(x == GenericKind::OtherKind::Concat);
return IsIntrinsicConcat(type0, rank0, type1, rank1);
},
[](const auto &) -> bool { DIE("bad generic kind"); },
},
kind.u);
}
}
// Check if this procedure can be used for defined operators (see 15.4.3.4.2).
bool CheckHelper::CheckDefinedOperator(SourceName opName, GenericKind kind,
const Symbol &specific, const Procedure &proc) {
if (context_.HasError(specific)) {
return false;
}
std::optional<parser::MessageFixedText> msg;
auto checkDefinedOperatorArgs{
[&](SourceName opName, const Symbol &specific, const Procedure &proc) {
bool arg0Defined{CheckDefinedOperatorArg(opName, specific, proc, 0)};
bool arg1Defined{CheckDefinedOperatorArg(opName, specific, proc, 1)};
return arg0Defined && arg1Defined;
}};
if (specific.attrs().test(Attr::NOPASS)) { // C774
msg = "%s procedure '%s' may not have NOPASS attribute"_err_en_US;
} else if (!proc.functionResult.has_value()) {
msg = "%s procedure '%s' must be a function"_err_en_US;
} else if (proc.functionResult->IsAssumedLengthCharacter()) {
msg = "%s function '%s' may not have assumed-length CHARACTER(*)"
" result"_err_en_US;
} else if (auto m{CheckNumberOfArgs(kind, proc.dummyArguments.size())}) {
msg = std::move(m);
} else if (!checkDefinedOperatorArgs(opName, specific, proc)) {
return false; // error was reported
} else if (ConflictsWithIntrinsicOperator(kind, proc)) {
msg = "%s function '%s' conflicts with intrinsic operator"_err_en_US;
} else {
return true; // OK
}
SayWithDeclaration(
specific, std::move(*msg), MakeOpName(opName), specific.name());
context_.SetError(specific);
return false;
}
// If the number of arguments is wrong for this intrinsic operator, return
// false and return the error message in msg.
std::optional<parser::MessageFixedText> CheckHelper::CheckNumberOfArgs(
const GenericKind &kind, std::size_t nargs) {
if (!kind.IsIntrinsicOperator()) {
return std::nullopt;
}
std::size_t min{2}, max{2}; // allowed number of args; default is binary
std::visit(common::visitors{
[&](const common::NumericOperator &x) {
if (x == common::NumericOperator::Add ||
x == common::NumericOperator::Subtract) {
min = 1; // + and - are unary or binary
}
},
[&](const common::LogicalOperator &x) {
if (x == common::LogicalOperator::Not) {
min = 1; // .NOT. is unary
max = 1;
}
},
[](const common::RelationalOperator &) {
// all are binary
},
[](const GenericKind::OtherKind &x) {
CHECK(x == GenericKind::OtherKind::Concat);
},
[](const auto &) { DIE("expected intrinsic operator"); },
},
kind.u);
if (nargs >= min && nargs <= max) {
return std::nullopt;
} else if (max == 1) {
return "%s function '%s' must have one dummy argument"_err_en_US;
} else if (min == 2) {
return "%s function '%s' must have two dummy arguments"_err_en_US;
} else {
return "%s function '%s' must have one or two dummy arguments"_err_en_US;
}
}
bool CheckHelper::CheckDefinedOperatorArg(const SourceName &opName,
const Symbol &symbol, const Procedure &proc, std::size_t pos) {
if (pos >= proc.dummyArguments.size()) {
return true;
}
auto &arg{proc.dummyArguments.at(pos)};
std::optional<parser::MessageFixedText> msg;
if (arg.IsOptional()) {
msg = "In %s function '%s', dummy argument '%s' may not be"
" OPTIONAL"_err_en_US;
} else if (const auto *dataObject{std::get_if<DummyDataObject>(&arg.u)};
dataObject == nullptr) {
msg = "In %s function '%s', dummy argument '%s' must be a"
" data object"_err_en_US;
} else if (dataObject->intent != common::Intent::In &&
!dataObject->attrs.test(DummyDataObject::Attr::Value)) {
msg = "In %s function '%s', dummy argument '%s' must have INTENT(IN)"
" or VALUE attribute"_err_en_US;
}
if (msg) {
SayWithDeclaration(symbol, std::move(*msg),
parser::ToUpperCaseLetters(opName.ToString()), symbol.name(), arg.name);
return false;
}
return true;
}
// Check if this procedure can be used for defined assignment (see 15.4.3.4.3).
bool CheckHelper::CheckDefinedAssignment(
const Symbol &specific, const Procedure &proc) {
if (context_.HasError(specific)) {
return false;
}
std::optional<parser::MessageFixedText> msg;
if (specific.attrs().test(Attr::NOPASS)) { // C774
msg = "Defined assignment procedure '%s' may not have"
" NOPASS attribute"_err_en_US;
} else if (!proc.IsSubroutine()) {
msg = "Defined assignment procedure '%s' must be a subroutine"_err_en_US;
} else if (proc.dummyArguments.size() != 2) {
msg = "Defined assignment subroutine '%s' must have"
" two dummy arguments"_err_en_US;
} else {
// Check both arguments even if the first has an error.
