forked from OSchip/llvm-project
4531 lines
167 KiB
C++
4531 lines
167 KiB
C++
//===- Instructions.cpp - Implement the LLVM instructions -----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements all of the non-inline methods for the LLVM instruction
|
|
// classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "LLVMContextImpl.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/TypeSize.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AllocaInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Optional<TypeSize>
|
|
AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
|
|
TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
|
|
if (isArrayAllocation()) {
|
|
auto *C = dyn_cast<ConstantInt>(getArraySize());
|
|
if (!C)
|
|
return None;
|
|
assert(!Size.isScalable() && "Array elements cannot have a scalable size");
|
|
Size *= C->getZExtValue();
|
|
}
|
|
return Size;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SelectInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// areInvalidOperands - Return a string if the specified operands are invalid
|
|
/// for a select operation, otherwise return null.
|
|
const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
|
|
if (Op1->getType() != Op2->getType())
|
|
return "both values to select must have same type";
|
|
|
|
if (Op1->getType()->isTokenTy())
|
|
return "select values cannot have token type";
|
|
|
|
if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
|
|
// Vector select.
|
|
if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
|
|
return "vector select condition element type must be i1";
|
|
VectorType *ET = dyn_cast<VectorType>(Op1->getType());
|
|
if (!ET)
|
|
return "selected values for vector select must be vectors";
|
|
if (ET->getElementCount() != VT->getElementCount())
|
|
return "vector select requires selected vectors to have "
|
|
"the same vector length as select condition";
|
|
} else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
|
|
return "select condition must be i1 or <n x i1>";
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PHINode Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
PHINode::PHINode(const PHINode &PN)
|
|
: Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
|
|
ReservedSpace(PN.getNumOperands()) {
|
|
allocHungoffUses(PN.getNumOperands());
|
|
std::copy(PN.op_begin(), PN.op_end(), op_begin());
|
|
std::copy(PN.block_begin(), PN.block_end(), block_begin());
|
|
SubclassOptionalData = PN.SubclassOptionalData;
|
|
}
|
|
|
|
// removeIncomingValue - Remove an incoming value. This is useful if a
|
|
// predecessor basic block is deleted.
|
|
Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
|
|
Value *Removed = getIncomingValue(Idx);
|
|
|
|
// Move everything after this operand down.
|
|
//
|
|
// FIXME: we could just swap with the end of the list, then erase. However,
|
|
// clients might not expect this to happen. The code as it is thrashes the
|
|
// use/def lists, which is kinda lame.
|
|
std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
|
|
std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
|
|
|
|
// Nuke the last value.
|
|
Op<-1>().set(nullptr);
|
|
setNumHungOffUseOperands(getNumOperands() - 1);
|
|
|
|
// If the PHI node is dead, because it has zero entries, nuke it now.
|
|
if (getNumOperands() == 0 && DeletePHIIfEmpty) {
|
|
// If anyone is using this PHI, make them use a dummy value instead...
|
|
replaceAllUsesWith(UndefValue::get(getType()));
|
|
eraseFromParent();
|
|
}
|
|
return Removed;
|
|
}
|
|
|
|
/// growOperands - grow operands - This grows the operand list in response
|
|
/// to a push_back style of operation. This grows the number of ops by 1.5
|
|
/// times.
|
|
///
|
|
void PHINode::growOperands() {
|
|
unsigned e = getNumOperands();
|
|
unsigned NumOps = e + e / 2;
|
|
if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
|
|
|
|
ReservedSpace = NumOps;
|
|
growHungoffUses(ReservedSpace, /* IsPhi */ true);
|
|
}
|
|
|
|
/// hasConstantValue - If the specified PHI node always merges together the same
|
|
/// value, return the value, otherwise return null.
|
|
Value *PHINode::hasConstantValue() const {
|
|
// Exploit the fact that phi nodes always have at least one entry.
|
|
Value *ConstantValue = getIncomingValue(0);
|
|
for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
|
|
if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
|
|
if (ConstantValue != this)
|
|
return nullptr; // Incoming values not all the same.
|
|
// The case where the first value is this PHI.
|
|
ConstantValue = getIncomingValue(i);
|
|
}
|
|
if (ConstantValue == this)
|
|
return UndefValue::get(getType());
|
|
return ConstantValue;
|
|
}
|
|
|
|
/// hasConstantOrUndefValue - Whether the specified PHI node always merges
|
|
/// together the same value, assuming that undefs result in the same value as
|
|
/// non-undefs.
|
|
/// Unlike \ref hasConstantValue, this does not return a value because the
|
|
/// unique non-undef incoming value need not dominate the PHI node.
|
|
bool PHINode::hasConstantOrUndefValue() const {
|
|
Value *ConstantValue = nullptr;
|
|
for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
|
|
Value *Incoming = getIncomingValue(i);
|
|
if (Incoming != this && !isa<UndefValue>(Incoming)) {
|
|
if (ConstantValue && ConstantValue != Incoming)
|
|
return false;
|
|
ConstantValue = Incoming;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LandingPadInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
|
|
const Twine &NameStr, Instruction *InsertBefore)
|
|
: Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
|
|
init(NumReservedValues, NameStr);
|
|
}
|
|
|
|
LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd)
|
|
: Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
|
|
init(NumReservedValues, NameStr);
|
|
}
|
|
|
|
LandingPadInst::LandingPadInst(const LandingPadInst &LP)
|
|
: Instruction(LP.getType(), Instruction::LandingPad, nullptr,
|
|
LP.getNumOperands()),
|
|
ReservedSpace(LP.getNumOperands()) {
|
|
allocHungoffUses(LP.getNumOperands());
|
|
Use *OL = getOperandList();
|
|
const Use *InOL = LP.getOperandList();
|
|
for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
|
|
OL[I] = InOL[I];
|
|
|
|
setCleanup(LP.isCleanup());
|
|
}
|
|
|
|
LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
|
|
const Twine &NameStr,
|
|
Instruction *InsertBefore) {
|
|
return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
|
|
}
|
|
|
|
LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
|
|
ReservedSpace = NumReservedValues;
|
|
setNumHungOffUseOperands(0);
|
|
allocHungoffUses(ReservedSpace);
|
|
setName(NameStr);
|
|
setCleanup(false);
|
|
}
|
|
|
|
/// growOperands - grow operands - This grows the operand list in response to a
|
|
/// push_back style of operation. This grows the number of ops by 2 times.
|
|
void LandingPadInst::growOperands(unsigned Size) {
|
|
unsigned e = getNumOperands();
|
|
if (ReservedSpace >= e + Size) return;
|
|
ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
|
|
growHungoffUses(ReservedSpace);
|
|
}
|
|
|
|
void LandingPadInst::addClause(Constant *Val) {
|
|
unsigned OpNo = getNumOperands();
|
|
growOperands(1);
|
|
assert(OpNo < ReservedSpace && "Growing didn't work!");
|
|
setNumHungOffUseOperands(getNumOperands() + 1);
|
|
getOperandList()[OpNo] = Val;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CallBase Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
|
|
Instruction *InsertPt) {
|
|
switch (CB->getOpcode()) {
|
|
case Instruction::Call:
|
|
return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
|
|
case Instruction::Invoke:
|
|
return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
|
|
case Instruction::CallBr:
|
|
return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
|
|
default:
|
|
llvm_unreachable("Unknown CallBase sub-class!");
|
|
}
|
|
}
|
|
|
|
CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
|
|
Instruction *InsertPt) {
|
|
SmallVector<OperandBundleDef, 2> OpDefs;
|
|
for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
|
|
auto ChildOB = CI->getOperandBundleAt(i);
|
|
if (ChildOB.getTagName() != OpB.getTag())
|
|
OpDefs.emplace_back(ChildOB);
|
|
}
|
|
OpDefs.emplace_back(OpB);
|
|
return CallBase::Create(CI, OpDefs, InsertPt);
|
|
}
|
|
|
|
|
|
Function *CallBase::getCaller() { return getParent()->getParent(); }
|
|
|
|
unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
|
|
assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
|
|
return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
|
|
}
|
|
|
|
bool CallBase::isIndirectCall() const {
|
|
const Value *V = getCalledOperand();
|
|
if (isa<Function>(V) || isa<Constant>(V))
|
|
return false;
|
|
return !isInlineAsm();
|
|
}
|
|
|
|
/// Tests if this call site must be tail call optimized. Only a CallInst can
|
|
/// be tail call optimized.
|
|
bool CallBase::isMustTailCall() const {
|
|
if (auto *CI = dyn_cast<CallInst>(this))
|
|
return CI->isMustTailCall();
|
|
return false;
|
|
}
|
|
|
|
/// Tests if this call site is marked as a tail call.
|
|
bool CallBase::isTailCall() const {
|
|
if (auto *CI = dyn_cast<CallInst>(this))
|
|
return CI->isTailCall();
|
|
return false;
|
|
}
|
|
|
|
Intrinsic::ID CallBase::getIntrinsicID() const {
|
|
if (auto *F = getCalledFunction())
|
|
return F->getIntrinsicID();
|
|
return Intrinsic::not_intrinsic;
|
|
}
|
|
|
|
bool CallBase::isReturnNonNull() const {
|
|
if (hasRetAttr(Attribute::NonNull))
|
|
return true;
|
|
|
|
if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
|
|
!NullPointerIsDefined(getCaller(),
|
|
getType()->getPointerAddressSpace()))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
Value *CallBase::getReturnedArgOperand() const {
|
|
unsigned Index;
|
|
|
|
if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
|
|
return getArgOperand(Index - AttributeList::FirstArgIndex);
|
|
if (const Function *F = getCalledFunction())
|
|
if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
|
|
Index)
|
|
return getArgOperand(Index - AttributeList::FirstArgIndex);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Determine whether the argument or parameter has the given attribute.
