forked from OSchip/llvm-project
1422 lines
52 KiB
C++
1422 lines
52 KiB
C++
//===--- ToolChains.cpp - ToolChain Implementations -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MSVC.h"
|
|
#include "CommonArgs.h"
|
|
#include "Darwin.h"
|
|
#include "clang/Basic/CharInfo.h"
|
|
#include "clang/Basic/Version.h"
|
|
#include "clang/Driver/Compilation.h"
|
|
#include "clang/Driver/Driver.h"
|
|
#include "clang/Driver/DriverDiagnostic.h"
|
|
#include "clang/Driver/Options.h"
|
|
#include "clang/Driver/SanitizerArgs.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/Option/Arg.h"
|
|
#include "llvm/Option/ArgList.h"
|
|
#include "llvm/Support/ConvertUTF.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/Host.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/Process.h"
|
|
#include <cstdio>
|
|
|
|
// Include the necessary headers to interface with the Windows registry and
|
|
// environment.
|
|
#if defined(LLVM_ON_WIN32)
|
|
#define USE_WIN32
|
|
#endif
|
|
|
|
#ifdef USE_WIN32
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#define NOGDI
|
|
#ifndef NOMINMAX
|
|
#define NOMINMAX
|
|
#endif
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
// Don't support SetupApi on MinGW.
|
|
#define USE_MSVC_SETUP_API
|
|
|
|
// Make sure this comes before MSVCSetupApi.h
|
|
#include <comdef.h>
|
|
|
|
#include "MSVCSetupApi.h"
|
|
#include "llvm/Support/COM.h"
|
|
_COM_SMARTPTR_TYPEDEF(ISetupConfiguration, __uuidof(ISetupConfiguration));
|
|
_COM_SMARTPTR_TYPEDEF(ISetupConfiguration2, __uuidof(ISetupConfiguration2));
|
|
_COM_SMARTPTR_TYPEDEF(ISetupHelper, __uuidof(ISetupHelper));
|
|
_COM_SMARTPTR_TYPEDEF(IEnumSetupInstances, __uuidof(IEnumSetupInstances));
|
|
_COM_SMARTPTR_TYPEDEF(ISetupInstance, __uuidof(ISetupInstance));
|
|
_COM_SMARTPTR_TYPEDEF(ISetupInstance2, __uuidof(ISetupInstance2));
|
|
#endif
|
|
|
|
using namespace clang::driver;
|
|
using namespace clang::driver::toolchains;
|
|
using namespace clang::driver::tools;
|
|
using namespace clang;
|
|
using namespace llvm::opt;
|
|
|
|
// Defined below.
|
|
// Forward declare this so there aren't too many things above the constructor.
|
|
static bool getSystemRegistryString(const char *keyPath, const char *valueName,
|
|
std::string &value, std::string *phValue);
|
|
|
|
// Check various environment variables to try and find a toolchain.
|
|
static bool findVCToolChainViaEnvironment(std::string &Path,
|
|
bool &IsVS2017OrNewer) {
|
|
// These variables are typically set by vcvarsall.bat
|
|
// when launching a developer command prompt.
|
|
if (llvm::Optional<std::string> VCToolsInstallDir =
|
|
llvm::sys::Process::GetEnv("VCToolsInstallDir")) {
|
|
// This is only set by newer Visual Studios, and it leads straight to
|
|
// the toolchain directory.
|
|
Path = std::move(*VCToolsInstallDir);
|
|
IsVS2017OrNewer = true;
|
|
return true;
|
|
}
|
|
if (llvm::Optional<std::string> VCInstallDir =
|
|
llvm::sys::Process::GetEnv("VCINSTALLDIR")) {
|
|
// If the previous variable isn't set but this one is, then we've found
|
|
// an older Visual Studio. This variable is set by newer Visual Studios too,
|
|
// so this check has to appear second.
|
|
// In older Visual Studios, the VC directory is the toolchain.
|
|
Path = std::move(*VCInstallDir);
|
|
IsVS2017OrNewer = false;
|
|
return true;
|
|
}
|
|
|
|
// We couldn't find any VC environment variables. Let's walk through PATH and
|
|
// see if it leads us to a VC toolchain bin directory. If it does, pick the
|
|
// first one that we find.
|
|
if (llvm::Optional<std::string> PathEnv =
|
|
llvm::sys::Process::GetEnv("PATH")) {
|
|
llvm::SmallVector<llvm::StringRef, 8> PathEntries;
|
|
llvm::StringRef(*PathEnv).split(PathEntries, llvm::sys::EnvPathSeparator);
|
|
for (llvm::StringRef PathEntry : PathEntries) {
|
|
if (PathEntry.empty())
|
|
continue;
|
|
|
|
llvm::SmallString<256> ExeTestPath;
|
|
|
|
// If cl.exe doesn't exist, then this definitely isn't a VC toolchain.
|
|
ExeTestPath = PathEntry;
|
|
llvm::sys::path::append(ExeTestPath, "cl.exe");
|
|
if (!llvm::sys::fs::exists(ExeTestPath))
|
|
continue;
|
|
|
|
// cl.exe existing isn't a conclusive test for a VC toolchain; clang also
|
|
// has a cl.exe. So let's check for link.exe too.
|
|
ExeTestPath = PathEntry;
|
|
llvm::sys::path::append(ExeTestPath, "link.exe");
|
|
if (!llvm::sys::fs::exists(ExeTestPath))
|
|
continue;
|
|
|
|
// whatever/VC/bin --> old toolchain, VC dir is toolchain dir.
|
|
if (llvm::sys::path::filename(PathEntry) == "bin") {
|
|
llvm::StringRef ParentPath = llvm::sys::path::parent_path(PathEntry);
|
|
if (llvm::sys::path::filename(ParentPath) == "VC") {
|
|
Path = ParentPath;
|
|
IsVS2017OrNewer = false;
|
|
return true;
|
|
}
|
|
|
|
} else {
|
|
// This could be a new (>=VS2017) toolchain. If it is, we should find
|
|
// path components with these prefixes when walking backwards through
|
|
// the path.
|
|
// Note: empty strings match anything.
|
|
llvm::StringRef ExpectedPrefixes[] = {"", "Host", "bin", "",
|
|
"MSVC", "Tools", "VC"};
|
|
|
|
auto It = llvm::sys::path::rbegin(PathEntry);
|
|
auto End = llvm::sys::path::rend(PathEntry);
|
|
for (llvm::StringRef Prefix : ExpectedPrefixes) {
|
|
if (It == End)
|
|
goto NotAToolChain;
|
|
if (!It->startswith(Prefix))
|
|
goto NotAToolChain;
|
|
++It;
|
|
}
|
|
|
|
// We've found a new toolchain!
|
|
// Back up 3 times (/bin/Host/arch) to get the root path.
|
|
llvm::StringRef ToolChainPath(PathEntry);
|
|
for (int i = 0; i < 3; ++i)
|
|
ToolChainPath = llvm::sys::path::parent_path(ToolChainPath);
|
|
|
|
Path = ToolChainPath;
|
|
IsVS2017OrNewer = true;
|
|
return true;
|
|
}
|
|
|
|
NotAToolChain:
|
|
continue;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Query the Setup Config server for installs, then pick the newest version
|
|
// and find its default VC toolchain.
|
|
// This is the preferred way to discover new Visual Studios, as they're no
|
|
// longer listed in the registry.
|
|
static bool findVCToolChainViaSetupConfig(std::string &Path,
|
|
bool &IsVS2017OrNewer) {
|
|
#if !defined(USE_MSVC_SETUP_API)
|
|
return false;
|
|
#else
|
|
// FIXME: This really should be done once in the top-level program's main
|
|
// function, as it may have already been initialized with a different
|
|
// threading model otherwise.
|
|
llvm::sys::InitializeCOMRAII COM(llvm::sys::COMThreadingMode::SingleThreaded);
|
|
HRESULT HR;
|
|
|
|
// _com_ptr_t will throw a _com_error if a COM calls fail.
|
|
// The LLVM coding standards forbid exception handling, so we'll have to
|
|
// stop them from being thrown in the first place.
|
|
// The destructor will put the regular error handler back when we leave
|
|
// this scope.