bool ok0{CheckDefinedAssignmentArg(specific, proc.dummyArguments[0], 0)};
bool ok1{CheckDefinedAssignmentArg(specific, proc.dummyArguments[1], 1)};
if (!(ok0 && ok1)) {
return false; // error was reported
} else if (ConflictsWithIntrinsicAssignment(proc)) {
msg = "Defined assignment subroutine '%s' conflicts with"
" intrinsic assignment"_err_en_US;
} else {
return true; // OK
}
}
SayWithDeclaration(specific, std::move(msg.value()), specific.name());
context_.SetError(specific);
return false;
}
bool CheckHelper::CheckDefinedAssignmentArg(
const Symbol &symbol, const DummyArgument &arg, int pos) {
std::optional<parser::MessageFixedText> msg;
if (arg.IsOptional()) {
msg = "In defined assignment subroutine '%s', dummy argument '%s'"
" may not be OPTIONAL"_err_en_US;
} else if (const auto *dataObject{std::get_if<DummyDataObject>(&arg.u)}) {
if (pos == 0) {
if (dataObject->intent != common::Intent::Out &&
dataObject->intent != common::Intent::InOut) {
msg = "In defined assignment subroutine '%s', first dummy argument '%s'"
" must have INTENT(OUT) or INTENT(INOUT)"_err_en_US;
}
} else if (pos == 1) {
if (dataObject->intent != common::Intent::In &&
!dataObject->attrs.test(DummyDataObject::Attr::Value)) {
msg =
"In defined assignment subroutine '%s', second dummy"
" argument '%s' must have INTENT(IN) or VALUE attribute"_err_en_US;
}
} else {
DIE("pos must be 0 or 1");
}
} else {
msg = "In defined assignment subroutine '%s', dummy argument '%s'"
" must be a data object"_err_en_US;
}
if (msg) {
SayWithDeclaration(symbol, std::move(*msg), symbol.name(), arg.name);
context_.SetError(symbol);
return false;
}
return true;
}
// Report a conflicting attribute error if symbol has both of these attributes
bool CheckHelper::CheckConflicting(const Symbol &symbol, Attr a1, Attr a2) {
if (symbol.attrs().test(a1) && symbol.attrs().test(a2)) {
messages_.Say("'%s' may not have both the %s and %s attributes"_err_en_US,
symbol.name(), AttrToString(a1), AttrToString(a2));
return true;
} else {
return false;
}
}
void CheckHelper::WarnMissingFinal(const Symbol &symbol) {
const auto *object{symbol.detailsIf<ObjectEntityDetails>()};
if (!object || IsPointer(symbol)) {
return;
}
const DeclTypeSpec *type{object->type()};
const DerivedTypeSpec *derived{type ? type->AsDerived() : nullptr};
const Symbol *derivedSym{derived ? &derived->typeSymbol() : nullptr};
int rank{object->shape().Rank()};
const Symbol *initialDerivedSym{derivedSym};
while (const auto *derivedDetails{
derivedSym ? derivedSym->detailsIf<DerivedTypeDetails>() : nullptr}) {
if (!derivedDetails->finals().empty() &&
!derivedDetails->GetFinalForRank(rank)) {
if (auto *msg{derivedSym == initialDerivedSym
? messages_.Say(symbol.name(),
"'%s' of derived type '%s' does not have a FINAL subroutine for its rank (%d)"_warn_en_US,
symbol.name(), derivedSym->name(), rank)
: messages_.Say(symbol.name(),
"'%s' of derived type '%s' extended from '%s' does not have a FINAL subroutine for its rank (%d)"_warn_en_US,
symbol.name(), initialDerivedSym->name(),
derivedSym->name(), rank)}) {
msg->Attach(derivedSym->name(),
"Declaration of derived type '%s'"_en_US, derivedSym->name());
}
return;
}
derived = derivedSym->GetParentTypeSpec();
derivedSym = derived ? &derived->typeSymbol() : nullptr;
}
}
const Procedure *CheckHelper::Characterize(const Symbol &symbol) {
auto it{characterizeCache_.find(symbol)};
if (it == characterizeCache_.end()) {
auto pair{characterizeCache_.emplace(SymbolRef{symbol},
Procedure::Characterize(symbol, context_.foldingContext()))};
it = pair.first;
}
return common::GetPtrFromOptional(it->second);
}
void CheckHelper::CheckVolatile(const Symbol &symbol,
const DerivedTypeSpec *derived) { // C866 - C868
if (IsIntentIn(symbol)) {
messages_.Say(
"VOLATILE attribute may not apply to an INTENT(IN) argument"_err_en_US);
}
if (IsProcedure(symbol)) {
messages_.Say("VOLATILE attribute may apply only to a variable"_err_en_US);
}
if (symbol.has<UseDetails>() || symbol.has<HostAssocDetails>()) {
const Symbol &ultimate{symbol.GetUltimate()};
if (evaluate::IsCoarray(ultimate)) {
messages_.Say(
"VOLATILE attribute may not apply to a coarray accessed by USE or host association"_err_en_US);
}
if (derived) {
if (FindCoarrayUltimateComponent(*derived)) {
messages_.Say(
"VOLATILE attribute may not apply to a type with a coarray ultimate component accessed by USE or host association"_err_en_US);
}
}
}
}
void CheckHelper::CheckPointer(const Symbol &symbol) { // C852
CheckConflicting(symbol, Attr::POINTER, Attr::TARGET);
CheckConflicting(symbol, Attr::POINTER, Attr::ALLOCATABLE); // C751
CheckConflicting(symbol, Attr::POINTER, Attr::INTRINSIC);
// Prohibit constant pointers. The standard does not explicitly prohibit
// them, but the PARAMETER attribute requires a entity-decl to have an
// initialization that is a constant-expr, and the only form of
// initialization that allows a constant-expr is the one that's not a "=>"
// pointer initialization. See C811, C807, and section 8.5.13.