|
|
bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
|
|
assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
|
|
|
|
if (Attrs.hasParamAttribute(ArgNo, Kind))
|
|
return true;
|
|
if (const Function *F = getCalledFunction())
|
|
return F->getAttributes().hasParamAttribute(ArgNo, Kind);
|
|
return false;
|
|
}
|
|
|
|
bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
|
|
if (const Function *F = getCalledFunction())
|
|
return F->getAttributes().hasFnAttribute(Kind);
|
|
return false;
|
|
}
|
|
|
|
bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
|
|
if (const Function *F = getCalledFunction())
|
|
return F->getAttributes().hasFnAttribute(Kind);
|
|
return false;
|
|
}
|
|
|
|
void CallBase::getOperandBundlesAsDefs(
|
|
SmallVectorImpl<OperandBundleDef> &Defs) const {
|
|
for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
|
|
Defs.emplace_back(getOperandBundleAt(i));
|
|
}
|
|
|
|
CallBase::op_iterator
|
|
CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
|
|
const unsigned BeginIndex) {
|
|
auto It = op_begin() + BeginIndex;
|
|
for (auto &B : Bundles)
|
|
It = std::copy(B.input_begin(), B.input_end(), It);
|
|
|
|
auto *ContextImpl = getContext().pImpl;
|
|
auto BI = Bundles.begin();
|
|
unsigned CurrentIndex = BeginIndex;
|
|
|
|
for (auto &BOI : bundle_op_infos()) {
|
|
assert(BI != Bundles.end() && "Incorrect allocation?");
|
|
|
|
BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
|
|
BOI.Begin = CurrentIndex;
|
|
BOI.End = CurrentIndex + BI->input_size();
|
|
CurrentIndex = BOI.End;
|
|
BI++;
|
|
}
|
|
|
|
assert(BI == Bundles.end() && "Incorrect allocation?");
|
|
|
|
return It;
|
|
}
|
|
|
|
CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
|
|
/// When there isn't many bundles, we do a simple linear search.
|
|
/// Else fallback to a binary-search that use the fact that bundles usually
|
|
/// have similar number of argument to get faster convergence.
|
|
if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
|
|
for (auto &BOI : bundle_op_infos())
|
|
if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
|
|
return BOI;
|
|
|
|
llvm_unreachable("Did not find operand bundle for operand!");
|
|
}
|
|
|
|
assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
|
|
assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
|
|
OpIdx < std::prev(bundle_op_info_end())->End &&
|
|
"The Idx isn't in the operand bundle");
|
|
|
|
/// We need a decimal number below and to prevent using floating point numbers
|
|
/// we use an intergal value multiplied by this constant.
|
|
constexpr unsigned NumberScaling = 1024;
|
|
|
|
bundle_op_iterator Begin = bundle_op_info_begin();
|
|
bundle_op_iterator End = bundle_op_info_end();
|
|
bundle_op_iterator Current = Begin;
|
|
|
|
while (Begin != End) {
|
|
unsigned ScaledOperandPerBundle =
|
|
NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
|
|
Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
|
|
ScaledOperandPerBundle);
|
|
if (Current >= End)
|
|
Current = std::prev(End);
|
|
assert(Current < End && Current >= Begin &&
|
|
"the operand bundle doesn't cover every value in the range");
|
|
if (OpIdx >= Current->Begin && OpIdx < Current->End)
|
|
break;
|
|
if (OpIdx >= Current->End)
|
|
Begin = Current + 1;
|
|
else
|
|
End = Current;
|
|
}
|
|
|
|
assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
|
|
"the operand bundle doesn't cover every value in the range");
|
|
return *Current;
|
|
}
|
|
|
|
CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
|
|
OperandBundleDef OB,
|
|
Instruction *InsertPt) {
|
|
if (CB->getOperandBundle(ID))
|
|
return CB;
|
|
|
|
SmallVector<OperandBundleDef, 1> Bundles;
|
|
CB->getOperandBundlesAsDefs(Bundles);
|
|
Bundles.push_back(OB);
|
|
return Create(CB, Bundles, InsertPt);
|
|
}
|
|
|
|
CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
|
|
Instruction *InsertPt) {
|
|
SmallVector<OperandBundleDef, 1> Bundles;
|
|
bool CreateNew = false;
|
|
|
|
for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
|
|
auto Bundle = CB->getOperandBundleAt(I);
|
|
if (Bundle.getTagID() == ID) {
|
|
CreateNew = true;
|
|
continue;
|
|
}
|
|
Bundles.emplace_back(Bundle);
|
|
}
|
|
|
|
return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
|
|
}
|
|
|
|
bool CallBase::hasReadingOperandBundles() const {
|
|
// Implementation note: this is a conservative implementation of operand
|
|
// bundle semantics, where *any* non-assume operand bundle forces a callsite
|
|
// to be at least readonly.
|
|
return hasOperandBundles() && getIntrinsicID() != Intrinsic::assume;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CallInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
|
|
this->FTy = FTy;
|
|
assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
|
|
"NumOperands not set up?");
|
|
setCalledOperand(Func);
|
|
|
|
#ifndef NDEBUG
|
|
assert((Args.size() == FTy->getNumParams() ||
|
|
(FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
|
|
"Calling a function with bad signature!");
|
|
|
|
for (unsigned i = 0; i != Args.size(); ++i)
|
|
assert((i >= FTy->getNumParams() ||
|
|
FTy->getParamType(i) == Args[i]->getType()) &&
|
|
"Calling a function with a bad signature!");
|
|
#endif
|
|
|
|
llvm::copy(Args, op_begin());
|
|
|
|
auto It = populateBundleOperandInfos(Bundles, Args.size());
|
|
(void)It;
|
|
assert(It + 1 == op_end() && "Should add up!");
|
|
|
|
setName(NameStr);
|
|
}
|
|
|
|
void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
|
|
this->FTy = FTy;
|
|
assert(getNumOperands() == 1 && "NumOperands not set up?");
|
|
setCalledOperand(Func);
|
|
|
|
assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
|
|
|
|
setName(NameStr);
|
|
}
|
|
|
|
CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
|
|
Instruction *InsertBefore)
|
|
: CallBase(Ty->getReturnType(), Instruction::Call,
|
|
OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
|
|
init(Ty, Func, Name);
|
|
}
|
|
|
|
CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
|
|
BasicBlock *InsertAtEnd)
|
|
: CallBase(Ty->getReturnType(), Instruction::Call,
|
|
OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
|
|
init(Ty, Func, Name);
|
|
}
|
|
|
|
CallInst::CallInst(const CallInst &CI)
|
|
: CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
|
|
OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
|
|
CI.getNumOperands()) {
|
|
setTailCallKind(CI.getTailCallKind());
|
|
setCallingConv(CI.getCallingConv());
|
|
|
|
std::copy(CI.op_begin(), CI.op_end(), op_begin());
|
|
std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
|
|
bundle_op_info_begin());
|
|
SubclassOptionalData = CI.SubclassOptionalData;
|
|
}
|
|
|
|
CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
|
|
Instruction *InsertPt) {
|
|
std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
|
|
|
|
auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
|
|
Args, OpB, CI->getName(), InsertPt);
|
|
NewCI->setTailCallKind(CI->getTailCallKind());
|
|
NewCI->setCallingConv(CI->getCallingConv());
|
|
NewCI->SubclassOptionalData = CI->SubclassOptionalData;
|
|
NewCI->setAttributes(CI->getAttributes());
|
|
NewCI->setDebugLoc(CI->getDebugLoc());
|
|
return NewCI;
|
|
}
|
|
|
|
// Update profile weight for call instruction by scaling it using the ratio
|
|
// of S/T. The meaning of "branch_weights" meta data for call instruction is
|
|
// transfered to represent call count.
|
|
void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
|
|
auto *ProfileData = getMetadata(LLVMContext::MD_prof);
|
|
if (ProfileData == nullptr)
|
|
return;
|
|
|
|
auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
|
|
if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
|
|
!ProfDataName->getString().equals("VP")))
|
|
return;
|
|
|
|
if (T == 0) {
|
|
LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
|
|
"div by 0. Ignoring. Likely the function "
|
|
<< getParent()->getParent()->getName()
|
|
<< " has 0 entry count, and contains call instructions "
|
|
"with non-zero prof info.");
|
|
return;
|
|
}
|
|
|
|
MDBuilder MDB(getContext());
|
|
SmallVector<Metadata *, 3> Vals;
|
|
Vals.push_back(ProfileData->getOperand(0));
|
|
APInt APS(128, S), APT(128, T);
|
|
if (ProfDataName->getString().equals("branch_weights") &&
|
|
ProfileData->getNumOperands() > 0) {
|
|
// Using APInt::div may be expensive, but most cases should fit 64 bits.
|
|
APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
|
|
->getValue()
|
|
.getZExtValue());
|
|
Val *= APS;
|
|
Vals.push_back(MDB.createConstant(
|
|
ConstantInt::get(Type::getInt32Ty(getContext()),
|
|
Val.udiv(APT).getLimitedValue(UINT32_MAX))));
|
|
} else if (ProfDataName->getString().equals("VP"))
|
|
for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
|
|
// The first value is the key of the value profile, which will not change.
|
|
Vals.push_back(ProfileData->getOperand(i));
|
|
// Using APInt::div may be expensive, but most cases should fit 64 bits.
|
|
APInt Val(128,
|
|
mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
|
|
->getValue()
|
|
.getZExtValue());
|
|
Val *= APS;
|
|
Vals.push_back(MDB.createConstant(
|
|
ConstantInt::get(Type::getInt64Ty(getContext()),
|
|
Val.udiv(APT).getLimitedValue())));
|
|
}
|
|
setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
|
|
}
|
|
|
|
/// IsConstantOne - Return true only if val is constant int 1
|
|
static bool IsConstantOne(Value *val) {
|
|
assert(val && "IsConstantOne does not work with nullptr val");
|
|
const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
|
|
return CVal && CVal->isOne();
|
|
}
|
|
|
|
static Instruction *createMalloc(Instruction *InsertBefore,
|
|
BasicBlock *InsertAtEnd, Type *IntPtrTy,
|
|
Type *AllocTy, Value *AllocSize,
|
|
Value *ArraySize,
|
|
ArrayRef<OperandBundleDef> OpB,
|
|
Function *MallocF, const Twine &Name) {
|
|
assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
|
|
"createMalloc needs either InsertBefore or InsertAtEnd");
|
|
|
|
// malloc(type) becomes:
|
|
// bitcast (i8* malloc(typeSize)) to type*
|
|
// malloc(type, arraySize) becomes:
|
|
// bitcast (i8* malloc(typeSize*arraySize)) to type*
|
|
if (!ArraySize)
|
|
ArraySize = ConstantInt::get(IntPtrTy, 1);
|
|
else if (ArraySize->getType() != IntPtrTy) {
|
|
if (InsertBefore)
|
|
ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
|
|
"", InsertBefore);
|
|
else
|
|
ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
|
|
"", InsertAtEnd);
|
|
}
|
|
|
|
if (!IsConstantOne(ArraySize)) {
|
|
if (IsConstantOne(AllocSize)) {
|
|
AllocSize = ArraySize; // Operand * 1 = Operand
|
|
} else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
|
|
Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
|
|
false /*ZExt*/);
|
|
// Malloc arg is constant product of type size and array size
|
|
AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
|
|
} else {
|
|
// Multiply type size by the array size...