|
|
struct SuppressCOMErrorsRAII {
|
|
static void __stdcall handler(HRESULT hr, IErrorInfo *perrinfo) {}
|
|
|
|
SuppressCOMErrorsRAII() { _set_com_error_handler(handler); }
|
|
|
|
~SuppressCOMErrorsRAII() { _set_com_error_handler(_com_raise_error); }
|
|
|
|
} COMErrorSuppressor;
|
|
|
|
ISetupConfigurationPtr Query;
|
|
HR = Query.CreateInstance(__uuidof(SetupConfiguration));
|
|
if (FAILED(HR))
|
|
return false;
|
|
|
|
IEnumSetupInstancesPtr EnumInstances;
|
|
HR = ISetupConfiguration2Ptr(Query)->EnumAllInstances(&EnumInstances);
|
|
if (FAILED(HR))
|
|
return false;
|
|
|
|
ISetupInstancePtr Instance;
|
|
HR = EnumInstances->Next(1, &Instance, nullptr);
|
|
if (HR != S_OK)
|
|
return false;
|
|
|
|
ISetupInstancePtr NewestInstance;
|
|
Optional<uint64_t> NewestVersionNum;
|
|
do {
|
|
bstr_t VersionString;
|
|
uint64_t VersionNum;
|
|
HR = Instance->GetInstallationVersion(VersionString.GetAddress());
|
|
if (FAILED(HR))
|
|
continue;
|
|
HR = ISetupHelperPtr(Query)->ParseVersion(VersionString, &VersionNum);
|
|
if (FAILED(HR))
|
|
continue;
|
|
if (!NewestVersionNum || (VersionNum > NewestVersionNum)) {
|
|
NewestInstance = Instance;
|
|
NewestVersionNum = VersionNum;
|
|
}
|
|
} while ((HR = EnumInstances->Next(1, &Instance, nullptr)) == S_OK);
|
|
|
|
if (!NewestInstance)
|
|
return false;
|
|
|
|
bstr_t VCPathWide;
|
|
HR = NewestInstance->ResolvePath(L"VC", VCPathWide.GetAddress());
|
|
if (FAILED(HR))
|
|
return false;
|
|
|
|
std::string VCRootPath;
|
|
llvm::convertWideToUTF8(std::wstring(VCPathWide), VCRootPath);
|
|
|
|
llvm::SmallString<256> ToolsVersionFilePath(VCRootPath);
|
|
llvm::sys::path::append(ToolsVersionFilePath, "Auxiliary", "Build",
|
|
"Microsoft.VCToolsVersion.default.txt");
|
|
|
|
auto ToolsVersionFile = llvm::MemoryBuffer::getFile(ToolsVersionFilePath);
|
|
if (!ToolsVersionFile)
|
|
return false;
|
|
|
|
llvm::SmallString<256> ToolchainPath(VCRootPath);
|
|
llvm::sys::path::append(ToolchainPath, "Tools", "MSVC",
|
|
ToolsVersionFile->get()->getBuffer().rtrim());
|
|
if (!llvm::sys::fs::is_directory(ToolchainPath))
|
|
return false;
|
|
|
|
Path = ToolchainPath.str();
|
|
IsVS2017OrNewer = true;
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
// Look in the registry for Visual Studio installs, and use that to get
|
|
// a toolchain path. VS2017 and newer don't get added to the registry.
|
|
// So if we find something here, we know that it's an older version.
|
|
static bool findVCToolChainViaRegistry(std::string &Path,
|
|
bool &IsVS2017OrNewer) {
|
|
std::string VSInstallPath;
|
|
if (getSystemRegistryString(R"(SOFTWARE\Microsoft\VisualStudio\$VERSION)",
|
|
"InstallDir", VSInstallPath, nullptr) ||
|
|
getSystemRegistryString(R"(SOFTWARE\Microsoft\VCExpress\$VERSION)",
|
|
"InstallDir", VSInstallPath, nullptr)) {
|
|
if (!VSInstallPath.empty()) {
|
|
llvm::SmallString<256> VCPath(llvm::StringRef(
|
|
VSInstallPath.c_str(), VSInstallPath.find(R"(\Common7\IDE)")));
|
|
llvm::sys::path::append(VCPath, "VC");
|
|
|
|
Path = VCPath.str();
|
|
IsVS2017OrNewer = false;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Try to find Exe from a Visual Studio distribution. This first tries to find
|
|
// an installed copy of Visual Studio and, failing that, looks in the PATH,
|
|
// making sure that whatever executable that's found is not a same-named exe
|
|
// from clang itself to prevent clang from falling back to itself.
|
|
static std::string FindVisualStudioExecutable(const ToolChain &TC,
|
|
const char *Exe) {
|
|
const auto &MSVC = static_cast<const toolchains::MSVCToolChain &>(TC);
|
|
SmallString<128> FilePath(MSVC.getSubDirectoryPath(
|
|
toolchains::MSVCToolChain::SubDirectoryType::Bin));
|
|
llvm::sys::path::append(FilePath, Exe);
|
|
return llvm::sys::fs::can_execute(FilePath) ? FilePath.str() : Exe;
|
|
}
|
|
|
|
void visualstudio::Linker::ConstructJob(Compilation &C, const JobAction &JA,
|
|
const InputInfo &Output,
|
|
const InputInfoList &Inputs,
|
|
const ArgList &Args,
|
|
const char *LinkingOutput) const {
|
|
ArgStringList CmdArgs;
|
|
|
|
auto &TC = static_cast<const toolchains::MSVCToolChain &>(getToolChain());
|
|
|
|
assert((Output.isFilename() || Output.isNothing()) && "invalid output");
|
|
if (Output.isFilename())
|
|
CmdArgs.push_back(
|
|
Args.MakeArgString(std::string("-out:") + Output.getFilename()));
|
|
|
|
if (!Args.hasArg(options::OPT_nostdlib, options::OPT_nostartfiles) &&
|
|
!C.getDriver().IsCLMode())
|
|
CmdArgs.push_back("-defaultlib:libcmt");
|
|
|
|
if (!llvm::sys::Process::GetEnv("LIB")) {
|
|
// If the VC environment hasn't been configured (perhaps because the user
|
|
// did not run vcvarsall), try to build a consistent link environment. If
|
|
// the environment variable is set however, assume the user knows what
|
|
// they're doing.
|
|
CmdArgs.push_back(Args.MakeArgString(
|
|
Twine("-libpath:") +
|
|
TC.getSubDirectoryPath(
|
|
toolchains::MSVCToolChain::SubDirectoryType::Lib)));
|
|
|
|
if (TC.useUniversalCRT()) {
|
|
std::string UniversalCRTLibPath;
|
|
if (TC.getUniversalCRTLibraryPath(UniversalCRTLibPath))
|
|
CmdArgs.push_back(
|
|
Args.MakeArgString(Twine("-libpath:") + UniversalCRTLibPath));
|
|
}
|
|
|
|
std::string WindowsSdkLibPath;
|
|
if (TC.getWindowsSDKLibraryPath(WindowsSdkLibPath))
|
|
CmdArgs.push_back(
|
|
Args.MakeArgString(std::string("-libpath:") + WindowsSdkLibPath));
|
|
}
|
|
|
|
if (!C.getDriver().IsCLMode() && Args.hasArg(options::OPT_L))
|
|
for (const auto &LibPath : Args.getAllArgValues(options::OPT_L))
|
|
CmdArgs.push_back(Args.MakeArgString("-libpath:" + LibPath));
|
|
|
|
CmdArgs.push_back("-nologo");
|
|
|
|
if (Args.hasArg(options::OPT_g_Group, options::OPT__SLASH_Z7,
|
|
options::OPT__SLASH_Zd))
|
|
CmdArgs.push_back("-debug");
|
|
|
|
bool DLL = Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd,
|
|
options::OPT_shared);
|
|
if (DLL) {
|
|
CmdArgs.push_back(Args.MakeArgString("-dll"));
|
|
|
|
SmallString<128> ImplibName(Output.getFilename());
|
|
llvm::sys::path::replace_extension(ImplibName, "lib");
|
|
CmdArgs.push_back(Args.MakeArgString(std::string("-implib:") + ImplibName));
|
|
}
|
|
|
|
if (TC.getSanitizerArgs().needsAsanRt()) {
|
|
CmdArgs.push_back(Args.MakeArgString("-debug"));
|
|
CmdArgs.push_back(Args.MakeArgString("-incremental:no"));
|
|
if (TC.getSanitizerArgs().needsSharedAsanRt() ||
|
|
Args.hasArg(options::OPT__SLASH_MD, options::OPT__SLASH_MDd)) {
|
|
for (const auto &Lib : {"asan_dynamic", "asan_dynamic_runtime_thunk"})
|
|
CmdArgs.push_back(TC.getCompilerRTArgString(Args, Lib));
|
|
// Make sure the dynamic runtime thunk is not optimized out at link time
|
|
// to ensure proper SEH handling.