CheckConflicting(symbol, Attr::POINTER, Attr::PARAMETER);
if (symbol.Corank() > 0) {
messages_.Say(
"'%s' may not have the POINTER attribute because it is a coarray"_err_en_US,
symbol.name());
}
}
// C760 constraints on the passed-object dummy argument
// C757 constraints on procedure pointer components
void CheckHelper::CheckPassArg(
const Symbol &proc, const Symbol *interface, const WithPassArg &details) {
if (proc.attrs().test(Attr::NOPASS)) {
return;
}
const auto &name{proc.name()};
if (!interface) {
messages_.Say(name,
"Procedure component '%s' must have NOPASS attribute or explicit interface"_err_en_US,
name);
return;
}
const auto *subprogram{interface->detailsIf<SubprogramDetails>()};
if (!subprogram) {
messages_.Say(name,
"Procedure component '%s' has invalid interface '%s'"_err_en_US, name,
interface->name());
return;
}
std::optional<SourceName> passName{details.passName()};
const auto &dummyArgs{subprogram->dummyArgs()};
if (!passName) {
if (dummyArgs.empty()) {
messages_.Say(name,
proc.has<ProcEntityDetails>()
? "Procedure component '%s' with no dummy arguments"
" must have NOPASS attribute"_err_en_US
: "Procedure binding '%s' with no dummy arguments"
" must have NOPASS attribute"_err_en_US,
name);
context_.SetError(*interface);
return;
}
Symbol *argSym{dummyArgs[0]};
if (!argSym) {
messages_.Say(interface->name(),
"Cannot use an alternate return as the passed-object dummy "
"argument"_err_en_US);
return;
}
passName = dummyArgs[0]->name();
}
std::optional<int> passArgIndex{};
for (std::size_t i{0}; i < dummyArgs.size(); ++i) {
if (dummyArgs[i] && dummyArgs[i]->name() == *passName) {
passArgIndex = i;
break;
}
}
if (!passArgIndex) { // C758
messages_.Say(*passName,
"'%s' is not a dummy argument of procedure interface '%s'"_err_en_US,
*passName, interface->name());
return;
}
const Symbol &passArg{*dummyArgs[*passArgIndex]};
std::optional<parser::MessageFixedText> msg;
if (!passArg.has<ObjectEntityDetails>()) {
msg = "Passed-object dummy argument '%s' of procedure '%s'"
" must be a data object"_err_en_US;
} else if (passArg.attrs().test(Attr::POINTER)) {
msg = "Passed-object dummy argument '%s' of procedure '%s'"
" may not have the POINTER attribute"_err_en_US;
} else if (passArg.attrs().test(Attr::ALLOCATABLE)) {
msg = "Passed-object dummy argument '%s' of procedure '%s'"
" may not have the ALLOCATABLE attribute"_err_en_US;
} else if (passArg.attrs().test(Attr::VALUE)) {
msg = "Passed-object dummy argument '%s' of procedure '%s'"
" may not have the VALUE attribute"_err_en_US;
} else if (passArg.Rank() > 0) {
msg = "Passed-object dummy argument '%s' of procedure '%s'"
" must be scalar"_err_en_US;
}
if (msg) {
messages_.Say(name, std::move(*msg), passName.value(), name);
return;
}
const DeclTypeSpec *type{passArg.GetType()};
if (!type) {
return; // an error already occurred
}
const Symbol &typeSymbol{*proc.owner().GetSymbol()};
const DerivedTypeSpec *derived{type->AsDerived()};
if (!derived || derived->typeSymbol() != typeSymbol) {
messages_.Say(name,
"Passed-object dummy argument '%s' of procedure '%s'"
" must be of type '%s' but is '%s'"_err_en_US,
passName.value(), name, typeSymbol.name(), type->AsFortran());
return;
}
if (IsExtensibleType(derived) != type->IsPolymorphic()) {
messages_.Say(name,
type->IsPolymorphic()
? "Passed-object dummy argument '%s' of procedure '%s'"
" may not be polymorphic because '%s' is not extensible"_err_en_US
: "Passed-object dummy argument '%s' of procedure '%s'"
" must be polymorphic because '%s' is extensible"_err_en_US,
passName.value(), name, typeSymbol.name());
return;
}
for (const auto &[paramName, paramValue] : derived->parameters()) {
if (paramValue.isLen() && !paramValue.isAssumed()) {
messages_.Say(name,
"Passed-object dummy argument '%s' of procedure '%s'"
" has non-assumed length parameter '%s'"_err_en_US,
passName.value(), name, paramName);
}
}
}
void CheckHelper::CheckProcBinding(
const Symbol &symbol, const ProcBindingDetails &binding) {
const Scope &dtScope{symbol.owner()};
CHECK(dtScope.kind() == Scope::Kind::DerivedType);
if (symbol.attrs().test(Attr::DEFERRED)) {
if (const Symbol * dtSymbol{dtScope.symbol()}) {
if (!dtSymbol->attrs().test(Attr::ABSTRACT)) { // C733
SayWithDeclaration(*dtSymbol,
"Procedure bound to non-ABSTRACT derived type '%s' may not be DEFERRED"_err_en_US,
dtSymbol->name());
}
}
if (symbol.attrs().test(Attr::NON_OVERRIDABLE)) {
messages_.Say(
"Type-bound procedure '%s' may not be both DEFERRED and NON_OVERRIDABLE"_err_en_US,
symbol.name());
}
}
if (binding.symbol().attrs().test(Attr::INTRINSIC) &&
!context_.intrinsics().IsSpecificIntrinsicFunction(
binding.symbol().name().ToString())) {
messages_.Say(
"Intrinsic procedure '%s' is not a specific intrinsic permitted for use in the definition of binding '%s'"_err_en_US,
binding.symbol().name(), symbol.name());
}
if (const Symbol * overridden{FindOverriddenBinding(symbol)}) {
if (overridden->attrs().test(Attr::NON_OVERRIDABLE)) {
SayWithDeclaration(*overridden,
"Override of NON_OVERRIDABLE '%s' is not permitted"_err_en_US,
symbol.name());
}
if (const auto *overriddenBinding{
overridden->detailsIf<ProcBindingDetails>()}) {