|
|
if (InsertBefore)
|
|
AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
|
|
"mallocsize", InsertBefore);
|
|
else
|
|
AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
|
|
"mallocsize", InsertAtEnd);
|
|
}
|
|
}
|
|
|
|
assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
|
|
// Create the call to Malloc.
|
|
BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
|
|
Module *M = BB->getParent()->getParent();
|
|
Type *BPTy = Type::getInt8PtrTy(BB->getContext());
|
|
FunctionCallee MallocFunc = MallocF;
|
|
if (!MallocFunc)
|
|
// prototype malloc as "void *malloc(size_t)"
|
|
MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
|
|
PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
|
|
CallInst *MCall = nullptr;
|
|
Instruction *Result = nullptr;
|
|
if (InsertBefore) {
|
|
MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
|
|
InsertBefore);
|
|
Result = MCall;
|
|
if (Result->getType() != AllocPtrType)
|
|
// Create a cast instruction to convert to the right type...
|
|
Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
|
|
} else {
|
|
MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
|
|
Result = MCall;
|
|
if (Result->getType() != AllocPtrType) {
|
|
InsertAtEnd->getInstList().push_back(MCall);
|
|
// Create a cast instruction to convert to the right type...
|
|
Result = new BitCastInst(MCall, AllocPtrType, Name);
|
|
}
|
|
}
|
|
MCall->setTailCall();
|
|
if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
|
|
MCall->setCallingConv(F->getCallingConv());
|
|
if (!F->returnDoesNotAlias())
|
|
F->setReturnDoesNotAlias();
|
|
}
|
|
assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// CreateMalloc - Generate the IR for a call to malloc:
|
|
/// 1. Compute the malloc call's argument as the specified type's size,
|
|
/// possibly multiplied by the array size if the array size is not
|
|
/// constant 1.
|
|
/// 2. Call malloc with that argument.
|
|
/// 3. Bitcast the result of the malloc call to the specified type.
|
|
Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
|
|
Type *IntPtrTy, Type *AllocTy,
|
|
Value *AllocSize, Value *ArraySize,
|
|
Function *MallocF,
|
|
const Twine &Name) {
|
|
return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
|
|
ArraySize, None, MallocF, Name);
|
|
}
|
|
Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
|
|
Type *IntPtrTy, Type *AllocTy,
|
|
Value *AllocSize, Value *ArraySize,
|
|
ArrayRef<OperandBundleDef> OpB,
|
|
Function *MallocF,
|
|
const Twine &Name) {
|
|
return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
|
|
ArraySize, OpB, MallocF, Name);
|
|
}
|
|
|
|
/// CreateMalloc - Generate the IR for a call to malloc:
|
|
/// 1. Compute the malloc call's argument as the specified type's size,
|
|
/// possibly multiplied by the array size if the array size is not
|
|
/// constant 1.
|
|
/// 2. Call malloc with that argument.
|
|
/// 3. Bitcast the result of the malloc call to the specified type.
|
|
/// Note: This function does not add the bitcast to the basic block, that is the
|
|
/// responsibility of the caller.
|
|
Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
|
|
Type *IntPtrTy, Type *AllocTy,
|
|
Value *AllocSize, Value *ArraySize,
|
|
Function *MallocF, const Twine &Name) {
|
|
return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
|
|
ArraySize, None, MallocF, Name);
|
|
}
|
|
Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
|
|
Type *IntPtrTy, Type *AllocTy,
|
|
Value *AllocSize, Value *ArraySize,
|
|
ArrayRef<OperandBundleDef> OpB,
|
|
Function *MallocF, const Twine &Name) {
|
|
return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
|
|
ArraySize, OpB, MallocF, Name);
|
|
}
|
|
|
|
static Instruction *createFree(Value *Source,
|
|
ArrayRef<OperandBundleDef> Bundles,
|
|
Instruction *InsertBefore,
|
|
BasicBlock *InsertAtEnd) {
|
|
assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
|
|
"createFree needs either InsertBefore or InsertAtEnd");
|
|
assert(Source->getType()->isPointerTy() &&
|
|
"Can not free something of nonpointer type!");
|
|
|
|
BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
|
|
Module *M = BB->getParent()->getParent();
|
|
|
|
Type *VoidTy = Type::getVoidTy(M->getContext());
|
|
Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
|
|
// prototype free as "void free(void*)"
|
|
FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
|
|
CallInst *Result = nullptr;
|
|
Value *PtrCast = Source;
|
|
if (InsertBefore) {
|
|
if (Source->getType() != IntPtrTy)
|
|
PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
|
|
Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
|
|
} else {
|
|
if (Source->getType() != IntPtrTy)
|
|
PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
|
|
Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
|
|
}
|
|
Result->setTailCall();
|
|
if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
|
|
Result->setCallingConv(F->getCallingConv());
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// CreateFree - Generate the IR for a call to the builtin free function.
|
|
Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
|
|
return createFree(Source, None, InsertBefore, nullptr);
|
|
}
|
|
Instruction *CallInst::CreateFree(Value *Source,
|
|
ArrayRef<OperandBundleDef> Bundles,
|
|
Instruction *InsertBefore) {
|
|
return createFree(Source, Bundles, InsertBefore, nullptr);
|
|
}
|
|
|
|
/// CreateFree - Generate the IR for a call to the builtin free function.
|
|
/// Note: This function does not add the call to the basic block, that is the
|
|
/// responsibility of the caller.
|
|
Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
|
|
Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
|
|
assert(FreeCall && "CreateFree did not create a CallInst");
|
|
return FreeCall;
|
|
}
|
|
Instruction *CallInst::CreateFree(Value *Source,
|
|
ArrayRef<OperandBundleDef> Bundles,
|
|
BasicBlock *InsertAtEnd) {
|
|
Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
|
|
assert(FreeCall && "CreateFree did not create a CallInst");
|
|
return FreeCall;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InvokeInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
|
|
BasicBlock *IfException, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles,
|
|
const Twine &NameStr) {
|
|
this->FTy = FTy;
|
|
|
|
assert((int)getNumOperands() ==
|
|
ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
|
|
"NumOperands not set up?");
|
|
setNormalDest(IfNormal);
|
|
setUnwindDest(IfException);
|
|
setCalledOperand(Fn);
|
|
|
|
#ifndef NDEBUG
|
|
assert(((Args.size() == FTy->getNumParams()) ||
|
|
(FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
|
|
"Invoking a function with bad signature");
|
|
|
|
for (unsigned i = 0, e = Args.size(); i != e; i++)
|
|
assert((i >= FTy->getNumParams() ||
|
|
FTy->getParamType(i) == Args[i]->getType()) &&
|
|
"Invoking a function with a bad signature!");
|
|
#endif
|
|
|
|
llvm::copy(Args, op_begin());
|
|
|
|
auto It = populateBundleOperandInfos(Bundles, Args.size());
|
|
(void)It;
|
|
assert(It + 3 == op_end() && "Should add up!");
|
|
|
|
setName(NameStr);
|
|
}
|
|
|
|
InvokeInst::InvokeInst(const InvokeInst &II)
|
|
: CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
|
|
OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
|
|
II.getNumOperands()) {
|
|
setCallingConv(II.getCallingConv());
|
|
std::copy(II.op_begin(), II.op_end(), op_begin());
|
|
std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
|
|
bundle_op_info_begin());
|
|
SubclassOptionalData = II.SubclassOptionalData;
|
|
}
|
|
|
|
InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
|
|
Instruction *InsertPt) {
|
|
std::vector<Value *> Args(II->arg_begin(), II->arg_end());
|
|
|
|
auto *NewII = InvokeInst::Create(
|
|
II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
|
|
II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
|
|
NewII->setCallingConv(II->getCallingConv());
|
|
NewII->SubclassOptionalData = II->SubclassOptionalData;
|
|
NewII->setAttributes(II->getAttributes());
|
|
NewII->setDebugLoc(II->getDebugLoc());
|
|
return NewII;
|
|
}
|
|
|
|
LandingPadInst *InvokeInst::getLandingPadInst() const {
|
|
return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CallBrInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
|
|
ArrayRef<BasicBlock *> IndirectDests,
|
|
ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles,
|
|
const Twine &NameStr) {
|
|
this->FTy = FTy;
|
|
|
|
assert((int)getNumOperands() ==
|
|
ComputeNumOperands(Args.size(), IndirectDests.size(),
|
|
CountBundleInputs(Bundles)) &&
|
|
"NumOperands not set up?");
|
|
NumIndirectDests = IndirectDests.size();
|
|
setDefaultDest(Fallthrough);
|
|
for (unsigned i = 0; i != NumIndirectDests; ++i)
|
|
setIndirectDest(i, IndirectDests[i]);
|
|
setCalledOperand(Fn);
|
|
|
|
#ifndef NDEBUG
|
|
assert(((Args.size() == FTy->getNumParams()) ||
|
|
(FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
|
|
"Calling a function with bad signature");
|
|
|
|
for (unsigned i = 0, e = Args.size(); i != e; i++)
|
|
assert((i >= FTy->getNumParams() ||
|
|
FTy->getParamType(i) == Args[i]->getType()) &&
|
|
"Calling a function with a bad signature!");
|
|
#endif
|
|
|
|
std::copy(Args.begin(), Args.end(), op_begin());
|
|
|
|
auto It = populateBundleOperandInfos(Bundles, Args.size());
|
|
(void)It;
|
|
assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
|
|
|
|
setName(NameStr);
|
|
}
|
|
|
|
void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
|
|
assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
|
|
if (BasicBlock *OldBB = getIndirectDest(i)) {
|
|
BlockAddress *Old = BlockAddress::get(OldBB);
|
|
BlockAddress *New = BlockAddress::get(B);
|
|
for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
|
|
if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
|
|
setArgOperand(ArgNo, New);
|
|
}
|
|
}
|
|
|
|
CallBrInst::CallBrInst(const CallBrInst &CBI)
|
|
: CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
|
|
OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
|
|
CBI.getNumOperands()) {
|
|
setCallingConv(CBI.getCallingConv());
|
|
std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
|
|
std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
|
|
bundle_op_info_begin());
|
|
SubclassOptionalData = CBI.SubclassOptionalData;
|
|
NumIndirectDests = CBI.NumIndirectDests;
|
|
}
|
|
|
|
CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
|
|
Instruction *InsertPt) {
|
|
std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
|
|
|
|
auto *NewCBI = CallBrInst::Create(