|
|
CmdArgs.push_back(Args.MakeArgString(
|
|
TC.getArch() == llvm::Triple::x86
|
|
? "-include:___asan_seh_interceptor"
|
|
: "-include:__asan_seh_interceptor"));
|
|
// Make sure the linker consider all object files from the dynamic runtime
|
|
// thunk.
|
|
CmdArgs.push_back(Args.MakeArgString(std::string("-wholearchive:") +
|
|
TC.getCompilerRT(Args, "asan_dynamic_runtime_thunk")));
|
|
} else if (DLL) {
|
|
CmdArgs.push_back(TC.getCompilerRTArgString(Args, "asan_dll_thunk"));
|
|
} else {
|
|
for (const auto &Lib : {"asan", "asan_cxx"}) {
|
|
CmdArgs.push_back(TC.getCompilerRTArgString(Args, Lib));
|
|
// Make sure the linker consider all object files from the static lib.
|
|
// This is necessary because instrumented dlls need access to all the
|
|
// interface exported by the static lib in the main executable.
|
|
CmdArgs.push_back(Args.MakeArgString(std::string("-wholearchive:") +
|
|
TC.getCompilerRT(Args, Lib)));
|
|
}
|
|
}
|
|
}
|
|
|
|
Args.AddAllArgValues(CmdArgs, options::OPT__SLASH_link);
|
|
|
|
if (Args.hasFlag(options::OPT_fopenmp, options::OPT_fopenmp_EQ,
|
|
options::OPT_fno_openmp, false)) {
|
|
CmdArgs.push_back("-nodefaultlib:vcomp.lib");
|
|
CmdArgs.push_back("-nodefaultlib:vcompd.lib");
|
|
CmdArgs.push_back(Args.MakeArgString(std::string("-libpath:") +
|
|
TC.getDriver().Dir + "/../lib"));
|
|
switch (TC.getDriver().getOpenMPRuntime(Args)) {
|
|
case Driver::OMPRT_OMP:
|
|
CmdArgs.push_back("-defaultlib:libomp.lib");
|
|
break;
|
|
case Driver::OMPRT_IOMP5:
|
|
CmdArgs.push_back("-defaultlib:libiomp5md.lib");
|
|
break;
|
|
case Driver::OMPRT_GOMP:
|
|
break;
|
|
case Driver::OMPRT_Unknown:
|
|
// Already diagnosed.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Add compiler-rt lib in case if it was explicitly
|
|
// specified as an argument for --rtlib option.
|
|
if (!Args.hasArg(options::OPT_nostdlib)) {
|
|
AddRunTimeLibs(TC, TC.getDriver(), CmdArgs, Args);
|
|
}
|
|
|
|
// Add filenames, libraries, and other linker inputs.
|
|
for (const auto &Input : Inputs) {
|
|
if (Input.isFilename()) {
|
|
CmdArgs.push_back(Input.getFilename());
|
|
continue;
|
|
}
|
|
|
|
const Arg &A = Input.getInputArg();
|
|
|
|
// Render -l options differently for the MSVC linker.
|
|
if (A.getOption().matches(options::OPT_l)) {
|
|
StringRef Lib = A.getValue();
|
|
const char *LinkLibArg;
|
|
if (Lib.endswith(".lib"))
|
|
LinkLibArg = Args.MakeArgString(Lib);
|
|
else
|
|
LinkLibArg = Args.MakeArgString(Lib + ".lib");
|
|
CmdArgs.push_back(LinkLibArg);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, this is some other kind of linker input option like -Wl, -z,
|
|
// or -L. Render it, even if MSVC doesn't understand it.
|
|
A.renderAsInput(Args, CmdArgs);
|
|
}
|
|
|
|
TC.addProfileRTLibs(Args, CmdArgs);
|
|
|
|
std::vector<const char *> Environment;
|
|
|
|
// We need to special case some linker paths. In the case of lld, we need to
|
|
// translate 'lld' into 'lld-link', and in the case of the regular msvc
|
|
// linker, we need to use a special search algorithm.
|
|
llvm::SmallString<128> linkPath;
|
|
StringRef Linker = Args.getLastArgValue(options::OPT_fuse_ld_EQ, "link");
|
|
if (Linker.equals_lower("lld"))
|
|
Linker = "lld-link";
|
|
|
|
if (Linker.equals_lower("link")) {
|
|
// If we're using the MSVC linker, it's not sufficient to just use link
|
|
// from the program PATH, because other environments like GnuWin32 install
|
|
// their own link.exe which may come first.
|
|
linkPath = FindVisualStudioExecutable(TC, "link.exe");
|
|
|
|
#ifdef USE_WIN32
|
|
// When cross-compiling with VS2017 or newer, link.exe expects to have
|
|
// its containing bin directory at the top of PATH, followed by the
|
|
// native target bin directory.
|
|
// e.g. when compiling for x86 on an x64 host, PATH should start with:
|
|
// /bin/HostX64/x86;/bin/HostX64/x64
|
|
if (TC.getIsVS2017OrNewer() &&
|
|
llvm::Triple(llvm::sys::getProcessTriple()).getArch() != TC.getArch()) {
|
|
auto HostArch = llvm::Triple(llvm::sys::getProcessTriple()).getArch();
|
|
|
|
auto EnvBlockWide =
|
|
std::unique_ptr<wchar_t[], decltype(&FreeEnvironmentStringsW)>(
|
|
GetEnvironmentStringsW(), FreeEnvironmentStringsW);
|
|
if (!EnvBlockWide)
|
|
goto SkipSettingEnvironment;
|
|
|
|
size_t EnvCount = 0;
|
|
size_t EnvBlockLen = 0;
|
|
while (EnvBlockWide[EnvBlockLen] != L'\0') {
|
|
++EnvCount;
|
|
EnvBlockLen += std::wcslen(&EnvBlockWide[EnvBlockLen]) +
|
|
1 /*string null-terminator*/;
|
|
}
|
|
++EnvBlockLen; // add the block null-terminator
|
|
|
|
std::string EnvBlock;
|
|
if (!llvm::convertUTF16ToUTF8String(
|
|
llvm::ArrayRef<char>(reinterpret_cast<char *>(EnvBlockWide.get()),
|
|
EnvBlockLen * sizeof(EnvBlockWide[0])),
|
|
EnvBlock))
|
|
goto SkipSettingEnvironment;
|
|
|
|
Environment.reserve(EnvCount);
|
|
|
|
// Now loop over each string in the block and copy them into the
|
|
// environment vector, adjusting the PATH variable as needed when we
|
|
// find it.
|
|
for (const char *Cursor = EnvBlock.data(); *Cursor != '\0';) {
|
|
llvm::StringRef EnvVar(Cursor);
|
|
if (EnvVar.startswith_lower("path=")) {
|
|
using SubDirectoryType = toolchains::MSVCToolChain::SubDirectoryType;
|
|
constexpr size_t PrefixLen = 5; // strlen("path=")
|
|
Environment.push_back(Args.MakeArgString(
|
|
EnvVar.substr(0, PrefixLen) +
|
|
TC.getSubDirectoryPath(SubDirectoryType::Bin) +
|
|
llvm::Twine(llvm::sys::EnvPathSeparator) +
|
|
TC.getSubDirectoryPath(SubDirectoryType::Bin, HostArch) +
|
|
(EnvVar.size() > PrefixLen
|
|
? llvm::Twine(llvm::sys::EnvPathSeparator) +
|
|
EnvVar.substr(PrefixLen)
|
|
: "")));
|
|
} else {
|
|
Environment.push_back(Args.MakeArgString(EnvVar));
|
|
}
|
|
Cursor += EnvVar.size() + 1 /*null-terminator*/;
|
|
}
|
|
}
|
|
SkipSettingEnvironment:;
|
|
#endif
|
|
} else {
|
|
linkPath = Linker;
|
|
llvm::sys::path::replace_extension(linkPath, "exe");
|
|
linkPath = TC.GetProgramPath(linkPath.c_str());
|
|
}
|
|
|
|
auto LinkCmd = llvm::make_unique<Command>(
|
|
JA, *this, Args.MakeArgString(linkPath), CmdArgs, Inputs);
|
|
if (!Environment.empty())
|
|
LinkCmd->setEnvironment(Environment);
|
|
C.addCommand(std::move(LinkCmd));
|
|
}
|
|
|
|
void visualstudio::Compiler::ConstructJob(Compilation &C, const JobAction &JA,
|
|
const InputInfo &Output,
|
|
const InputInfoList &Inputs,
|
|
const ArgList &Args,
|
|
const char *LinkingOutput) const {
|
|
C.addCommand(GetCommand(C, JA, Output, Inputs, Args, LinkingOutput));
|
|
}
|
|
|
|
std::unique_ptr<Command> visualstudio::Compiler::GetCommand(
|
|
Compilation &C, const JobAction &JA, const InputInfo &Output,
|
|
const InputInfoList &Inputs, const ArgList &Args,
|
|
const char *LinkingOutput) const {
|
|
ArgStringList CmdArgs;
|
|
CmdArgs.push_back("/nologo");
|
|
CmdArgs.push_back("/c"); // Compile only.