if (!IsPureProcedure(symbol) && IsPureProcedure(*overridden)) {
SayWithDeclaration(*overridden,
"An overridden pure type-bound procedure binding must also be pure"_err_en_US);
return;
}
if (!binding.symbol().attrs().test(Attr::ELEMENTAL) &&
overriddenBinding->symbol().attrs().test(Attr::ELEMENTAL)) {
SayWithDeclaration(*overridden,
"A type-bound procedure and its override must both, or neither, be ELEMENTAL"_err_en_US);
return;
}
bool isNopass{symbol.attrs().test(Attr::NOPASS)};
if (isNopass != overridden->attrs().test(Attr::NOPASS)) {
SayWithDeclaration(*overridden,
isNopass
? "A NOPASS type-bound procedure may not override a passed-argument procedure"_err_en_US
: "A passed-argument type-bound procedure may not override a NOPASS procedure"_err_en_US);
} else {
const auto *bindingChars{Characterize(binding.symbol())};
const auto *overriddenChars{Characterize(overriddenBinding->symbol())};
if (bindingChars && overriddenChars) {
if (isNopass) {
if (!bindingChars->CanOverride(*overriddenChars, std::nullopt)) {
SayWithDeclaration(*overridden,
"A type-bound procedure and its override must have compatible interfaces"_err_en_US);
}
} else if (!context_.HasError(binding.symbol())) {
int passIndex{bindingChars->FindPassIndex(binding.passName())};
int overriddenPassIndex{
overriddenChars->FindPassIndex(overriddenBinding->passName())};
if (passIndex != overriddenPassIndex) {
SayWithDeclaration(*overridden,
"A type-bound procedure and its override must use the same PASS argument"_err_en_US);
} else if (!bindingChars->CanOverride(
*overriddenChars, passIndex)) {
SayWithDeclaration(*overridden,
"A type-bound procedure and its override must have compatible interfaces apart from their passed argument"_err_en_US);
}
}
}
}
if (symbol.attrs().test(Attr::PRIVATE) &&
overridden->attrs().test(Attr::PUBLIC)) {
SayWithDeclaration(*overridden,
"A PRIVATE procedure may not override a PUBLIC procedure"_err_en_US);
}
} else {
SayWithDeclaration(*overridden,
"A type-bound procedure binding may not have the same name as a parent component"_err_en_US);
}
}
CheckPassArg(symbol, &binding.symbol(), binding);
}
void CheckHelper::Check(const Scope &scope) {
scope_ = &scope;
common::Restorer<const Symbol *> restorer{innermostSymbol_, innermostSymbol_};
if (const Symbol * symbol{scope.symbol()}) {
innermostSymbol_ = symbol;
}
if (scope.IsParameterizedDerivedTypeInstantiation()) {
auto restorer{common::ScopedSet(scopeIsUninstantiatedPDT_, false)};
auto restorer2{context_.foldingContext().messages().SetContext(
scope.instantiationContext().get())};
for (const auto &pair : scope) {
CheckPointerInitialization(*pair.second);
}
} else {
auto restorer{common::ScopedSet(
scopeIsUninstantiatedPDT_, scope.IsParameterizedDerivedType())};
for (const auto &set : scope.equivalenceSets()) {
CheckEquivalenceSet(set);
}
for (const auto &pair : scope) {
Check(*pair.second);
}
for (const Scope &child : scope.children()) {
Check(child);
}
if (scope.kind() == Scope::Kind::BlockData) {
CheckBlockData(scope);
}
CheckGenericOps(scope);
}
}
void CheckHelper::CheckEquivalenceSet(const EquivalenceSet &set) {
auto iter{
std::find_if(set.begin(), set.end(), [](const EquivalenceObject &object) {
return FindCommonBlockContaining(object.symbol) != nullptr;
})};
if (iter != set.end()) {
const Symbol &commonBlock{DEREF(FindCommonBlockContaining(iter->symbol))};
for (auto &object : set) {
if (&object != &*iter) {
if (auto *details{object.symbol.detailsIf<ObjectEntityDetails>()}) {
if (details->commonBlock()) {
if (details->commonBlock() != &commonBlock) { // 8.10.3 paragraph 1
if (auto *msg{messages_.Say(object.symbol.name(),
"Two objects in the same EQUIVALENCE set may not be members of distinct COMMON blocks"_err_en_US)}) {
msg->Attach(iter->symbol.name(),
"Other object in EQUIVALENCE set"_en_US)
.Attach(details->commonBlock()->name(),
"COMMON block containing '%s'"_en_US,
object.symbol.name())
.Attach(commonBlock.name(),
"COMMON block containing '%s'"_en_US,
iter->symbol.name());
}
}
} else {
// Mark all symbols in the equivalence set with the same COMMON
// block to prevent spurious error messages about initialization
// in BLOCK DATA outside COMMON
details->set_commonBlock(commonBlock);
}
}
}
}
}
// TODO: Move C8106 (&al.) checks here from resolve-names-utils.cpp
}
void CheckHelper::CheckBlockData(const Scope &scope) {
// BLOCK DATA subprograms should contain only named common blocks.
// C1415 presents a list of statements that shouldn't appear in
// BLOCK DATA, but so long as the subprogram contains no executable
// code and allocates no storage outside named COMMON, we're happy
// (e.g., an ENUM is strictly not allowed).
for (const auto &pair : scope) {
const Symbol &symbol{*pair.second};
if (!(symbol.has<CommonBlockDetails>() || symbol.has<UseDetails>() ||
symbol.has<UseErrorDetails>() || symbol.has<DerivedTypeDetails>() ||
symbol.has<SubprogramDetails>() ||
symbol.has<ObjectEntityDetails>() ||
(symbol.has<ProcEntityDetails>() &&
!symbol.attrs().test(Attr::POINTER)))) {
messages_.Say(symbol.name(),
"'%s' may not appear in a BLOCK DATA subprogram"_err_en_US,
symbol.name());
}
}
}
// Check distinguishability of generic assignment and operators.