|
|
CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
|
|
CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
|
|
NewCBI->setCallingConv(CBI->getCallingConv());
|
|
NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
|
|
NewCBI->setAttributes(CBI->getAttributes());
|
|
NewCBI->setDebugLoc(CBI->getDebugLoc());
|
|
NewCBI->NumIndirectDests = CBI->NumIndirectDests;
|
|
return NewCBI;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ReturnInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ReturnInst::ReturnInst(const ReturnInst &RI)
|
|
: Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
|
|
OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
|
|
RI.getNumOperands()) {
|
|
if (RI.getNumOperands())
|
|
Op<0>() = RI.Op<0>();
|
|
SubclassOptionalData = RI.SubclassOptionalData;
|
|
}
|
|
|
|
ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
|
|
: Instruction(Type::getVoidTy(C), Instruction::Ret,
|
|
OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
|
|
InsertBefore) {
|
|
if (retVal)
|
|
Op<0>() = retVal;
|
|
}
|
|
|
|
ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::getVoidTy(C), Instruction::Ret,
|
|
OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
|
|
InsertAtEnd) {
|
|
if (retVal)
|
|
Op<0>() = retVal;
|
|
}
|
|
|
|
ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::getVoidTy(Context), Instruction::Ret,
|
|
OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ResumeInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ResumeInst::ResumeInst(const ResumeInst &RI)
|
|
: Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
|
|
OperandTraits<ResumeInst>::op_begin(this), 1) {
|
|
Op<0>() = RI.Op<0>();
|
|
}
|
|
|
|
ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
|
|
: Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
|
|
OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
|
|
Op<0>() = Exn;
|
|
}
|
|
|
|
ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
|
|
OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
|
|
Op<0>() = Exn;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CleanupReturnInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
|
|
: Instruction(CRI.getType(), Instruction::CleanupRet,
|
|
OperandTraits<CleanupReturnInst>::op_end(this) -
|
|
CRI.getNumOperands(),
|
|
CRI.getNumOperands()) {
|
|
setSubclassData<Instruction::OpaqueField>(
|
|
CRI.getSubclassData<Instruction::OpaqueField>());
|
|
Op<0>() = CRI.Op<0>();
|
|
if (CRI.hasUnwindDest())
|
|
Op<1>() = CRI.Op<1>();
|
|
}
|
|
|
|
void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
|
|
if (UnwindBB)
|
|
setSubclassData<UnwindDestField>(true);
|
|
|
|
Op<0>() = CleanupPad;
|
|
if (UnwindBB)
|
|
Op<1>() = UnwindBB;
|
|
}
|
|
|
|
CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
|
|
unsigned Values, Instruction *InsertBefore)
|
|
: Instruction(Type::getVoidTy(CleanupPad->getContext()),
|
|
Instruction::CleanupRet,
|
|
OperandTraits<CleanupReturnInst>::op_end(this) - Values,
|
|
Values, InsertBefore) {
|
|
init(CleanupPad, UnwindBB);
|
|
}
|
|
|
|
CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
|
|
unsigned Values, BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::getVoidTy(CleanupPad->getContext()),
|
|
Instruction::CleanupRet,
|
|
OperandTraits<CleanupReturnInst>::op_end(this) - Values,
|
|
Values, InsertAtEnd) {
|
|
init(CleanupPad, UnwindBB);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CatchReturnInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
|
|
Op<0>() = CatchPad;
|
|
Op<1>() = BB;
|
|
}
|
|
|
|
CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
|
|
: Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
|
|
OperandTraits<CatchReturnInst>::op_begin(this), 2) {
|
|
Op<0>() = CRI.Op<0>();
|
|
Op<1>() = CRI.Op<1>();
|
|
}
|
|
|
|
CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
|
|
Instruction *InsertBefore)
|
|
: Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
|
|
OperandTraits<CatchReturnInst>::op_begin(this), 2,
|
|
InsertBefore) {
|
|
init(CatchPad, BB);
|
|
}
|
|
|
|
CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
|
|
OperandTraits<CatchReturnInst>::op_begin(this), 2,
|
|
InsertAtEnd) {
|
|
init(CatchPad, BB);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CatchSwitchInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
|
|
unsigned NumReservedValues,
|
|
const Twine &NameStr,
|
|
Instruction *InsertBefore)
|
|
: Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
|
|
InsertBefore) {
|
|
if (UnwindDest)
|
|
++NumReservedValues;
|
|
init(ParentPad, UnwindDest, NumReservedValues + 1);
|
|
setName(NameStr);
|
|
}
|
|
|
|
CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
|
|
unsigned NumReservedValues,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd)
|
|
: Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
|
|
InsertAtEnd) {
|
|
if (UnwindDest)
|
|
++NumReservedValues;
|
|
init(ParentPad, UnwindDest, NumReservedValues + 1);
|
|
setName(NameStr);
|
|
}
|
|
|
|
CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
|
|
: Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
|
|
CSI.getNumOperands()) {
|
|
init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
|
|
setNumHungOffUseOperands(ReservedSpace);
|
|
Use *OL = getOperandList();
|
|
const Use *InOL = CSI.getOperandList();
|
|
for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
|
|
OL[I] = InOL[I];
|
|
}
|
|
|
|
void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
|
|
unsigned NumReservedValues) {
|
|
assert(ParentPad && NumReservedValues);
|
|
|
|
ReservedSpace = NumReservedValues;
|
|
setNumHungOffUseOperands(UnwindDest ? 2 : 1);
|
|
allocHungoffUses(ReservedSpace);
|
|
|
|
Op<0>() = ParentPad;
|
|
if (UnwindDest) {
|
|
setSubclassData<UnwindDestField>(true);
|
|
setUnwindDest(UnwindDest);
|
|
}
|
|
}
|
|
|
|
/// growOperands - grow operands - This grows the operand list in response to a
|
|
/// push_back style of operation. This grows the number of ops by 2 times.
|
|
void CatchSwitchInst::growOperands(unsigned Size) {
|
|
unsigned NumOperands = getNumOperands();
|
|
assert(NumOperands >= 1);
|
|
if (ReservedSpace >= NumOperands + Size)
|
|
return;
|
|
ReservedSpace = (NumOperands + Size / 2) * 2;
|
|
growHungoffUses(ReservedSpace);
|
|
}
|
|
|
|
void CatchSwitchInst::addHandler(BasicBlock *Handler) {
|
|
unsigned OpNo = getNumOperands();
|
|
growOperands(1);
|
|
assert(OpNo < ReservedSpace && "Growing didn't work!");
|
|
setNumHungOffUseOperands(getNumOperands() + 1);
|
|
getOperandList()[OpNo] = Handler;
|
|
}
|
|
|
|
void CatchSwitchInst::removeHandler(handler_iterator HI) {
|
|
// Move all subsequent handlers up one.
|
|
Use *EndDst = op_end() - 1;
|
|
for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
|
|
*CurDst = *(CurDst + 1);
|
|
// Null out the last handler use.
|
|
*EndDst = nullptr;
|
|
|
|
setNumHungOffUseOperands(getNumOperands() - 1);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FuncletPadInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
|
|
const Twine &NameStr) {
|
|
assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
|
|
llvm::copy(Args, op_begin());
|
|
setParentPad(ParentPad);
|
|
setName(NameStr);
|
|
}
|
|
|
|
FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
|
|
: Instruction(FPI.getType(), FPI.getOpcode(),
|
|
OperandTraits<FuncletPadInst>::op_end(this) -
|
|
FPI.getNumOperands(),
|
|
FPI.getNumOperands()) {
|
|
std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
|
|
setParentPad(FPI.getParentPad());
|
|
}
|
|
|
|
FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
|
|
ArrayRef<Value *> Args, unsigned Values,
|
|
const Twine &NameStr, Instruction *InsertBefore)
|
|
: Instruction(ParentPad->getType(), Op,
|
|
OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
|
|
InsertBefore) {
|
|
init(ParentPad, Args, NameStr);
|
|
}
|
|
|
|
FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
|
|
ArrayRef<Value *> Args, unsigned Values,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd)
|
|
: Instruction(ParentPad->getType(), Op,
|
|
OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
|
|
InsertAtEnd) {
|
|
init(ParentPad, Args, NameStr);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UnreachableInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
UnreachableInst::UnreachableInst(LLVMContext &Context,
|
|
Instruction *InsertBefore)
|
|
: Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
|
|
0, InsertBefore) {}
|
|
UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
|
|
0, InsertAtEnd) {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BranchInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void BranchInst::AssertOK() {
|
|
if (isConditional())
|
|
assert(getCondition()->getType()->isIntegerTy(1) &&
|
|
"May only branch on boolean predicates!");
|
|
}
|
|
|
|
BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
|
|
: Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
|
|
OperandTraits<BranchInst>::op_end(this) - 1, 1,
|
|
InsertBefore) {
|
|
assert(IfTrue && "Branch destination may not be null!");
|
|
Op<-1>() = IfTrue;
|
|
}
|
|
|
|
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
|
|
Instruction *InsertBefore)
|
|
: Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
|
|
OperandTraits<BranchInst>::op_end(this) - 3, 3,
|
|
InsertBefore) {
|
|
Op<-1>() = IfTrue;
|
|
Op<-2>() = IfFalse;
|
|
Op<-3>() = Cond;
|
|
#ifndef NDEBUG
|
|
AssertOK();
|
|
#endif
|
|
}
|
|
|
|
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
|
|
OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
|
|
assert(IfTrue && "Branch destination may not be null!");
|
|
Op<-1>() = IfTrue;
|
|
}
|
|
|
|
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
|
|
OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
|
|
Op<-1>() = IfTrue;
|
|
Op<-2>() = IfFalse;
|
|
Op<-3>() = Cond;
|
|
#ifndef NDEBUG
|
|
AssertOK();
|
|
#endif
|
|
}
|
|
|
|
BranchInst::BranchInst(const BranchInst &BI)
|
|
: Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
|
|
OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
|
|
BI.getNumOperands()) {
|
|
Op<-1>() = BI.Op<-1>();
|
|
if (BI.getNumOperands() != 1) {
|
|
assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
|
|
Op<-3>() = BI.Op<-3>();
|
|
Op<-2>() = BI.Op<-2>();
|
|
}
|
|
SubclassOptionalData = BI.SubclassOptionalData;
|
|
}
|
|
|
|
void BranchInst::swapSuccessors() {
|
|
assert(isConditional() &&
|
|
"Cannot swap successors of an unconditional branch");
|
|
Op<-1>().swap(Op<-2>());
|
|
|
|
// Update profile metadata if present and it matches our structural
|
|
// expectations.