|
|
CmdArgs.push_back("/W0"); // No warnings.
|
|
|
|
// The goal is to be able to invoke this tool correctly based on
|
|
// any flag accepted by clang-cl.
|
|
|
|
// These are spelled the same way in clang and cl.exe,.
|
|
Args.AddAllArgs(CmdArgs, {options::OPT_D, options::OPT_U, options::OPT_I});
|
|
|
|
// Optimization level.
|
|
if (Arg *A = Args.getLastArg(options::OPT_fbuiltin, options::OPT_fno_builtin))
|
|
CmdArgs.push_back(A->getOption().getID() == options::OPT_fbuiltin ? "/Oi"
|
|
: "/Oi-");
|
|
if (Arg *A = Args.getLastArg(options::OPT_O, options::OPT_O0)) {
|
|
if (A->getOption().getID() == options::OPT_O0) {
|
|
CmdArgs.push_back("/Od");
|
|
} else {
|
|
CmdArgs.push_back("/Og");
|
|
|
|
StringRef OptLevel = A->getValue();
|
|
if (OptLevel == "s" || OptLevel == "z")
|
|
CmdArgs.push_back("/Os");
|
|
else
|
|
CmdArgs.push_back("/Ot");
|
|
|
|
CmdArgs.push_back("/Ob2");
|
|
}
|
|
}
|
|
if (Arg *A = Args.getLastArg(options::OPT_fomit_frame_pointer,
|
|
options::OPT_fno_omit_frame_pointer))
|
|
CmdArgs.push_back(A->getOption().getID() == options::OPT_fomit_frame_pointer
|
|
? "/Oy"
|
|
: "/Oy-");
|
|
if (!Args.hasArg(options::OPT_fwritable_strings))
|
|
CmdArgs.push_back("/GF");
|
|
|
|
// Flags for which clang-cl has an alias.
|
|
// FIXME: How can we ensure this stays in sync with relevant clang-cl options?
|
|
|
|
if (Args.hasFlag(options::OPT__SLASH_GR_, options::OPT__SLASH_GR,
|
|
/*default=*/false))
|
|
CmdArgs.push_back("/GR-");
|
|
|
|
if (Args.hasFlag(options::OPT__SLASH_GS_, options::OPT__SLASH_GS,
|
|
/*default=*/false))
|
|
CmdArgs.push_back("/GS-");
|
|
|
|
if (Arg *A = Args.getLastArg(options::OPT_ffunction_sections,
|
|
options::OPT_fno_function_sections))
|
|
CmdArgs.push_back(A->getOption().getID() == options::OPT_ffunction_sections
|
|
? "/Gy"
|
|
: "/Gy-");
|
|
if (Arg *A = Args.getLastArg(options::OPT_fdata_sections,
|
|
options::OPT_fno_data_sections))
|
|
CmdArgs.push_back(
|
|
A->getOption().getID() == options::OPT_fdata_sections ? "/Gw" : "/Gw-");
|
|
if (Args.hasArg(options::OPT_fsyntax_only))
|
|
CmdArgs.push_back("/Zs");
|
|
if (Args.hasArg(options::OPT_g_Flag, options::OPT_gline_tables_only,
|
|
options::OPT__SLASH_Z7))
|
|
CmdArgs.push_back("/Z7");
|
|
|
|
std::vector<std::string> Includes =
|
|
Args.getAllArgValues(options::OPT_include);
|
|
for (const auto &Include : Includes)
|
|
CmdArgs.push_back(Args.MakeArgString(std::string("/FI") + Include));
|
|
|
|
// Flags that can simply be passed through.
|
|
Args.AddAllArgs(CmdArgs, options::OPT__SLASH_LD);
|
|
Args.AddAllArgs(CmdArgs, options::OPT__SLASH_LDd);
|
|
Args.AddAllArgs(CmdArgs, options::OPT__SLASH_GX);
|
|
Args.AddAllArgs(CmdArgs, options::OPT__SLASH_GX_);
|
|
Args.AddAllArgs(CmdArgs, options::OPT__SLASH_EH);
|
|
Args.AddAllArgs(CmdArgs, options::OPT__SLASH_Zl);
|
|
|
|
// The order of these flags is relevant, so pick the last one.
|
|
if (Arg *A = Args.getLastArg(options::OPT__SLASH_MD, options::OPT__SLASH_MDd,
|
|
options::OPT__SLASH_MT, options::OPT__SLASH_MTd))
|
|
A->render(Args, CmdArgs);
|
|
|
|
// Use MSVC's default threadsafe statics behaviour unless there was a flag.
|
|
if (Arg *A = Args.getLastArg(options::OPT_fthreadsafe_statics,
|
|
options::OPT_fno_threadsafe_statics)) {
|
|
CmdArgs.push_back(A->getOption().getID() == options::OPT_fthreadsafe_statics
|
|
? "/Zc:threadSafeInit"
|
|
: "/Zc:threadSafeInit-");
|
|
}
|
|
|
|
// Pass through all unknown arguments so that the fallback command can see
|
|
// them too.
|
|
Args.AddAllArgs(CmdArgs, options::OPT_UNKNOWN);
|
|
|
|
// Input filename.
|
|
assert(Inputs.size() == 1);
|
|
const InputInfo &II = Inputs[0];
|
|
assert(II.getType() == types::TY_C || II.getType() == types::TY_CXX);
|
|
CmdArgs.push_back(II.getType() == types::TY_C ? "/Tc" : "/Tp");
|
|
if (II.isFilename())
|
|
CmdArgs.push_back(II.getFilename());
|
|
else
|
|
II.getInputArg().renderAsInput(Args, CmdArgs);
|
|
|
|
// Output filename.
|
|
assert(Output.getType() == types::TY_Object);
|
|
const char *Fo =
|
|
Args.MakeArgString(std::string("/Fo") + Output.getFilename());
|
|
CmdArgs.push_back(Fo);
|
|
|
|
std::string Exec = FindVisualStudioExecutable(getToolChain(), "cl.exe");
|
|
return llvm::make_unique<Command>(JA, *this, Args.MakeArgString(Exec),
|
|
CmdArgs, Inputs);
|
|
}
|
|
|
|
MSVCToolChain::MSVCToolChain(const Driver &D, const llvm::Triple &Triple,
|
|
const ArgList &Args)
|
|
: ToolChain(D, Triple, Args), CudaInstallation(D, Triple, Args) {
|
|
getProgramPaths().push_back(getDriver().getInstalledDir());
|
|
if (getDriver().getInstalledDir() != getDriver().Dir)
|
|
getProgramPaths().push_back(getDriver().Dir);
|
|
|
|
// Check the environment first, since that's probably the user telling us
|
|
// what they want to use.
|
|
// Failing that, just try to find the newest Visual Studio version we can
|
|
// and use its default VC toolchain.
|
|
findVCToolChainViaEnvironment(VCToolChainPath, IsVS2017OrNewer) ||
|
|
findVCToolChainViaSetupConfig(VCToolChainPath, IsVS2017OrNewer) ||
|
|
findVCToolChainViaRegistry(VCToolChainPath, IsVS2017OrNewer);
|
|
}
|
|
|
|
Tool *MSVCToolChain::buildLinker() const {
|
|
if (VCToolChainPath.empty())
|
|
getDriver().Diag(clang::diag::warn_drv_msvc_not_found);
|
|
return new tools::visualstudio::Linker(*this);
|
|
}
|
|
|
|
Tool *MSVCToolChain::buildAssembler() const {
|
|
if (getTriple().isOSBinFormatMachO())
|
|
return new tools::darwin::Assembler(*this);
|
|
getDriver().Diag(clang::diag::err_no_external_assembler);
|
|
return nullptr;
|
|
}
|
|
|
|
bool MSVCToolChain::IsIntegratedAssemblerDefault() const {
|
|
return true;
|
|
}
|
|
|
|
bool MSVCToolChain::IsUnwindTablesDefault() const {
|
|
// Emit unwind tables by default on Win64. All non-x86_32 Windows platforms
|
|
// such as ARM and PPC actually require unwind tables, but LLVM doesn't know
|
|
// how to generate them yet.