// For these, generics and generic bindings must be considered together.
void CheckHelper::CheckGenericOps(const Scope &scope) {
DistinguishabilityHelper helper{context_};
auto addSpecifics{[&](const Symbol &generic) {
const auto *details{generic.GetUltimate().detailsIf<GenericDetails>()};
if (!details) {
return;
}
GenericKind kind{details->kind()};
if (!kind.IsAssignment() && !kind.IsOperator()) {
return;
}
const SymbolVector &specifics{details->specificProcs()};
const std::vector<SourceName> &bindingNames{details->bindingNames()};
for (std::size_t i{0}; i < specifics.size(); ++i) {
const Symbol &specific{*specifics[i]};
if (const Procedure * proc{Characterize(specific)}) {
auto restorer{messages_.SetLocation(bindingNames[i])};
if (kind.IsAssignment()) {
if (!CheckDefinedAssignment(specific, *proc)) {
continue;
}
} else {
if (!CheckDefinedOperator(generic.name(), kind, specific, *proc)) {
continue;
}
}
helper.Add(generic, kind, specific, *proc);
}
}
}};
for (const auto &pair : scope) {
const Symbol &symbol{*pair.second};
addSpecifics(symbol);
const Symbol &ultimate{symbol.GetUltimate()};
if (ultimate.has<DerivedTypeDetails>()) {
if (const Scope * typeScope{ultimate.scope()}) {
for (const auto &pair2 : *typeScope) {
addSpecifics(*pair2.second);
}
}
}
}
helper.Check(scope);
}
static const std::string *DefinesBindCName(const Symbol &symbol) {
const auto *subp{symbol.detailsIf<SubprogramDetails>()};
if ((subp && !subp->isInterface()) || symbol.has<ObjectEntityDetails>()) {
// Symbol defines data or entry point
return symbol.GetBindName();
} else {
return nullptr;
}
}
// Check that BIND(C) names are distinct
void CheckHelper::CheckBindCName(const Symbol &symbol) {
if (const std::string * name{DefinesBindCName(symbol)}) {
auto pair{bindC_.emplace(*name, symbol)};
if (!pair.second) {
const Symbol &other{*pair.first->second};
if (DefinesBindCName(other) && !context_.HasError(other)) {
if (auto *msg{messages_.Say(
"Two symbols have the same BIND(C) name '%s'"_err_en_US,
*name)}) {
msg->Attach(other.name(), "Conflicting symbol"_en_US);
}
context_.SetError(symbol);
context_.SetError(other);
}
}
}
}
bool CheckHelper::CheckDioDummyIsData(
const Symbol &subp, const Symbol *arg, std::size_t position) {
if (arg && arg->detailsIf<ObjectEntityDetails>()) {
return true;
} else {
if (arg) {
messages_.Say(arg->name(),
"Dummy argument '%s' must be a data object"_err_en_US, arg->name());
} else {
messages_.Say(subp.name(),
"Dummy argument %d of '%s' must be a data object"_err_en_US, position,
subp.name());
}
return false;
}
}
void CheckHelper::CheckAlreadySeenDefinedIo(const DerivedTypeSpec *derivedType,
GenericKind::DefinedIo ioKind, const Symbol &proc) {
for (TypeWithDefinedIo definedIoType : seenDefinedIoTypes_) {
if (*derivedType == *definedIoType.type && ioKind == definedIoType.ioKind &&
proc != definedIoType.proc) {
SayWithDeclaration(proc, definedIoType.proc.name(),
"Derived type '%s' already has defined input/output procedure"
" '%s'"_err_en_US,
derivedType->name(),
parser::ToUpperCaseLetters(GenericKind::EnumToString(ioKind)));
return;
}
}
seenDefinedIoTypes_.emplace_back(
TypeWithDefinedIo{derivedType, ioKind, proc});
}
void CheckHelper::CheckDioDummyIsDerived(
const Symbol &subp, const Symbol &arg, GenericKind::DefinedIo ioKind) {
if (const DeclTypeSpec * type{arg.GetType()}) {
if (const DerivedTypeSpec * derivedType{type->AsDerived()}) {
CheckAlreadySeenDefinedIo(derivedType, ioKind, subp);
bool isPolymorphic{type->IsPolymorphic()};
if (isPolymorphic != IsExtensibleType(derivedType)) {
messages_.Say(arg.name(),
"Dummy argument '%s' of a defined input/output procedure must be %s when the derived type is %s"_err_en_US,
arg.name(), isPolymorphic ? "TYPE()" : "CLASS()",
isPolymorphic ? "not extensible" : "extensible");
}
} else {
messages_.Say(arg.name(),
"Dummy argument '%s' of a defined input/output procedure must have a"
" derived type"_err_en_US,
arg.name());
}
}
}
void CheckHelper::CheckDioDummyIsDefaultInteger(
const Symbol &subp, const Symbol &arg) {
if (const DeclTypeSpec * type{arg.GetType()};
type && type->IsNumeric(TypeCategory::Integer)) {
if (const auto kind{evaluate::ToInt64(type->numericTypeSpec().kind())};
kind && *kind == context_.GetDefaultKind(TypeCategory::Integer)) {
return;
}
}
messages_.Say(arg.name(),
"Dummy argument '%s' of a defined input/output procedure"
" must be an INTEGER of default KIND"_err_en_US,
arg.name());
}
void CheckHelper::CheckDioDummyIsScalar(const Symbol &subp, const Symbol &arg) {
if (arg.Rank() > 0 || arg.Corank() > 0) {
messages_.Say(arg.name(),
"Dummy argument '%s' of a defined input/output procedure"
" must be a scalar"_err_en_US,
arg.name());
}
}
void CheckHelper::CheckDioDtvArg(
const Symbol &subp, const Symbol *arg, GenericKind::DefinedIo ioKind) {
// Dtv argument looks like: dtv-type-spec, INTENT(INOUT) :: dtv
if (CheckDioDummyIsData(subp, arg, 0)) {
CheckDioDummyIsDerived(subp, *arg, ioKind);
CheckDioDummyAttrs(subp, *arg,
ioKind == GenericKind::DefinedIo::ReadFormatted ||