|
|
swapProfMetadata();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AllocaInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static Value *getAISize(LLVMContext &Context, Value *Amt) {
|
|
if (!Amt)
|
|
Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
|
|
else {
|
|
assert(!isa<BasicBlock>(Amt) &&
|
|
"Passed basic block into allocation size parameter! Use other ctor");
|
|
assert(Amt->getType()->isIntegerTy() &&
|
|
"Allocation array size is not an integer!");
|
|
}
|
|
return Amt;
|
|
}
|
|
|
|
static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
|
|
assert(BB && "Insertion BB cannot be null when alignment not provided!");
|
|
assert(BB->getParent() &&
|
|
"BB must be in a Function when alignment not provided!");
|
|
const DataLayout &DL = BB->getModule()->getDataLayout();
|
|
return DL.getPrefTypeAlign(Ty);
|
|
}
|
|
|
|
static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
|
|
assert(I && "Insertion position cannot be null when alignment not provided!");
|
|
return computeAllocaDefaultAlign(Ty, I->getParent());
|
|
}
|
|
|
|
AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
|
|
Instruction *InsertBefore)
|
|
: AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
|
|
|
|
AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
|
|
BasicBlock *InsertAtEnd)
|
|
: AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
|
|
|
|
AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
|
|
const Twine &Name, Instruction *InsertBefore)
|
|
: AllocaInst(Ty, AddrSpace, ArraySize,
|
|
computeAllocaDefaultAlign(Ty, InsertBefore), Name,
|
|
InsertBefore) {}
|
|
|
|
AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
|
|
const Twine &Name, BasicBlock *InsertAtEnd)
|
|
: AllocaInst(Ty, AddrSpace, ArraySize,
|
|
computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
|
|
InsertAtEnd) {}
|
|
|
|
AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
|
|
Align Align, const Twine &Name,
|
|
Instruction *InsertBefore)
|
|
: UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
|
|
getAISize(Ty->getContext(), ArraySize), InsertBefore),
|
|
AllocatedType(Ty) {
|
|
setAlignment(Align);
|
|
assert(!Ty->isVoidTy() && "Cannot allocate void!");
|
|
setName(Name);
|
|
}
|
|
|
|
AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
|
|
Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
|
|
: UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
|
|
getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
|
|
AllocatedType(Ty) {
|
|
setAlignment(Align);
|
|
assert(!Ty->isVoidTy() && "Cannot allocate void!");
|
|
setName(Name);
|
|
}
|
|
|
|
|
|
bool AllocaInst::isArrayAllocation() const {
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
|
|
return !CI->isOne();
|
|
return true;
|
|
}
|
|
|
|
/// isStaticAlloca - Return true if this alloca is in the entry block of the
|
|
/// function and is a constant size. If so, the code generator will fold it
|
|
/// into the prolog/epilog code, so it is basically free.
|
|
bool AllocaInst::isStaticAlloca() const {
|
|
// Must be constant size.
|
|
if (!isa<ConstantInt>(getArraySize())) return false;
|
|
|
|
// Must be in the entry block.
|
|
const BasicBlock *Parent = getParent();
|
|
return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LoadInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void LoadInst::AssertOK() {
|
|
assert(getOperand(0)->getType()->isPointerTy() &&
|
|
"Ptr must have pointer type.");
|
|
assert(!(isAtomic() && getAlignment() == 0) &&
|
|
"Alignment required for atomic load");
|
|
}
|
|
|
|
static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
|
|
assert(BB && "Insertion BB cannot be null when alignment not provided!");
|
|
assert(BB->getParent() &&
|
|
"BB must be in a Function when alignment not provided!");
|
|
const DataLayout &DL = BB->getModule()->getDataLayout();
|
|
return DL.getABITypeAlign(Ty);
|
|
}
|
|
|
|
static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
|
|
assert(I && "Insertion position cannot be null when alignment not provided!");
|
|
return computeLoadStoreDefaultAlign(Ty, I->getParent());
|
|
}
|
|
|
|
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
|
|
Instruction *InsertBef)
|
|
: LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
|
|
|
|
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
|
|
BasicBlock *InsertAE)
|
|
: LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
|
|
|
|
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
|
|
Instruction *InsertBef)
|
|
: LoadInst(Ty, Ptr, Name, isVolatile,
|
|
computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
|
|
|
|
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
|
|
BasicBlock *InsertAE)
|
|
: LoadInst(Ty, Ptr, Name, isVolatile,
|
|
computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
|
|
|
|
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
|
|
Align Align, Instruction *InsertBef)
|
|
: LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
|
|
SyncScope::System, InsertBef) {}
|
|
|
|
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
|
|
Align Align, BasicBlock *InsertAE)
|
|
: LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
|
|
SyncScope::System, InsertAE) {}
|
|
|
|
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
|
|
Align Align, AtomicOrdering Order, SyncScope::ID SSID,
|
|
Instruction *InsertBef)
|
|
: UnaryInstruction(Ty, Load, Ptr, InsertBef) {
|
|
assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
|
|
setVolatile(isVolatile);
|
|
setAlignment(Align);
|
|
setAtomic(Order, SSID);
|
|
AssertOK();
|
|
setName(Name);
|
|
}
|
|
|
|
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
|
|
Align Align, AtomicOrdering Order, SyncScope::ID SSID,
|
|
BasicBlock *InsertAE)
|
|
: UnaryInstruction(Ty, Load, Ptr, InsertAE) {
|
|
assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
|
|
setVolatile(isVolatile);
|
|
setAlignment(Align);
|
|
setAtomic(Order, SSID);
|
|
AssertOK();
|
|
setName(Name);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StoreInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void StoreInst::AssertOK() {
|
|
assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
|
|
assert(getOperand(1)->getType()->isPointerTy() &&
|
|
"Ptr must have pointer type!");
|
|
assert(getOperand(0)->getType() ==
|
|
cast<PointerType>(getOperand(1)->getType())->getElementType()
|
|
&& "Ptr must be a pointer to Val type!");
|
|
assert(!(isAtomic() && getAlignment() == 0) &&
|
|
"Alignment required for atomic store");
|
|
}
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
|
|
: StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
|
|
: StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
|
|
Instruction *InsertBefore)
|
|
: StoreInst(val, addr, isVolatile,
|
|
computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
|
|
InsertBefore) {}
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
|
|
BasicBlock *InsertAtEnd)
|
|
: StoreInst(val, addr, isVolatile,
|
|
computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
|
|
InsertAtEnd) {}
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
|
|
Instruction *InsertBefore)
|
|
: StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
|
|
SyncScope::System, InsertBefore) {}
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
|
|
BasicBlock *InsertAtEnd)
|
|
: StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
|
|
SyncScope::System, InsertAtEnd) {}
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
|
|
AtomicOrdering Order, SyncScope::ID SSID,
|
|
Instruction *InsertBefore)
|
|
: Instruction(Type::getVoidTy(val->getContext()), Store,
|
|
OperandTraits<StoreInst>::op_begin(this),
|
|
OperandTraits<StoreInst>::operands(this), InsertBefore) {
|
|
Op<0>() = val;
|
|
Op<1>() = addr;
|
|
setVolatile(isVolatile);
|
|
setAlignment(Align);
|
|
setAtomic(Order, SSID);
|
|
AssertOK();
|
|
}
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
|
|
AtomicOrdering Order, SyncScope::ID SSID,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::getVoidTy(val->getContext()), Store,
|
|
OperandTraits<StoreInst>::op_begin(this),
|
|
OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
|
|
Op<0>() = val;
|
|
Op<1>() = addr;
|
|
setVolatile(isVolatile);
|
|
setAlignment(Align);
|
|
setAtomic(Order, SSID);
|
|
AssertOK();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtomicCmpXchgInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
|
|
Align Alignment, AtomicOrdering SuccessOrdering,
|
|
AtomicOrdering FailureOrdering,
|
|
SyncScope::ID SSID) {
|
|
Op<0>() = Ptr;
|
|
Op<1>() = Cmp;
|
|
Op<2>() = NewVal;
|
|
setSuccessOrdering(SuccessOrdering);
|
|
setFailureOrdering(FailureOrdering);
|
|
setSyncScopeID(SSID);
|
|
setAlignment(Alignment);
|
|
|
|
assert(getOperand(0) && getOperand(1) && getOperand(2) &&
|
|
"All operands must be non-null!");
|
|
assert(getOperand(0)->getType()->isPointerTy() &&
|
|
"Ptr must have pointer type!");
|
|
assert(getOperand(1)->getType() ==
|
|
cast<PointerType>(getOperand(0)->getType())->getElementType()
|
|
&& "Ptr must be a pointer to Cmp type!");
|
|
assert(getOperand(2)->getType() ==
|
|
cast<PointerType>(getOperand(0)->getType())->getElementType()
|
|
&& "Ptr must be a pointer to NewVal type!");
|
|
assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
|
|
"AtomicCmpXchg instructions must be atomic!");
|
|
assert(FailureOrdering != AtomicOrdering::NotAtomic &&
|
|
"AtomicCmpXchg instructions must be atomic!");
|
|
assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
|
|
"AtomicCmpXchg failure argument shall be no stronger than the success "
|
|
"argument");
|
|
assert(FailureOrdering != AtomicOrdering::Release &&