|
|
|
|
// Don't emit unwind tables by default for MachO targets.
|
|
if (getTriple().isOSBinFormatMachO())
|
|
return false;
|
|
|
|
return getArch() == llvm::Triple::x86_64;
|
|
}
|
|
|
|
bool MSVCToolChain::isPICDefault() const {
|
|
return getArch() == llvm::Triple::x86_64;
|
|
}
|
|
|
|
bool MSVCToolChain::isPIEDefault() const {
|
|
return false;
|
|
}
|
|
|
|
bool MSVCToolChain::isPICDefaultForced() const {
|
|
return getArch() == llvm::Triple::x86_64;
|
|
}
|
|
|
|
void MSVCToolChain::AddCudaIncludeArgs(const ArgList &DriverArgs,
|
|
ArgStringList &CC1Args) const {
|
|
CudaInstallation.AddCudaIncludeArgs(DriverArgs, CC1Args);
|
|
}
|
|
|
|
void MSVCToolChain::printVerboseInfo(raw_ostream &OS) const {
|
|
CudaInstallation.print(OS);
|
|
}
|
|
|
|
// Windows SDKs and VC Toolchains group their contents into subdirectories based
|
|
// on the target architecture. This function converts an llvm::Triple::ArchType
|
|
// to the corresponding subdirectory name.
|
|
static const char *llvmArchToWindowsSDKArch(llvm::Triple::ArchType Arch) {
|
|
using ArchType = llvm::Triple::ArchType;
|
|
switch (Arch) {
|
|
case ArchType::x86:
|
|
return "x86";
|
|
case ArchType::x86_64:
|
|
return "x64";
|
|
case ArchType::arm:
|
|
return "arm";
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
|
|
// Similar to the above function, but for Visual Studios before VS2017.
|
|
static const char *llvmArchToLegacyVCArch(llvm::Triple::ArchType Arch) {
|
|
using ArchType = llvm::Triple::ArchType;
|
|
switch (Arch) {
|
|
case ArchType::x86:
|
|
// x86 is default in legacy VC toolchains.
|
|
// e.g. x86 libs are directly in /lib as opposed to /lib/x86.
|
|
return "";
|
|
case ArchType::x86_64:
|
|
return "amd64";
|
|
case ArchType::arm:
|
|
return "arm";
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
|
|
// Get the path to a specific subdirectory in the current toolchain for
|
|
// a given target architecture.
|
|
// VS2017 changed the VC toolchain layout, so this should be used instead
|
|
// of hardcoding paths.
|
|
std::string
|
|
MSVCToolChain::getSubDirectoryPath(SubDirectoryType Type,
|
|
llvm::Triple::ArchType TargetArch) const {
|
|
llvm::SmallString<256> Path(VCToolChainPath);
|
|
switch (Type) {
|
|
case SubDirectoryType::Bin:
|
|
if (IsVS2017OrNewer) {
|
|
bool HostIsX64 =
|
|
llvm::Triple(llvm::sys::getProcessTriple()).isArch64Bit();
|
|
llvm::sys::path::append(Path, "bin", (HostIsX64 ? "HostX64" : "HostX86"),
|
|
llvmArchToWindowsSDKArch(TargetArch));
|
|
|
|
} else {
|
|
llvm::sys::path::append(Path, "bin", llvmArchToLegacyVCArch(TargetArch));
|
|
}
|
|
break;
|
|
case SubDirectoryType::Include:
|
|
llvm::sys::path::append(Path, "include");
|
|
break;
|
|
case SubDirectoryType::Lib:
|
|
llvm::sys::path::append(
|
|
Path, "lib", IsVS2017OrNewer ? llvmArchToWindowsSDKArch(TargetArch)
|
|
: llvmArchToLegacyVCArch(TargetArch));
|
|
break;
|
|
}
|
|
return Path.str();
|
|
}
|
|
|
|
#ifdef USE_WIN32
|
|
static bool readFullStringValue(HKEY hkey, const char *valueName,
|
|
std::string &value) {
|
|
std::wstring WideValueName;
|
|
if (!llvm::ConvertUTF8toWide(valueName, WideValueName))
|
|
return false;
|
|
|
|
DWORD result = 0;
|
|
DWORD valueSize = 0;
|
|
DWORD type = 0;
|
|
// First just query for the required size.
|
|
result = RegQueryValueExW(hkey, WideValueName.c_str(), NULL, &type, NULL,
|
|
&valueSize);
|
|
if (result != ERROR_SUCCESS || type != REG_SZ || !valueSize)
|
|
return false;
|
|
std::vector<BYTE> buffer(valueSize);
|
|
result = RegQueryValueExW(hkey, WideValueName.c_str(), NULL, NULL, &buffer[0],
|
|
&valueSize);
|
|
if (result == ERROR_SUCCESS) {
|
|
std::wstring WideValue(reinterpret_cast<const wchar_t *>(buffer.data()),
|
|
valueSize / sizeof(wchar_t));
|
|
if (valueSize && WideValue.back() == L'\0') {
|
|
WideValue.pop_back();
|
|
}
|
|
// The destination buffer must be empty as an invariant of the conversion
|
|
// function; but this function is sometimes called in a loop that passes in
|
|
// the same buffer, however. Simply clear it out so we can overwrite it.
|
|
value.clear();
|
|
return llvm::convertWideToUTF8(WideValue, value);
|
|
}
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/// \brief Read registry string.
|
|
/// This also supports a means to look for high-versioned keys by use
|
|
/// of a $VERSION placeholder in the key path.
|
|
/// $VERSION in the key path is a placeholder for the version number,
|
|
/// causing the highest value path to be searched for and used.
|
|
/// I.e. "SOFTWARE\\Microsoft\\VisualStudio\\$VERSION".
|
|
/// There can be additional characters in the component. Only the numeric
|
|
/// characters are compared. This function only searches HKLM.
|
|
static bool getSystemRegistryString(const char *keyPath, const char *valueName,
|
|
std::string &value, std::string *phValue) {
|
|
#ifndef USE_WIN32
|
|
return false;
|
|
#else
|
|
HKEY hRootKey = HKEY_LOCAL_MACHINE;
|
|
HKEY hKey = NULL;
|
|
long lResult;
|
|
bool returnValue = false;
|
|
|
|
const char *placeHolder = strstr(keyPath, "$VERSION");
|
|
std::string bestName;
|
|
// If we have a $VERSION placeholder, do the highest-version search.
|
|
if (placeHolder) {
|
|
const char *keyEnd = placeHolder - 1;
|
|
const char *nextKey = placeHolder;
|
|
// Find end of previous key.
|
|
while ((keyEnd > keyPath) && (*keyEnd != '\\'))
|
|
keyEnd--;
|
|
// Find end of key containing $VERSION.
|
|
while (*nextKey && (*nextKey != '\\'))
|
|
nextKey++;
|
|
size_t partialKeyLength = keyEnd - keyPath;
|
|
char partialKey[256];
|
|
if (partialKeyLength >= sizeof(partialKey))
|
|
partialKeyLength = sizeof(partialKey) - 1;
|
|
strncpy(partialKey, keyPath, partialKeyLength);
|
|
partialKey[partialKeyLength] = '\0';
|
|
HKEY hTopKey = NULL;
|
|
lResult = RegOpenKeyExA(hRootKey, partialKey, 0, KEY_READ | KEY_WOW64_32KEY,
|
|
&hTopKey);
|
|
if (lResult == ERROR_SUCCESS) {
|
|
char keyName[256];
|
|
double bestValue = 0.0;
|
|
DWORD index, size = sizeof(keyName) - 1;
|
|
for (index = 0; RegEnumKeyExA(hTopKey, index, keyName, &size, NULL, NULL,
|
|
NULL, NULL) == ERROR_SUCCESS;
|
|
index++) {
|
|
const char *sp = keyName;
|
|
while (*sp && !isDigit(*sp))
|
|
sp++;
|
|
if (!*sp)
|
|
continue;
|
|
const char *ep = sp + 1;
|
|
while (*ep && (isDigit(*ep) || (*ep == '.')))