ioKind == GenericKind::DefinedIo::ReadUnformatted
? Attr::INTENT_INOUT
: Attr::INTENT_IN);
}
}
void CheckHelper::CheckDefaultIntegerArg(
const Symbol &subp, const Symbol *arg, Attr intent) {
// Argument looks like: INTEGER, INTENT(intent) :: arg
if (CheckDioDummyIsData(subp, arg, 1)) {
CheckDioDummyIsDefaultInteger(subp, *arg);
CheckDioDummyIsScalar(subp, *arg);
CheckDioDummyAttrs(subp, *arg, intent);
}
}
void CheckHelper::CheckDioAssumedLenCharacterArg(const Symbol &subp,
const Symbol *arg, std::size_t argPosition, Attr intent) {
// Argument looks like: CHARACTER (LEN=*), INTENT(intent) :: (iotype OR iomsg)
if (CheckDioDummyIsData(subp, arg, argPosition)) {
CheckDioDummyAttrs(subp, *arg, intent);
if (!IsAssumedLengthCharacter(*arg)) {
messages_.Say(arg->name(),
"Dummy argument '%s' of a defined input/output procedure"
" must be assumed-length CHARACTER"_err_en_US,
arg->name());
}
}
}
void CheckHelper::CheckDioVlistArg(
const Symbol &subp, const Symbol *arg, std::size_t argPosition) {
// Vlist argument looks like: INTEGER, INTENT(IN) :: v_list(:)
if (CheckDioDummyIsData(subp, arg, argPosition)) {
CheckDioDummyIsDefaultInteger(subp, *arg);
CheckDioDummyAttrs(subp, *arg, Attr::INTENT_IN);
const auto *objectDetails{arg->detailsIf<ObjectEntityDetails>()};
if (!objectDetails || !objectDetails->shape().CanBeDeferredShape()) {
messages_.Say(arg->name(),
"Dummy argument '%s' of a defined input/output procedure must be"
" deferred shape"_err_en_US,
arg->name());
}
}
}
void CheckHelper::CheckDioArgCount(
const Symbol &subp, GenericKind::DefinedIo ioKind, std::size_t argCount) {
const std::size_t requiredArgCount{
(std::size_t)(ioKind == GenericKind::DefinedIo::ReadFormatted ||
ioKind == GenericKind::DefinedIo::WriteFormatted
? 6
: 4)};
if (argCount != requiredArgCount) {
SayWithDeclaration(subp,
"Defined input/output procedure '%s' must have"
" %d dummy arguments rather than %d"_err_en_US,
subp.name(), requiredArgCount, argCount);
context_.SetError(subp);
}
}
void CheckHelper::CheckDioDummyAttrs(
const Symbol &subp, const Symbol &arg, Attr goodIntent) {
// Defined I/O procedures can't have attributes other than INTENT
Attrs attrs{arg.attrs()};
if (!attrs.test(goodIntent)) {
messages_.Say(arg.name(),
"Dummy argument '%s' of a defined input/output procedure"
" must have intent '%s'"_err_en_US,
arg.name(), AttrToString(goodIntent));
}
attrs = attrs - Attr::INTENT_IN - Attr::INTENT_OUT - Attr::INTENT_INOUT;
if (!attrs.empty()) {
messages_.Say(arg.name(),
"Dummy argument '%s' of a defined input/output procedure may not have"
" any attributes"_err_en_US,
arg.name());
}
}
// Enforce semantics for defined input/output procedures (12.6.4.8.2) and C777
void CheckHelper::CheckDefinedIoProc(const Symbol &symbol,
const GenericDetails &details, GenericKind::DefinedIo ioKind) {
for (auto ref : details.specificProcs()) {
const auto *binding{ref->detailsIf<ProcBindingDetails>()};
const Symbol &specific{*(binding ? &binding->symbol() : &*ref)};
if (ref->attrs().test(Attr::NOPASS)) { // C774
messages_.Say("Defined input/output procedure '%s' may not have NOPASS "
"attribute"_err_en_US,
ref->name());
context_.SetError(*ref);
}
if (const auto *subpDetails{specific.detailsIf<SubprogramDetails>()}) {
const std::vector<Symbol *> &dummyArgs{subpDetails->dummyArgs()};
CheckDioArgCount(specific, ioKind, dummyArgs.size());
int argCount{0};
for (auto *arg : dummyArgs) {
switch (argCount++) {
case 0:
// dtv-type-spec, INTENT(INOUT) :: dtv
CheckDioDtvArg(specific, arg, ioKind);
break;
case 1:
// INTEGER, INTENT(IN) :: unit
CheckDefaultIntegerArg(specific, arg, Attr::INTENT_IN);
break;
case 2:
if (ioKind == GenericKind::DefinedIo::ReadFormatted ||
ioKind == GenericKind::DefinedIo::WriteFormatted) {
// CHARACTER (LEN=*), INTENT(IN) :: iotype
CheckDioAssumedLenCharacterArg(
specific, arg, argCount, Attr::INTENT_IN);
} else {
// INTEGER, INTENT(OUT) :: iostat
CheckDefaultIntegerArg(specific, arg, Attr::INTENT_OUT);
}
break;
case 3:
if (ioKind == GenericKind::DefinedIo::ReadFormatted ||
ioKind == GenericKind::DefinedIo::WriteFormatted) {
// INTEGER, INTENT(IN) :: v_list(:)
CheckDioVlistArg(specific, arg, argCount);
} else {
// CHARACTER (LEN=*), INTENT(INOUT) :: iomsg
CheckDioAssumedLenCharacterArg(
specific, arg, argCount, Attr::INTENT_INOUT);
}
break;
case 4:
// INTEGER, INTENT(OUT) :: iostat
CheckDefaultIntegerArg(specific, arg, Attr::INTENT_OUT);
break;
case 5:
// CHARACTER (LEN=*), INTENT(INOUT) :: iomsg
CheckDioAssumedLenCharacterArg(
specific, arg, argCount, Attr::INTENT_INOUT);
break;
default:;
}
}
}
}
}
void SubprogramMatchHelper::Check(
const Symbol &symbol1, const Symbol &symbol2) {
const auto details1{symbol1.get<SubprogramDetails>()};
const auto details2{symbol2.get<SubprogramDetails>()};
if (details1.isFunction() != details2.isFunction()) {
Say(symbol1, symbol2,
details1.isFunction()
? "Module function '%s' was declared as a subroutine in the"
" corresponding interface body"_err_en_US