|
|
FailureOrdering != AtomicOrdering::AcquireRelease &&
|
|
"AtomicCmpXchg failure ordering cannot include release semantics");
|
|
}
|
|
|
|
AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
|
|
Align Alignment,
|
|
AtomicOrdering SuccessOrdering,
|
|
AtomicOrdering FailureOrdering,
|
|
SyncScope::ID SSID,
|
|
Instruction *InsertBefore)
|
|
: Instruction(
|
|
StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
|
|
AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
|
|
OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
|
|
Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
|
|
}
|
|
|
|
AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
|
|
Align Alignment,
|
|
AtomicOrdering SuccessOrdering,
|
|
AtomicOrdering FailureOrdering,
|
|
SyncScope::ID SSID,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(
|
|
StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
|
|
AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
|
|
OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
|
|
Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtomicRMWInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
|
|
Align Alignment, AtomicOrdering Ordering,
|
|
SyncScope::ID SSID) {
|
|
Op<0>() = Ptr;
|
|
Op<1>() = Val;
|
|
setOperation(Operation);
|
|
setOrdering(Ordering);
|
|
setSyncScopeID(SSID);
|
|
setAlignment(Alignment);
|
|
|
|
assert(getOperand(0) && getOperand(1) &&
|
|
"All operands must be non-null!");
|
|
assert(getOperand(0)->getType()->isPointerTy() &&
|
|
"Ptr must have pointer type!");
|
|
assert(getOperand(1)->getType() ==
|
|
cast<PointerType>(getOperand(0)->getType())->getElementType()
|
|
&& "Ptr must be a pointer to Val type!");
|
|
assert(Ordering != AtomicOrdering::NotAtomic &&
|
|
"AtomicRMW instructions must be atomic!");
|
|
}
|
|
|
|
AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
|
|
Align Alignment, AtomicOrdering Ordering,
|
|
SyncScope::ID SSID, Instruction *InsertBefore)
|
|
: Instruction(Val->getType(), AtomicRMW,
|
|
OperandTraits<AtomicRMWInst>::op_begin(this),
|
|
OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
|
|
Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
|
|
}
|
|
|
|
AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
|
|
Align Alignment, AtomicOrdering Ordering,
|
|
SyncScope::ID SSID, BasicBlock *InsertAtEnd)
|
|
: Instruction(Val->getType(), AtomicRMW,
|
|
OperandTraits<AtomicRMWInst>::op_begin(this),
|
|
OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
|
|
Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
|
|
}
|
|
|
|
StringRef AtomicRMWInst::getOperationName(BinOp Op) {
|
|
switch (Op) {
|
|
case AtomicRMWInst::Xchg:
|
|
return "xchg";
|
|
case AtomicRMWInst::Add:
|
|
return "add";
|
|
case AtomicRMWInst::Sub:
|
|
return "sub";
|
|
case AtomicRMWInst::And:
|
|
return "and";
|
|
case AtomicRMWInst::Nand:
|
|
return "nand";
|
|
case AtomicRMWInst::Or:
|
|
return "or";
|
|
case AtomicRMWInst::Xor:
|
|
return "xor";
|
|
case AtomicRMWInst::Max:
|
|
return "max";
|
|
case AtomicRMWInst::Min:
|
|
return "min";
|
|
case AtomicRMWInst::UMax:
|
|
return "umax";
|
|
case AtomicRMWInst::UMin:
|
|
return "umin";
|
|
case AtomicRMWInst::FAdd:
|
|
return "fadd";
|
|
case AtomicRMWInst::FSub:
|
|
return "fsub";
|
|
case AtomicRMWInst::BAD_BINOP:
|
|
return "<invalid operation>";
|
|
}
|
|
|
|
llvm_unreachable("invalid atomicrmw operation");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FenceInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
|
|
SyncScope::ID SSID,
|
|
Instruction *InsertBefore)
|
|
: Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
|
|
setOrdering(Ordering);
|
|
setSyncScopeID(SSID);
|
|
}
|
|
|
|
FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
|
|
SyncScope::ID SSID,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
|
|
setOrdering(Ordering);
|
|
setSyncScopeID(SSID);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GetElementPtrInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
|
|
const Twine &Name) {
|
|
assert(getNumOperands() == 1 + IdxList.size() &&
|
|
"NumOperands not initialized?");
|
|
Op<0>() = Ptr;
|
|
llvm::copy(IdxList, op_begin() + 1);
|
|
setName(Name);
|
|
}
|
|
|
|
GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
|
|
: Instruction(GEPI.getType(), GetElementPtr,
|
|
OperandTraits<GetElementPtrInst>::op_end(this) -
|
|
GEPI.getNumOperands(),
|
|
GEPI.getNumOperands()),
|
|
SourceElementType(GEPI.SourceElementType),
|
|
ResultElementType(GEPI.ResultElementType) {
|
|
std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
|
|
SubclassOptionalData = GEPI.SubclassOptionalData;
|
|
}
|
|
|
|
Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
|
|
if (auto *Struct = dyn_cast<StructType>(Ty)) {
|
|
if (!Struct->indexValid(Idx))
|
|
return nullptr;
|
|
return Struct->getTypeAtIndex(Idx);
|
|
}
|
|
if (!Idx->getType()->isIntOrIntVectorTy())
|
|
return nullptr;
|
|
if (auto *Array = dyn_cast<ArrayType>(Ty))
|
|
return Array->getElementType();
|
|
if (auto *Vector = dyn_cast<VectorType>(Ty))
|
|
return Vector->getElementType();
|
|
return nullptr;
|
|
}
|
|
|
|
Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
|
|
if (auto *Struct = dyn_cast<StructType>(Ty)) {
|
|
if (Idx >= Struct->getNumElements())
|
|
return nullptr;
|
|
return Struct->getElementType(Idx);
|
|
}
|
|
if (auto *Array = dyn_cast<ArrayType>(Ty))
|
|
return Array->getElementType();
|
|
if (auto *Vector = dyn_cast<VectorType>(Ty))
|
|
return Vector->getElementType();
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename IndexTy>
|
|
static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
|
|
if (IdxList.empty())
|
|
return Ty;
|
|
for (IndexTy V : IdxList.slice(1)) {
|
|
Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
|
|
if (!Ty)
|
|
return Ty;
|
|
}
|
|
return Ty;
|
|
}
|
|
|
|
Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
|
|
return getIndexedTypeInternal(Ty, IdxList);
|
|
}
|
|
|
|
Type *GetElementPtrInst::getIndexedType(Type *Ty,
|
|
ArrayRef<Constant *> IdxList) {
|
|
return getIndexedTypeInternal(Ty, IdxList);
|
|
}
|
|
|
|
Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
|
|
return getIndexedTypeInternal(Ty, IdxList);
|
|
}
|
|
|
|
/// hasAllZeroIndices - Return true if all of the indices of this GEP are
|
|
/// zeros. If so, the result pointer and the first operand have the same
|
|
/// value, just potentially different types.
|
|
bool GetElementPtrInst::hasAllZeroIndices() const {
|
|
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
|
|
if (!CI->isZero()) return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// hasAllConstantIndices - Return true if all of the indices of this GEP are
|
|
/// constant integers. If so, the result pointer and the first operand have
|
|
/// a constant offset between them.
|
|
bool GetElementPtrInst::hasAllConstantIndices() const {
|
|
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
|
|
if (!isa<ConstantInt>(getOperand(i)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void GetElementPtrInst::setIsInBounds(bool B) {
|
|
cast<GEPOperator>(this)->setIsInBounds(B);
|
|
}
|
|
|
|
bool GetElementPtrInst::isInBounds() const {
|
|
return cast<GEPOperator>(this)->isInBounds();
|
|
}
|
|
|
|
bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
|
|
APInt &Offset) const {
|
|
// Delegate to the generic GEPOperator implementation.
|
|
return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtractElementInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
|
|
const Twine &Name,
|
|
Instruction *InsertBef)
|
|
: Instruction(cast<VectorType>(Val->getType())->getElementType(),
|
|
ExtractElement,
|
|
OperandTraits<ExtractElementInst>::op_begin(this),
|
|
2, InsertBef) {
|
|
assert(isValidOperands(Val, Index) &&
|
|
"Invalid extractelement instruction operands!");
|
|
Op<0>() = Val;
|
|
Op<1>() = Index;
|
|
setName(Name);
|
|
}
|
|
|
|
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAE)
|
|
: Instruction(cast<VectorType>(Val->getType())->getElementType(),
|
|
ExtractElement,
|
|
OperandTraits<ExtractElementInst>::op_begin(this),
|
|
2, InsertAE) {
|
|
assert(isValidOperands(Val, Index) &&
|
|
"Invalid extractelement instruction operands!");
|
|
|
|
Op<0>() = Val;
|
|
Op<1>() = Index;
|
|
setName(Name);
|
|
}
|
|
|
|
bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
|
|
if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InsertElementInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
|
|
const Twine &Name,
|
|
Instruction *InsertBef)
|
|
: Instruction(Vec->getType(), InsertElement,
|
|
OperandTraits<InsertElementInst>::op_begin(this),
|
|
3, InsertBef) {
|
|
assert(isValidOperands(Vec, Elt, Index) &&
|
|
"Invalid insertelement instruction operands!");
|
|
Op<0>() = Vec;
|
|
Op<1>() = Elt;
|
|
Op<2>() = Index;
|
|
setName(Name);
|
|
}
|
|
|
|
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAE)
|
|
: Instruction(Vec->getType(), InsertElement,
|
|
OperandTraits<InsertElementInst>::op_begin(this),
|
|
3, InsertAE) {
|
|
assert(isValidOperands(Vec, Elt, Index) &&
|
|
"Invalid insertelement instruction operands!");
|
|
|
|
Op<0>() = Vec;
|
|
Op<1>() = Elt;
|
|
Op<2>() = Index;
|
|
setName(Name);
|
|
}
|
|
|
|
bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
|
|
const Value *Index) {
|
|
if (!Vec->getType()->isVectorTy())
|
|
return false; // First operand of insertelement must be vector type.
|
|
|
|
if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
|
|
return false;// Second operand of insertelement must be vector element type.
|
|
|
|
if (!Index->getType()->isIntegerTy())
|
|
return false; // Third operand of insertelement must be i32.