|
|
ep++;
|
|
char numBuf[32];
|
|
strncpy(numBuf, sp, sizeof(numBuf) - 1);
|
|
numBuf[sizeof(numBuf) - 1] = '\0';
|
|
double dvalue = strtod(numBuf, NULL);
|
|
if (dvalue > bestValue) {
|
|
// Test that InstallDir is indeed there before keeping this index.
|
|
// Open the chosen key path remainder.
|
|
bestName = keyName;
|
|
// Append rest of key.
|
|
bestName.append(nextKey);
|
|
lResult = RegOpenKeyExA(hTopKey, bestName.c_str(), 0,
|
|
KEY_READ | KEY_WOW64_32KEY, &hKey);
|
|
if (lResult == ERROR_SUCCESS) {
|
|
if (readFullStringValue(hKey, valueName, value)) {
|
|
bestValue = dvalue;
|
|
if (phValue)
|
|
*phValue = bestName;
|
|
returnValue = true;
|
|
}
|
|
RegCloseKey(hKey);
|
|
}
|
|
}
|
|
size = sizeof(keyName) - 1;
|
|
}
|
|
RegCloseKey(hTopKey);
|
|
}
|
|
} else {
|
|
lResult =
|
|
RegOpenKeyExA(hRootKey, keyPath, 0, KEY_READ | KEY_WOW64_32KEY, &hKey);
|
|
if (lResult == ERROR_SUCCESS) {
|
|
if (readFullStringValue(hKey, valueName, value))
|
|
returnValue = true;
|
|
if (phValue)
|
|
phValue->clear();
|
|
RegCloseKey(hKey);
|
|
}
|
|
}
|
|
return returnValue;
|
|
#endif // USE_WIN32
|
|
}
|
|
|
|
// Find the most recent version of Universal CRT or Windows 10 SDK.
|
|
// vcvarsqueryregistry.bat from Visual Studio 2015 sorts entries in the include
|
|
// directory by name and uses the last one of the list.
|
|
// So we compare entry names lexicographically to find the greatest one.
|
|
static bool getWindows10SDKVersionFromPath(const std::string &SDKPath,
|
|
std::string &SDKVersion) {
|
|
SDKVersion.clear();
|
|
|
|
std::error_code EC;
|
|
llvm::SmallString<128> IncludePath(SDKPath);
|
|
llvm::sys::path::append(IncludePath, "Include");
|
|
for (llvm::sys::fs::directory_iterator DirIt(IncludePath, EC), DirEnd;
|
|
DirIt != DirEnd && !EC; DirIt.increment(EC)) {
|
|
if (!llvm::sys::fs::is_directory(DirIt->path()))
|
|
continue;
|
|
StringRef CandidateName = llvm::sys::path::filename(DirIt->path());
|
|
// If WDK is installed, there could be subfolders like "wdf" in the
|
|
// "Include" directory.
|
|
// Allow only directories which names start with "10.".
|
|
if (!CandidateName.startswith("10."))
|
|
continue;
|
|
if (CandidateName > SDKVersion)
|
|
SDKVersion = CandidateName;
|
|
}
|
|
|
|
return !SDKVersion.empty();
|
|
}
|
|
|
|
/// \brief Get Windows SDK installation directory.
|
|
static bool getWindowsSDKDir(std::string &Path, int &Major,
|
|
std::string &WindowsSDKIncludeVersion,
|
|
std::string &WindowsSDKLibVersion) {
|
|
std::string RegistrySDKVersion;
|
|
// Try the Windows registry.
|
|
if (!getSystemRegistryString(
|
|
"SOFTWARE\\Microsoft\\Microsoft SDKs\\Windows\\$VERSION",
|
|
"InstallationFolder", Path, &RegistrySDKVersion))
|
|
return false;
|
|
if (Path.empty() || RegistrySDKVersion.empty())
|
|
return false;
|
|
|
|
WindowsSDKIncludeVersion.clear();
|
|
WindowsSDKLibVersion.clear();
|
|
Major = 0;
|
|
std::sscanf(RegistrySDKVersion.c_str(), "v%d.", &Major);
|
|
if (Major <= 7)
|
|
return true;
|
|
if (Major == 8) {
|
|
// Windows SDK 8.x installs libraries in a folder whose names depend on the
|
|
// version of the OS you're targeting. By default choose the newest, which
|
|
// usually corresponds to the version of the OS you've installed the SDK on.
|
|
const char *Tests[] = {"winv6.3", "win8", "win7"};
|
|
for (const char *Test : Tests) {
|
|
llvm::SmallString<128> TestPath(Path);
|
|
llvm::sys::path::append(TestPath, "Lib", Test);
|
|
if (llvm::sys::fs::exists(TestPath.c_str())) {
|
|
WindowsSDKLibVersion = Test;
|
|
break;
|
|
}
|
|
}
|
|
return !WindowsSDKLibVersion.empty();
|
|
}
|
|
if (Major == 10) {
|
|
if (!getWindows10SDKVersionFromPath(Path, WindowsSDKIncludeVersion))
|
|
return false;
|
|
WindowsSDKLibVersion = WindowsSDKIncludeVersion;
|
|
return true;
|
|
}
|
|
// Unsupported SDK version
|
|
return false;
|
|
}
|
|
|
|
// Gets the library path required to link against the Windows SDK.
|
|
bool MSVCToolChain::getWindowsSDKLibraryPath(std::string &path) const {
|
|
std::string sdkPath;
|
|
int sdkMajor = 0;
|
|
std::string windowsSDKIncludeVersion;
|
|
std::string windowsSDKLibVersion;
|
|
|
|
path.clear();
|
|
if (!getWindowsSDKDir(sdkPath, sdkMajor, windowsSDKIncludeVersion,
|
|
windowsSDKLibVersion))
|
|
return false;
|
|
|
|
llvm::SmallString<128> libPath(sdkPath);
|
|
llvm::sys::path::append(libPath, "Lib");
|
|
if (sdkMajor >= 8) {
|
|
llvm::sys::path::append(libPath, windowsSDKLibVersion, "um",
|
|
llvmArchToWindowsSDKArch(getArch()));
|
|
} else {
|
|
switch (getArch()) {
|
|
// In Windows SDK 7.x, x86 libraries are directly in the Lib folder.
|
|
case llvm::Triple::x86:
|
|
break;
|
|
case llvm::Triple::x86_64:
|
|
llvm::sys::path::append(libPath, "x64");
|
|
break;
|
|
case llvm::Triple::arm:
|
|
// It is not necessary to link against Windows SDK 7.x when targeting ARM.
|
|
return false;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
path = libPath.str();
|
|
return true;
|
|
}
|
|
|
|
// Check if the Include path of a specified version of Visual Studio contains
|
|
// specific header files. If not, they are probably shipped with Universal CRT.
|
|
bool MSVCToolChain::useUniversalCRT() const {
|
|
llvm::SmallString<128> TestPath(
|
|
getSubDirectoryPath(SubDirectoryType::Include));
|
|
llvm::sys::path::append(TestPath, "stdlib.h");
|
|
return !llvm::sys::fs::exists(TestPath);
|
|
}
|
|
|
|
static bool getUniversalCRTSdkDir(std::string &Path, std::string &UCRTVersion) {
|
|
// vcvarsqueryregistry.bat for Visual Studio 2015 queries the registry
|
|
// for the specific key "KitsRoot10". So do we.