: "Module subroutine '%s' was declared as a function in the"
" corresponding interface body"_err_en_US);
return;
}
const auto &args1{details1.dummyArgs()};
const auto &args2{details2.dummyArgs()};
int nargs1{static_cast<int>(args1.size())};
int nargs2{static_cast<int>(args2.size())};
if (nargs1 != nargs2) {
Say(symbol1, symbol2,
"Module subprogram '%s' has %d args but the corresponding interface"
" body has %d"_err_en_US,
nargs1, nargs2);
return;
}
bool nonRecursive1{symbol1.attrs().test(Attr::NON_RECURSIVE)};
if (nonRecursive1 != symbol2.attrs().test(Attr::NON_RECURSIVE)) { // C1551
Say(symbol1, symbol2,
nonRecursive1
? "Module subprogram '%s' has NON_RECURSIVE prefix but"
" the corresponding interface body does not"_err_en_US
: "Module subprogram '%s' does not have NON_RECURSIVE prefix but "
"the corresponding interface body does"_err_en_US);
}
const std::string *bindName1{details1.bindName()};
const std::string *bindName2{details2.bindName()};
if (!bindName1 && !bindName2) {
// OK - neither has a binding label
} else if (!bindName1) {
Say(symbol1, symbol2,
"Module subprogram '%s' does not have a binding label but the"
" corresponding interface body does"_err_en_US);
} else if (!bindName2) {
Say(symbol1, symbol2,
"Module subprogram '%s' has a binding label but the"
" corresponding interface body does not"_err_en_US);
} else if (*bindName1 != *bindName2) {
Say(symbol1, symbol2,
"Module subprogram '%s' has binding label '%s' but the corresponding"
" interface body has '%s'"_err_en_US,
*details1.bindName(), *details2.bindName());
}
const Procedure *proc1{checkHelper.Characterize(symbol1)};
const Procedure *proc2{checkHelper.Characterize(symbol2)};
if (!proc1 || !proc2) {
return;
}
if (proc1->attrs.test(Procedure::Attr::Pure) !=
proc2->attrs.test(Procedure::Attr::Pure)) {
Say(symbol1, symbol2,
"Module subprogram '%s' and its corresponding interface body are not both PURE"_err_en_US);
}
if (proc1->attrs.test(Procedure::Attr::Elemental) !=
proc2->attrs.test(Procedure::Attr::Elemental)) {
Say(symbol1, symbol2,
"Module subprogram '%s' and its corresponding interface body are not both ELEMENTAL"_err_en_US);
}
if (proc1->attrs.test(Procedure::Attr::BindC) !=
proc2->attrs.test(Procedure::Attr::BindC)) {
Say(symbol1, symbol2,
"Module subprogram '%s' and its corresponding interface body are not both BIND(C)"_err_en_US);
}
if (proc1->functionResult && proc2->functionResult &&
*proc1->functionResult != *proc2->functionResult) {
Say(symbol1, symbol2,
"Return type of function '%s' does not match return type of"
" the corresponding interface body"_err_en_US);
}
for (int i{0}; i < nargs1; ++i) {
const Symbol *arg1{args1[i]};
const Symbol *arg2{args2[i]};
if (arg1 && !arg2) {
Say(symbol1, symbol2,
"Dummy argument %2$d of '%1$s' is not an alternate return indicator"
" but the corresponding argument in the interface body is"_err_en_US,
i + 1);
} else if (!arg1 && arg2) {
Say(symbol1, symbol2,
"Dummy argument %2$d of '%1$s' is an alternate return indicator but"
" the corresponding argument in the interface body is not"_err_en_US,
i + 1);
} else if (arg1 && arg2) {
SourceName name1{arg1->name()};
SourceName name2{arg2->name()};
if (name1 != name2) {
Say(*arg1, *arg2,
"Dummy argument name '%s' does not match corresponding name '%s'"
" in interface body"_err_en_US,
name2);
} else {
CheckDummyArg(
*arg1, *arg2, proc1->dummyArguments[i], proc2->dummyArguments[i]);
}
}
}
}
void SubprogramMatchHelper::CheckDummyArg(const Symbol &symbol1,
const Symbol &symbol2, const DummyArgument &arg1,
const DummyArgument &arg2) {
std::visit(common::visitors{
[&](const DummyDataObject &obj1, const DummyDataObject &obj2) {
CheckDummyDataObject(symbol1, symbol2, obj1, obj2);
},
[&](const DummyProcedure &proc1, const DummyProcedure &proc2) {
CheckDummyProcedure(symbol1, symbol2, proc1, proc2);
},
[&](const DummyDataObject &, const auto &) {
Say(symbol1, symbol2,
"Dummy argument '%s' is a data object; the corresponding"
" argument in the interface body is not"_err_en_US);
},
[&](const DummyProcedure &, const auto &) {
Say(symbol1, symbol2,
"Dummy argument '%s' is a procedure; the corresponding"
" argument in the interface body is not"_err_en_US);
},
[&](const auto &, const auto &) {
llvm_unreachable("Dummy arguments are not data objects or"
"procedures");
},
},
arg1.u, arg2.u);
}
void SubprogramMatchHelper::CheckDummyDataObject(const Symbol &symbol1,
const Symbol &symbol2, const DummyDataObject &obj1,
const DummyDataObject &obj2) {
if (!CheckSameIntent(symbol1, symbol2, obj1.intent, obj2.intent)) {
} else if (!CheckSameAttrs(symbol1, symbol2, obj1.attrs, obj2.attrs)) {
} else if (obj1.type.type() != obj2.type.type()) {
Say(symbol1, symbol2,
"Dummy argument '%s' has type %s; the corresponding argument in the"
" interface body has type %s"_err_en_US,
obj1.type.type().AsFortran(), obj2.type.type().AsFortran());
} else if (!ShapesAreCompatible(obj1, obj2)) {
Say(symbol1, symbol2,
"The shape of dummy argument '%s' does not match the shape of the"