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ShuffleVectorInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore)
|
|
: Instruction(
|
|
VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
|
|
cast<VectorType>(Mask->getType())->getElementCount()),
|
|
ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
|
|
OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
|
|
assert(isValidOperands(V1, V2, Mask) &&
|
|
"Invalid shuffle vector instruction operands!");
|
|
|
|
Op<0>() = V1;
|
|
Op<1>() = V2;
|
|
SmallVector<int, 16> MaskArr;
|
|
getShuffleMask(cast<Constant>(Mask), MaskArr);
|
|
setShuffleMask(MaskArr);
|
|
setName(Name);
|
|
}
|
|
|
|
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
|
|
const Twine &Name, BasicBlock *InsertAtEnd)
|
|
: Instruction(
|
|
VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
|
|
cast<VectorType>(Mask->getType())->getElementCount()),
|
|
ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
|
|
OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
|
|
assert(isValidOperands(V1, V2, Mask) &&
|
|
"Invalid shuffle vector instruction operands!");
|
|
|
|
Op<0>() = V1;
|
|
Op<1>() = V2;
|
|
SmallVector<int, 16> MaskArr;
|
|
getShuffleMask(cast<Constant>(Mask), MaskArr);
|
|
setShuffleMask(MaskArr);
|
|
setName(Name);
|
|
}
|
|
|
|
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore)
|
|
: Instruction(
|
|
VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
|
|
Mask.size(), isa<ScalableVectorType>(V1->getType())),
|
|
ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
|
|
OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
|
|
assert(isValidOperands(V1, V2, Mask) &&
|
|
"Invalid shuffle vector instruction operands!");
|
|
Op<0>() = V1;
|
|
Op<1>() = V2;
|
|
setShuffleMask(Mask);
|
|
setName(Name);
|
|
}
|
|
|
|
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
|
|
const Twine &Name, BasicBlock *InsertAtEnd)
|
|
: Instruction(
|
|
VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
|
|
Mask.size(), isa<ScalableVectorType>(V1->getType())),
|
|
ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
|
|
OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
|
|
assert(isValidOperands(V1, V2, Mask) &&
|
|
"Invalid shuffle vector instruction operands!");
|
|
|
|
Op<0>() = V1;
|
|
Op<1>() = V2;
|
|
setShuffleMask(Mask);
|
|
setName(Name);
|
|
}
|
|
|
|
void ShuffleVectorInst::commute() {
|
|
int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
|
|
int NumMaskElts = ShuffleMask.size();
|
|
SmallVector<int, 16> NewMask(NumMaskElts);
|
|
for (int i = 0; i != NumMaskElts; ++i) {
|
|
int MaskElt = getMaskValue(i);
|
|
if (MaskElt == UndefMaskElem) {
|
|
NewMask[i] = UndefMaskElem;
|
|
continue;
|
|
}
|
|
assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
|
|
MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
|
|
NewMask[i] = MaskElt;
|
|
}
|
|
setShuffleMask(NewMask);
|
|
Op<0>().swap(Op<1>());
|
|
}
|
|
|
|
bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
|
|
ArrayRef<int> Mask) {
|
|
// V1 and V2 must be vectors of the same type.
|
|
if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
|
|
return false;
|
|
|
|
// Make sure the mask elements make sense.
|
|
int V1Size =
|
|
cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
|
|
for (int Elem : Mask)
|
|
if (Elem != UndefMaskElem && Elem >= V1Size * 2)
|
|
return false;
|
|
|
|
if (isa<ScalableVectorType>(V1->getType()))
|
|
if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
|
|
const Value *Mask) {
|
|
// V1 and V2 must be vectors of the same type.
|
|
if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
|
|
return false;
|
|
|
|
// Mask must be vector of i32, and must be the same kind of vector as the
|
|
// input vectors
|
|
auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
|
|
if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
|
|
isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
|
|
return false;
|
|
|
|
// Check to see if Mask is valid.
|
|
if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
|
|
return true;
|
|
|
|
if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
|
|
unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
|
|
for (Value *Op : MV->operands()) {
|
|
if (auto *CI = dyn_cast<ConstantInt>(Op)) {
|
|
if (CI->uge(V1Size*2))
|
|
return false;
|
|
} else if (!isa<UndefValue>(Op)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
|
|
unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
|
|
for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
|
|
i != e; ++i)
|
|
if (CDS->getElementAsInteger(i) >= V1Size*2)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
|
|
SmallVectorImpl<int> &Result) {
|
|
ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
|
|
|
|
if (isa<ConstantAggregateZero>(Mask)) {
|
|
Result.resize(EC.getKnownMinValue(), 0);
|
|
return;
|
|
}
|
|
|
|
Result.reserve(EC.getKnownMinValue());
|
|
|
|
if (EC.isScalable()) {
|
|
assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
|
|
"Scalable vector shuffle mask must be undef or zeroinitializer");
|
|
int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
|
|
for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
|
|
Result.emplace_back(MaskVal);
|
|
return;
|
|
}
|
|
|
|
unsigned NumElts = EC.getKnownMinValue();
|
|
|
|
if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
|
|
for (unsigned i = 0; i != NumElts; ++i)
|
|
Result.push_back(CDS->getElementAsInteger(i));
|
|
return;
|
|
}
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
Constant *C = Mask->getAggregateElement(i);
|
|
Result.push_back(isa<UndefValue>(C) ? -1 :
|
|
cast<ConstantInt>(C)->getZExtValue());
|
|
}
|
|
}
|
|
|
|
void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
|
|
ShuffleMask.assign(Mask.begin(), Mask.end());
|
|
ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
|
|
}
|
|
Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
|
|
Type *ResultTy) {
|
|
Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
|
|
if (isa<ScalableVectorType>(ResultTy)) {
|
|
assert(is_splat(Mask) && "Unexpected shuffle");
|
|
Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
|
|
if (Mask[0] == 0)
|
|
return Constant::getNullValue(VecTy);
|
|
return UndefValue::get(VecTy);
|
|
}
|
|
SmallVector<Constant *, 16> MaskConst;
|
|
for (int Elem : Mask) {
|
|
if (Elem == UndefMaskElem)
|
|
MaskConst.push_back(UndefValue::get(Int32Ty));
|
|
else
|
|
MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
|
|
}
|
|
return ConstantVector::get(MaskConst);
|
|
}
|
|
|
|
static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
|
|
assert(!Mask.empty() && "Shuffle mask must contain elements");
|
|
bool UsesLHS = false;
|
|
bool UsesRHS = false;
|
|
for (int I : Mask) {
|
|
if (I == -1)
|
|
continue;
|
|
assert(I >= 0 && I < (NumOpElts * 2) &&
|
|
"Out-of-bounds shuffle mask element");
|
|
UsesLHS |= (I < NumOpElts);
|
|
UsesRHS |= (I >= NumOpElts);
|
|
if (UsesLHS && UsesRHS)
|
|
return false;
|
|
}
|
|
// Allow for degenerate case: completely undef mask means neither source is used.
|
|
return UsesLHS || UsesRHS;
|
|
}
|
|
|
|
bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
|
|
// We don't have vector operand size information, so assume operands are the
|
|
// same size as the mask.
|
|
return isSingleSourceMaskImpl(Mask, Mask.size());
|
|
}
|
|
|
|
static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
|
|
if (!isSingleSourceMaskImpl(Mask, NumOpElts))
|
|
return false;
|
|
for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
|
|
if (Mask[i] == -1)
|
|
continue;
|
|
if (Mask[i] != i && Mask[i] != (NumOpElts + i))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
|
|
// We don't have vector operand size information, so assume operands are the
|
|
// same size as the mask.
|
|
return isIdentityMaskImpl(Mask, Mask.size());
|
|
}
|
|
|
|
bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
|
|
if (!isSingleSourceMask(Mask))
|
|
return false;
|
|
for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
|
|
if (Mask[i] == -1)
|
|
continue;
|
|
if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
|
|
if (!isSingleSourceMask(Mask))
|
|
return false;
|
|
for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
|
|
if (Mask[i] == -1)
|
|
continue;
|
|
if (Mask[i] != 0 && Mask[i] != NumElts)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
|
|
// Select is differentiated from identity. It requires using both sources.
|
|
if (isSingleSourceMask(Mask))
|
|
return false;
|
|
for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
|
|
if (Mask[i] == -1)
|
|
continue;
|
|
if (Mask[i] != i && Mask[i] != (NumElts + i))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
|
|
// Example masks that will return true:
|
|
// v1 = <a, b, c, d>
|
|
// v2 = <e, f, g, h>
|
|
// trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
|
|
// trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
|
|
|
|
// 1. The number of elements in the mask must be a power-of-2 and at least 2.
|
|
int NumElts = Mask.size();
|
|
if (NumElts < 2 || !isPowerOf2_32(NumElts))
|
|
return false;
|
|
|
|
// 2. The first element of the mask must be either a 0 or a 1.
|
|
if (Mask[0] != 0 && Mask[0] != 1)
|
|
return false;
|
|
|
|
// 3. The difference between the first 2 elements must be equal to the
|
|
// number of elements in the mask.
|
|
if ((Mask[1] - Mask[0]) != NumElts)
|
|
return false;
|
|
|
|
// 4. The difference between consecutive even-numbered and odd-numbered
|
|
// elements must be equal to 2.
|
|
for (int i = 2; i < NumElts; ++i) {
|
|
int MaskEltVal = Mask[i];
|
|
if (MaskEltVal == -1)
|
|
return false;
|
|
int MaskEltPrevVal = Mask[i - 2];
|
|
if (MaskEltVal - MaskEltPrevVal != 2)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
|
|
int NumSrcElts, int &Index) {
|
|
// Must extract from a single source.
|
|
if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
|
|
return false;
|
|
|
|
// Must be smaller (else this is an Identity shuffle).
|
|
if (NumSrcElts <= (int)Mask.size())
|
|
return false;
|
|
|
|
// Find start of extraction, accounting that we may start with an UNDEF.
|
|
int SubIndex = -1;
|
|
for (int i = 0, e = Mask.size(); i != e; ++i) {
|
|
int M = Mask[i];
|
|
if (M < 0)
|
|
continue;
|
|
int Offset = (M % NumSrcElts) - i;
|
|
if (0 <= SubIndex && SubIndex != Offset)
|
|
return false;
|
|
SubIndex = Offset;
|
|
}
|
|
|
|
if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
|
|
Index = SubIndex;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ShuffleVectorInst::isIdentityWithPadding() const {
|
|
if (isa<UndefValue>(Op<2>()))
|
|
return false;
|
|
|
|
// FIXME: Not currently possible to express a shuffle mask for a scalable
|
|
// vector for this case.
|
|
if (isa<ScalableVectorType>(getType()))
|
|
return false;
|
|
|
|
int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
|
|
int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
|
|
if (NumMaskElts <= NumOpElts)
|
|
return false;
|
|
|
|
// The first part of the mask must choose elements from exactly 1 source op.
|
|
ArrayRef<int> Mask = getShuffleMask();
|
|
if (!isIdentityMaskImpl(Mask, NumOpElts))
|
|
return false;
|
|
|
|
// All extending must be with undef elements.
|
|
for (int i = NumOpElts; i < NumMaskElts; ++i)
|
|
if (Mask[i] != -1)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ShuffleVectorInst::isIdentityWithExtract() const {
|
|
if (isa<UndefValue>(Op<2>()))
|
|
return false;
|
|
|
|
// FIXME: Not currently possible to express a shuffle mask for a scalable
|
|
// vector for this case.
|
|
if (isa<ScalableVectorType>(getType()))
|
|
return false;
|
|
|
|
int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
|
|
int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
|
|
if (NumMaskElts >= NumOpElts)
|
|
return false;
|
|
|
|
return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
|
|
}
|
|
|
|
bool ShuffleVectorInst::isConcat() const {
|
|
// Vector concatenation is differentiated from identity with padding.
|
|
if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
|
|
isa<UndefValue>(Op<2>()))
|
|
return false;
|
|
|
|
// FIXME: Not currently possible to express a shuffle mask for a scalable
|
|
// vector for this case.