|
|
if (!getSystemRegistryString(
|
|
"SOFTWARE\\Microsoft\\Windows Kits\\Installed Roots", "KitsRoot10",
|
|
Path, nullptr))
|
|
return false;
|
|
|
|
return getWindows10SDKVersionFromPath(Path, UCRTVersion);
|
|
}
|
|
|
|
bool MSVCToolChain::getUniversalCRTLibraryPath(std::string &Path) const {
|
|
std::string UniversalCRTSdkPath;
|
|
std::string UCRTVersion;
|
|
|
|
Path.clear();
|
|
if (!getUniversalCRTSdkDir(UniversalCRTSdkPath, UCRTVersion))
|
|
return false;
|
|
|
|
StringRef ArchName = llvmArchToWindowsSDKArch(getArch());
|
|
if (ArchName.empty())
|
|
return false;
|
|
|
|
llvm::SmallString<128> LibPath(UniversalCRTSdkPath);
|
|
llvm::sys::path::append(LibPath, "Lib", UCRTVersion, "ucrt", ArchName);
|
|
|
|
Path = LibPath.str();
|
|
return true;
|
|
}
|
|
|
|
static VersionTuple getMSVCVersionFromTriple(const llvm::Triple &Triple) {
|
|
unsigned Major, Minor, Micro;
|
|
Triple.getEnvironmentVersion(Major, Minor, Micro);
|
|
if (Major || Minor || Micro)
|
|
return VersionTuple(Major, Minor, Micro);
|
|
return VersionTuple();
|
|
}
|
|
|
|
static VersionTuple getMSVCVersionFromExe(const std::string &BinDir) {
|
|
VersionTuple Version;
|
|
#ifdef USE_WIN32
|
|
SmallString<128> ClExe(BinDir);
|
|
llvm::sys::path::append(ClExe, "cl.exe");
|
|
|
|
std::wstring ClExeWide;
|
|
if (!llvm::ConvertUTF8toWide(ClExe.c_str(), ClExeWide))
|
|
return Version;
|
|
|
|
const DWORD VersionSize = ::GetFileVersionInfoSizeW(ClExeWide.c_str(),
|
|
nullptr);
|
|
if (VersionSize == 0)
|
|
return Version;
|
|
|
|
SmallVector<uint8_t, 4 * 1024> VersionBlock(VersionSize);
|
|
if (!::GetFileVersionInfoW(ClExeWide.c_str(), 0, VersionSize,
|
|
VersionBlock.data()))
|
|
return Version;
|
|
|
|
VS_FIXEDFILEINFO *FileInfo = nullptr;
|
|
UINT FileInfoSize = 0;
|
|
if (!::VerQueryValueW(VersionBlock.data(), L"\\",
|
|
reinterpret_cast<LPVOID *>(&FileInfo), &FileInfoSize) ||
|
|
FileInfoSize < sizeof(*FileInfo))
|
|
return Version;
|
|
|
|
const unsigned Major = (FileInfo->dwFileVersionMS >> 16) & 0xFFFF;
|
|
const unsigned Minor = (FileInfo->dwFileVersionMS ) & 0xFFFF;
|
|
const unsigned Micro = (FileInfo->dwFileVersionLS >> 16) & 0xFFFF;
|
|
|
|
Version = VersionTuple(Major, Minor, Micro);
|
|
#endif
|
|
return Version;
|
|
}
|
|
|
|
void MSVCToolChain::AddSystemIncludeWithSubfolder(
|
|
const ArgList &DriverArgs, ArgStringList &CC1Args,
|
|
const std::string &folder, const Twine &subfolder1, const Twine &subfolder2,
|
|
const Twine &subfolder3) const {
|
|
llvm::SmallString<128> path(folder);
|
|
llvm::sys::path::append(path, subfolder1, subfolder2, subfolder3);
|
|
addSystemInclude(DriverArgs, CC1Args, path);
|
|
}
|
|
|
|
void MSVCToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs,
|
|
ArgStringList &CC1Args) const {
|
|
if (DriverArgs.hasArg(options::OPT_nostdinc))
|
|
return;
|
|
|
|
if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) {
|
|
AddSystemIncludeWithSubfolder(DriverArgs, CC1Args, getDriver().ResourceDir,
|
|
"include");
|
|
}
|
|
|
|
// Add %INCLUDE%-like directories from the -imsvc flag.
|
|
for (const auto &Path : DriverArgs.getAllArgValues(options::OPT__SLASH_imsvc))
|
|
addSystemInclude(DriverArgs, CC1Args, Path);
|
|
|
|
if (DriverArgs.hasArg(options::OPT_nostdlibinc))
|
|
return;
|
|
|
|
// Honor %INCLUDE%. It should know essential search paths with vcvarsall.bat.
|
|
if (llvm::Optional<std::string> cl_include_dir =
|
|
llvm::sys::Process::GetEnv("INCLUDE")) {
|
|
SmallVector<StringRef, 8> Dirs;
|
|
StringRef(*cl_include_dir)
|
|
.split(Dirs, ";", /*MaxSplit=*/-1, /*KeepEmpty=*/false);
|
|
for (StringRef Dir : Dirs)
|
|
addSystemInclude(DriverArgs, CC1Args, Dir);
|
|
if (!Dirs.empty())
|
|
return;
|
|
}
|
|
|
|
// When built with access to the proper Windows APIs, try to actually find
|
|
// the correct include paths first.
|
|
if (!VCToolChainPath.empty()) {
|
|
addSystemInclude(DriverArgs, CC1Args,
|
|
getSubDirectoryPath(SubDirectoryType::Include));
|
|
|
|
if (useUniversalCRT()) {
|
|
std::string UniversalCRTSdkPath;
|
|
std::string UCRTVersion;
|
|
if (getUniversalCRTSdkDir(UniversalCRTSdkPath, UCRTVersion)) {
|
|
AddSystemIncludeWithSubfolder(DriverArgs, CC1Args, UniversalCRTSdkPath,
|
|
"Include", UCRTVersion, "ucrt");
|
|
}
|
|
}
|
|
|
|
std::string WindowsSDKDir;
|
|
int major;
|
|
std::string windowsSDKIncludeVersion;
|
|
std::string windowsSDKLibVersion;
|
|
if (getWindowsSDKDir(WindowsSDKDir, major, windowsSDKIncludeVersion,
|
|
windowsSDKLibVersion)) {
|
|
if (major >= 8) {
|
|
// Note: windowsSDKIncludeVersion is empty for SDKs prior to v10.
|
|
// Anyway, llvm::sys::path::append is able to manage it.
|
|
AddSystemIncludeWithSubfolder(DriverArgs, CC1Args, WindowsSDKDir,
|
|
"include", windowsSDKIncludeVersion,
|
|
"shared");
|
|
AddSystemIncludeWithSubfolder(DriverArgs, CC1Args, WindowsSDKDir,
|
|
"include", windowsSDKIncludeVersion,
|
|
"um");
|
|
AddSystemIncludeWithSubfolder(DriverArgs, CC1Args, WindowsSDKDir,
|
|
"include", windowsSDKIncludeVersion,
|
|
"winrt");
|
|
} else {
|
|
AddSystemIncludeWithSubfolder(DriverArgs, CC1Args, WindowsSDKDir,
|
|
"include");
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
#if defined(LLVM_ON_WIN32)
|
|
// As a fallback, select default install paths.
|
|
// FIXME: Don't guess drives and paths like this on Windows.
|
|
const StringRef Paths[] = {
|
|
"C:/Program Files/Microsoft Visual Studio 10.0/VC/include",
|
|
"C:/Program Files/Microsoft Visual Studio 9.0/VC/include",
|
|
"C:/Program Files/Microsoft Visual Studio 9.0/VC/PlatformSDK/Include",
|
|
"C:/Program Files/Microsoft Visual Studio 8/VC/include",
|
|
"C:/Program Files/Microsoft Visual Studio 8/VC/PlatformSDK/Include"
|
|
};
|
|
addSystemIncludes(DriverArgs, CC1Args, Paths);
|
|
#endif
|
|
}
|
|
|
|
void MSVCToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs,
|
|
ArgStringList &CC1Args) const {
|
|
// FIXME: There should probably be logic here to find libc++ on Windows.
|
|
}
|
|
|
|
VersionTuple MSVCToolChain::computeMSVCVersion(const Driver *D,
|
|
const ArgList &Args) const {
|
|
bool IsWindowsMSVC = getTriple().isWindowsMSVCEnvironment();
|
|
VersionTuple MSVT = ToolChain::computeMSVCVersion(D, Args);
|
|
if (MSVT.empty())
|
|
MSVT = getMSVCVersionFromTriple(getTriple());
|
|
if (MSVT.empty() && IsWindowsMSVC)
|
|
MSVT = getMSVCVersionFromExe(getSubDirectoryPath(SubDirectoryType::Bin));
|
|
if (MSVT.empty() &&
|
|
Args.hasFlag(options::OPT_fms_extensions, options::OPT_fno_ms_extensions,
|
|
IsWindowsMSVC)) {
|
|
// -fms-compatibility-version=18.00 is default.
|
|
// FIXME: Consider bumping this to 19 (MSVC2015) soon.
|
|
MSVT = VersionTuple(18);
|
|
}
|
|
return MSVT;
|
|
}
|
|
|
|
std::string
|
|
MSVCToolChain::ComputeEffectiveClangTriple(const ArgList &Args,
|
|
types::ID InputType) const {
|
|
// The MSVC version doesn't care about the architecture, even though it
|
|
// may look at the triple internally.