" corresponding argument in the interface body"_err_en_US);
}
// TODO: coshape
}
void SubprogramMatchHelper::CheckDummyProcedure(const Symbol &symbol1,
const Symbol &symbol2, const DummyProcedure &proc1,
const DummyProcedure &proc2) {
if (!CheckSameIntent(symbol1, symbol2, proc1.intent, proc2.intent)) {
} else if (!CheckSameAttrs(symbol1, symbol2, proc1.attrs, proc2.attrs)) {
} else if (proc1 != proc2) {
Say(symbol1, symbol2,
"Dummy procedure '%s' does not match the corresponding argument in"
" the interface body"_err_en_US);
}
}
bool SubprogramMatchHelper::CheckSameIntent(const Symbol &symbol1,
const Symbol &symbol2, common::Intent intent1, common::Intent intent2) {
if (intent1 == intent2) {
return true;
} else {
Say(symbol1, symbol2,
"The intent of dummy argument '%s' does not match the intent"
" of the corresponding argument in the interface body"_err_en_US);
return false;
}
}
// Report an error referring to first symbol with declaration of second symbol
template <typename... A>
void SubprogramMatchHelper::Say(const Symbol &symbol1, const Symbol &symbol2,
parser::MessageFixedText &&text, A &&...args) {
auto &message{context().Say(symbol1.name(), std::move(text), symbol1.name(),
std::forward<A>(args)...)};
evaluate::AttachDeclaration(message, symbol2);
}
template <typename ATTRS>
bool SubprogramMatchHelper::CheckSameAttrs(
const Symbol &symbol1, const Symbol &symbol2, ATTRS attrs1, ATTRS attrs2) {
if (attrs1 == attrs2) {
return true;
}
attrs1.IterateOverMembers([&](auto attr) {
if (!attrs2.test(attr)) {
Say(symbol1, symbol2,
"Dummy argument '%s' has the %s attribute; the corresponding"
" argument in the interface body does not"_err_en_US,
AsFortran(attr));
}
});
attrs2.IterateOverMembers([&](auto attr) {
if (!attrs1.test(attr)) {
Say(symbol1, symbol2,
"Dummy argument '%s' does not have the %s attribute; the"
" corresponding argument in the interface body does"_err_en_US,
AsFortran(attr));
}
});
return false;
}
bool SubprogramMatchHelper::ShapesAreCompatible(
const DummyDataObject &obj1, const DummyDataObject &obj2) {
return characteristics::ShapesAreCompatible(
FoldShape(obj1.type.shape()), FoldShape(obj2.type.shape()));
}
evaluate::Shape SubprogramMatchHelper::FoldShape(const evaluate::Shape &shape) {
evaluate::Shape result;
for (const auto &extent : shape) {
result.emplace_back(
evaluate::Fold(context().foldingContext(), common::Clone(extent)));
}
return result;
}
void DistinguishabilityHelper::Add(const Symbol &generic, GenericKind kind,
const Symbol &specific, const Procedure &procedure) {
if (!context_.HasError(specific)) {
nameToInfo_[generic.name()].emplace_back(
ProcedureInfo{kind, specific, procedure});
}
}
void DistinguishabilityHelper::Check(const Scope &scope) {
for (const auto &[name, info] : nameToInfo_) {
auto count{info.size()};
for (std::size_t i1{0}; i1 < count - 1; ++i1) {
const auto &[kind, symbol, proc]{info[i1]};
for (std::size_t i2{i1 + 1}; i2 < count; ++i2) {
auto distinguishable{kind.IsName()
? evaluate::characteristics::Distinguishable
: evaluate::characteristics::DistinguishableOpOrAssign};
if (!distinguishable(
context_.languageFeatures(), proc, info[i2].procedure)) {
SayNotDistinguishable(GetTopLevelUnitContaining(scope), name, kind,
symbol, info[i2].symbol);
}
}
}
}
}
void DistinguishabilityHelper::SayNotDistinguishable(const Scope &scope,
const SourceName &name, GenericKind kind, const Symbol &proc1,
const Symbol &proc2) {
std::string name1{proc1.name().ToString()};
std::string name2{proc2.name().ToString()};
if (kind.IsOperator() || kind.IsAssignment()) {
// proc1 and proc2 may come from different scopes so qualify their names
if (proc1.owner().IsDerivedType()) {
name1 = proc1.owner().GetName()->ToString() + '%' + name1;
}
if (proc2.owner().IsDerivedType()) {
name2 = proc2.owner().GetName()->ToString() + '%' + name2;
}
}
parser::Message *msg;
if (scope.sourceRange().Contains(name)) {
msg = &context_.Say(name,
"Generic '%s' may not have specific procedures '%s' and '%s' as their interfaces are not distinguishable"_err_en_US,
MakeOpName(name), name1, name2);
} else {
msg = &context_.Say(*GetTopLevelUnitContaining(proc1).GetName(),
"USE-associated generic '%s' may not have specific procedures '%s' and '%s' as their interfaces are not distinguishable"_err_en_US,
MakeOpName(name), name1, name2);
}
AttachDeclaration(*msg, scope, proc1);
AttachDeclaration(*msg, scope, proc2);
}
// `evaluate::AttachDeclaration` doesn't handle the generic case where `proc`
// comes from a different module but is not necessarily use-associated.
void DistinguishabilityHelper::AttachDeclaration(
parser::Message &msg, const Scope &scope, const Symbol &proc) {
const Scope &unit{GetTopLevelUnitContaining(proc)};
if (unit == scope) {
evaluate::AttachDeclaration(msg, proc);
} else {
msg.Attach(unit.GetName().value(),
"'%s' is USE-associated from module '%s'"_en_US, proc.name(),
unit.GetName().value());
}
}
void CheckDeclarations(SemanticsContext &context) {
CheckHelper{context}.Check();
}
} // namespace Fortran::semantics