|
|
VersionTuple MSVT = computeMSVCVersion(/*D=*/nullptr, Args);
|
|
MSVT = VersionTuple(MSVT.getMajor(), MSVT.getMinor().getValueOr(0),
|
|
MSVT.getSubminor().getValueOr(0));
|
|
|
|
// For the rest of the triple, however, a computed architecture name may
|
|
// be needed.
|
|
llvm::Triple Triple(ToolChain::ComputeEffectiveClangTriple(Args, InputType));
|
|
if (Triple.getEnvironment() == llvm::Triple::MSVC) {
|
|
StringRef ObjFmt = Triple.getEnvironmentName().split('-').second;
|
|
if (ObjFmt.empty())
|
|
Triple.setEnvironmentName((Twine("msvc") + MSVT.getAsString()).str());
|
|
else
|
|
Triple.setEnvironmentName(
|
|
(Twine("msvc") + MSVT.getAsString() + Twine('-') + ObjFmt).str());
|
|
}
|
|
return Triple.getTriple();
|
|
}
|
|
|
|
SanitizerMask MSVCToolChain::getSupportedSanitizers() const {
|
|
SanitizerMask Res = ToolChain::getSupportedSanitizers();
|
|
Res |= SanitizerKind::Address;
|
|
return Res;
|
|
}
|
|
|
|
static void TranslateOptArg(Arg *A, llvm::opt::DerivedArgList &DAL,
|
|
bool SupportsForcingFramePointer,
|
|
const char *ExpandChar, const OptTable &Opts) {
|
|
assert(A->getOption().matches(options::OPT__SLASH_O));
|
|
|
|
StringRef OptStr = A->getValue();
|
|
for (size_t I = 0, E = OptStr.size(); I != E; ++I) {
|
|
const char &OptChar = *(OptStr.data() + I);
|
|
switch (OptChar) {
|
|
default:
|
|
break;
|
|
case '1':
|
|
case '2':
|
|
case 'x':
|
|
case 'd':
|
|
if (&OptChar == ExpandChar) {
|
|
if (OptChar == 'd') {
|
|
DAL.AddFlagArg(A, Opts.getOption(options::OPT_O0));
|
|
} else {
|
|
if (OptChar == '1') {
|
|
DAL.AddJoinedArg(A, Opts.getOption(options::OPT_O), "s");
|
|
} else if (OptChar == '2' || OptChar == 'x') {
|
|
DAL.AddFlagArg(A, Opts.getOption(options::OPT_fbuiltin));
|
|
DAL.AddJoinedArg(A, Opts.getOption(options::OPT_O), "2");
|
|
}
|
|
if (SupportsForcingFramePointer &&
|
|
!DAL.hasArgNoClaim(options::OPT_fno_omit_frame_pointer))
|
|
DAL.AddFlagArg(A,
|
|
Opts.getOption(options::OPT_fomit_frame_pointer));
|
|
if (OptChar == '1' || OptChar == '2')
|
|
DAL.AddFlagArg(A,
|
|
Opts.getOption(options::OPT_ffunction_sections));
|
|
}
|
|
}
|
|
break;
|
|
case 'b':
|
|
if (I + 1 != E && isdigit(OptStr[I + 1])) {
|
|
switch (OptStr[I + 1]) {
|
|
case '0':
|
|
DAL.AddFlagArg(A, Opts.getOption(options::OPT_fno_inline));
|
|
break;
|
|
case '1':
|
|
DAL.AddFlagArg(A, Opts.getOption(options::OPT_finline_hint_functions));
|
|
break;
|
|
case '2':
|
|
DAL.AddFlagArg(A, Opts.getOption(options::OPT_finline_functions));
|
|
break;
|
|
}
|
|
++I;
|
|
}
|
|
break;
|
|
case 'g':
|
|
break;
|
|
case 'i':
|
|
if (I + 1 != E && OptStr[I + 1] == '-') {
|
|
++I;
|
|
DAL.AddFlagArg(A, Opts.getOption(options::OPT_fno_builtin));
|
|
} else {
|
|
DAL.AddFlagArg(A, Opts.getOption(options::OPT_fbuiltin));
|
|
}
|
|
break;
|
|
case 's':
|
|
DAL.AddJoinedArg(A, Opts.getOption(options::OPT_O), "s");
|
|
break;
|
|
case 't':
|
|
DAL.AddJoinedArg(A, Opts.getOption(options::OPT_O), "2");
|
|
break;
|
|
case 'y': {
|
|
bool OmitFramePointer = true;
|
|
if (I + 1 != E && OptStr[I + 1] == '-') {
|
|
OmitFramePointer = false;
|
|
++I;
|
|
}
|
|
if (SupportsForcingFramePointer) {
|
|
if (OmitFramePointer)
|
|
DAL.AddFlagArg(A,
|
|
Opts.getOption(options::OPT_fomit_frame_pointer));
|
|
else
|
|
DAL.AddFlagArg(
|
|
A, Opts.getOption(options::OPT_fno_omit_frame_pointer));
|
|
} else {
|
|
// Don't warn about /Oy- in 64-bit builds (where
|
|
// SupportsForcingFramePointer is false). The flag having no effect
|
|
// there is a compiler-internal optimization, and people shouldn't have
|
|
// to special-case their build files for 64-bit clang-cl.
|
|
A->claim();
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void TranslateDArg(Arg *A, llvm::opt::DerivedArgList &DAL,
|
|
const OptTable &Opts) {
|
|
assert(A->getOption().matches(options::OPT_D));
|
|
|
|
StringRef Val = A->getValue();
|
|
size_t Hash = Val.find('#');
|
|
if (Hash == StringRef::npos || Hash > Val.find('=')) {
|
|
DAL.append(A);
|
|
return;
|
|
}
|
|
|
|
std::string NewVal = Val;
|
|
NewVal[Hash] = '=';
|
|
DAL.AddJoinedArg(A, Opts.getOption(options::OPT_D), NewVal);
|
|
}
|
|
|
|
llvm::opt::DerivedArgList *
|
|
MSVCToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args,
|
|
StringRef BoundArch, Action::OffloadKind) const {
|
|
DerivedArgList *DAL = new DerivedArgList(Args.getBaseArgs());
|
|
const OptTable &Opts = getDriver().getOpts();
|
|
|
|
// /Oy and /Oy- only has an effect under X86-32.
|
|
bool SupportsForcingFramePointer = getArch() == llvm::Triple::x86;
|
|
|
|
// The -O[12xd] flag actually expands to several flags. We must desugar the
|
|
// flags so that options embedded can be negated. For example, the '-O2' flag
|
|
// enables '-Oy'. Expanding '-O2' into its constituent flags allows us to
|
|
// correctly handle '-O2 -Oy-' where the trailing '-Oy-' disables a single
|
|
// aspect of '-O2'.
|
|
//
|
|
// Note that this expansion logic only applies to the *last* of '[12xd]'.
|
|
|
|
// First step is to search for the character we'd like to expand.
|
|
const char *ExpandChar = nullptr;
|
|
for (Arg *A : Args) {
|
|
if (!A->getOption().matches(options::OPT__SLASH_O))
|
|
continue;
|
|
StringRef OptStr = A->getValue();
|
|
for (size_t I = 0, E = OptStr.size(); I != E; ++I) {
|
|
char OptChar = OptStr[I];
|
|
char PrevChar = I > 0 ? OptStr[I - 1] : '0';
|
|
if (PrevChar == 'b') {
|
|
// OptChar does not expand; it's an argument to the previous char.
|
|
continue;
|
|
}
|
|
if (OptChar == '1' || OptChar == '2' || OptChar == 'x' || OptChar == 'd')
|
|
ExpandChar = OptStr.data() + I;
|
|
}
|
|
}
|
|
|
|
for (Arg *A : Args) {
|
|
if (A->getOption().matches(options::OPT__SLASH_O)) {
|
|
// The -O flag actually takes an amalgam of other options. For example,
|
|
// '/Ogyb2' is equivalent to '/Og' '/Oy' '/Ob2'.
|
|
TranslateOptArg(A, *DAL, SupportsForcingFramePointer, ExpandChar, Opts);
|
|
} else if (A->getOption().matches(options::OPT_D)) {
|
|
// Translate -Dfoo#bar into -Dfoo=bar.
|
|
TranslateDArg(A, *DAL, Opts);
|
|
} else {
|
|
DAL->append(A);
|
|
}
|
|
}
|
|
|
|
return DAL;
|
|
}
|