|
|
if (isa<ScalableVectorType>(getType()))
|
|
return false;
|
|
|
|
int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
|
|
int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
|
|
if (NumMaskElts != NumOpElts * 2)
|
|
return false;
|
|
|
|
// Use the mask length rather than the operands' vector lengths here. We
|
|
// already know that the shuffle returns a vector twice as long as the inputs,
|
|
// and neither of the inputs are undef vectors. If the mask picks consecutive
|
|
// elements from both inputs, then this is a concatenation of the inputs.
|
|
return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InsertValueInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
|
|
const Twine &Name) {
|
|
assert(getNumOperands() == 2 && "NumOperands not initialized?");
|
|
|
|
// There's no fundamental reason why we require at least one index
|
|
// (other than weirdness with &*IdxBegin being invalid; see
|
|
// getelementptr's init routine for example). But there's no
|
|
// present need to support it.
|
|
assert(!Idxs.empty() && "InsertValueInst must have at least one index");
|
|
|
|
assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
|
|
Val->getType() && "Inserted value must match indexed type!");
|
|
Op<0>() = Agg;
|
|
Op<1>() = Val;
|
|
|
|
Indices.append(Idxs.begin(), Idxs.end());
|
|
setName(Name);
|
|
}
|
|
|
|
InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
|
|
: Instruction(IVI.getType(), InsertValue,
|
|
OperandTraits<InsertValueInst>::op_begin(this), 2),
|
|
Indices(IVI.Indices) {
|
|
Op<0>() = IVI.getOperand(0);
|
|
Op<1>() = IVI.getOperand(1);
|
|
SubclassOptionalData = IVI.SubclassOptionalData;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtractValueInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
|
|
assert(getNumOperands() == 1 && "NumOperands not initialized?");
|
|
|
|
// There's no fundamental reason why we require at least one index.
|
|
// But there's no present need to support it.
|
|
assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
|
|
|
|
Indices.append(Idxs.begin(), Idxs.end());
|
|
setName(Name);
|
|
}
|
|
|
|
ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
|
|
: UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
|
|
Indices(EVI.Indices) {
|
|
SubclassOptionalData = EVI.SubclassOptionalData;
|
|
}
|
|
|
|
// getIndexedType - Returns the type of the element that would be extracted
|
|
// with an extractvalue instruction with the specified parameters.
|
|
//
|
|
// A null type is returned if the indices are invalid for the specified
|
|
// pointer type.
|
|
//
|
|
Type *ExtractValueInst::getIndexedType(Type *Agg,
|
|
ArrayRef<unsigned> Idxs) {
|
|
for (unsigned Index : Idxs) {
|
|
// We can't use CompositeType::indexValid(Index) here.
|
|
// indexValid() always returns true for arrays because getelementptr allows
|
|
// out-of-bounds indices. Since we don't allow those for extractvalue and
|
|
// insertvalue we need to check array indexing manually.
|
|
// Since the only other types we can index into are struct types it's just
|
|
// as easy to check those manually as well.
|
|
if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
|
|
if (Index >= AT->getNumElements())
|
|
return nullptr;
|
|
Agg = AT->getElementType();
|
|
} else if (StructType *ST = dyn_cast<StructType>(Agg)) {
|
|
if (Index >= ST->getNumElements())
|
|
return nullptr;
|
|
Agg = ST->getElementType(Index);
|
|
} else {
|
|
// Not a valid type to index into.
|
|
return nullptr;
|
|
}
|
|
}
|
|
return const_cast<Type*>(Agg);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UnaryOperator Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
|
|
Type *Ty, const Twine &Name,
|
|
Instruction *InsertBefore)
|
|
: UnaryInstruction(Ty, iType, S, InsertBefore) {
|
|
Op<0>() = S;
|
|
setName(Name);
|
|
AssertOK();
|
|
}
|
|
|
|
UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
|
|
Type *Ty, const Twine &Name,
|
|
BasicBlock *InsertAtEnd)
|
|
: UnaryInstruction(Ty, iType, S, InsertAtEnd) {
|
|
Op<0>() = S;
|
|
setName(Name);
|
|
AssertOK();
|
|
}
|
|
|
|
UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
|
|
}
|
|
|
|
UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
UnaryOperator *Res = Create(Op, S, Name);
|
|
InsertAtEnd->getInstList().push_back(Res);
|
|
return Res;
|
|
}
|
|
|
|
void UnaryOperator::AssertOK() {
|
|
Value *LHS = getOperand(0);
|
|
(void)LHS; // Silence warnings.
|
|
#ifndef NDEBUG
|
|
switch (getOpcode()) {
|
|
case FNeg:
|
|
assert(getType() == LHS->getType() &&
|
|
"Unary operation should return same type as operand!");
|
|
assert(getType()->isFPOrFPVectorTy() &&
|
|
"Tried to create a floating-point operation on a "
|
|
"non-floating-point type!");
|
|
break;
|
|
default: llvm_unreachable("Invalid opcode provided");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BinaryOperator Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
|
|
Type *Ty, const Twine &Name,
|
|
Instruction *InsertBefore)
|
|
: Instruction(Ty, iType,
|
|
OperandTraits<BinaryOperator>::op_begin(this),
|
|
OperandTraits<BinaryOperator>::operands(this),
|
|
InsertBefore) {
|
|
Op<0>() = S1;
|
|
Op<1>() = S2;
|
|
setName(Name);
|
|
AssertOK();
|
|
}
|
|
|
|
BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
|
|
Type *Ty, const Twine &Name,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(Ty, iType,
|
|
OperandTraits<BinaryOperator>::op_begin(this),
|
|
OperandTraits<BinaryOperator>::operands(this),
|
|
InsertAtEnd) {
|
|
Op<0>() = S1;
|
|
Op<1>() = S2;
|
|
setName(Name);
|
|
AssertOK();
|
|
}
|
|
|
|
void BinaryOperator::AssertOK() {
|
|
Value *LHS = getOperand(0), *RHS = getOperand(1);
|
|
(void)LHS; (void)RHS; // Silence warnings.
|
|
assert(LHS->getType() == RHS->getType() &&
|
|
"Binary operator operand types must match!");
|
|
#ifndef NDEBUG
|
|
switch (getOpcode()) {
|
|
case Add: case Sub:
|
|
case Mul:
|
|
assert(getType() == LHS->getType() &&
|
|
"Arithmetic operation should return same type as operands!");
|
|
assert(getType()->isIntOrIntVectorTy() &&
|
|
"Tried to create an integer operation on a non-integer type!");
|
|
break;
|
|
case FAdd: case FSub:
|
|
case FMul:
|
|
assert(getType() == LHS->getType() &&
|
|
"Arithmetic operation should return same type as operands!");
|
|
assert(getType()->isFPOrFPVectorTy() &&
|
|
"Tried to create a floating-point operation on a "
|
|
"non-floating-point type!");
|
|
break;
|
|
case UDiv:
|
|
case SDiv:
|
|
assert(getType() == LHS->getType() &&
|
|
"Arithmetic operation should return same type as operands!");
|
|
assert(getType()->isIntOrIntVectorTy() &&
|
|
"Incorrect operand type (not integer) for S/UDIV");
|
|
break;
|
|
case FDiv:
|
|
assert(getType() == LHS->getType() &&
|
|
"Arithmetic operation should return same type as operands!");
|
|
assert(getType()->isFPOrFPVectorTy() &&
|
|
"Incorrect operand type (not floating point) for FDIV");
|
|
break;
|
|
case URem:
|
|
case SRem:
|
|
assert(getType() == LHS->getType() &&
|
|
"Arithmetic operation should return same type as operands!");
|
|
assert(getType()->isIntOrIntVectorTy() &&
|
|
"Incorrect operand type (not integer) for S/UREM");
|
|
break;
|
|
case FRem:
|
|
assert(getType() == LHS->getType() &&
|
|
"Arithmetic operation should return same type as operands!");
|
|
assert(getType()->isFPOrFPVectorTy() &&
|
|
"Incorrect operand type (not floating point) for FREM");
|
|
break;
|
|
case Shl:
|
|
case LShr:
|
|
case AShr:
|
|
assert(getType() == LHS->getType() &&
|
|
"Shift operation should return same type as operands!");
|
|
assert(getType()->isIntOrIntVectorTy() &&
|
|
"Tried to create a shift operation on a non-integral type!");
|
|
break;
|
|
case And: case Or:
|
|
case Xor:
|
|
assert(getType() == LHS->getType() &&
|
|
"Logical operation should return same type as operands!");
|
|
assert(getType()->isIntOrIntVectorTy() &&
|
|
"Tried to create a logical operation on a non-integral type!");
|
|
break;
|
|
default: llvm_unreachable("Invalid opcode provided");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
assert(S1->getType() == S2->getType() &&
|
|
"Cannot create binary operator with two operands of differing type!");
|
|
return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
BinaryOperator *Res = Create(Op, S1, S2, Name);
|
|
InsertAtEnd->getInstList().push_back(Res);
|
|
return Res;
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
|
|
return new BinaryOperator(Instruction::Sub,
|
|
zero, Op,
|
|
Op->getType(), Name, InsertBefore);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
|
|
return new BinaryOperator(Instruction::Sub,
|
|
zero, Op,
|
|
Op->getType(), Name, InsertAtEnd);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
|
|
return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
|
|
return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
|
|
return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
|
|
return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
Constant *C = Constant::getAllOnesValue(Op->getType());
|
|
return new BinaryOperator(Instruction::Xor, Op, C,
|
|
Op->getType(), Name, InsertBefore);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
|
|
return new BinaryOperator(Instruction::Xor, Op, AllOnes,
|
|
Op->getType(), Name, InsertAtEnd);
|
|
}
|
|
|
|
// Exchange the two operands to this instruction. This instruction is safe to
|
|
// use on any binary instruction and does not modify the semantics of the
|
|
// instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
|
|
// is changed.
|
|
bool BinaryOperator::swapOperands() {
|
|
if (!isCommutative())
|
|
return true; // Can't commute operands
|
|
Op<0>().swap(Op<1>());
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FPMathOperator Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
float FPMathOperator::getFPAccuracy() const {
|
|
const MDNode *MD =
|
|
cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
|
|
if (!MD)
|
|
return 0.0;
|
|
ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
|
|
return Accuracy->getValueAPF().convertToFloat();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CastInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Just determine if this cast only deals with integral->integral conversion.
|
|
bool CastInst::isIntegerCast() const {
|
|
switch (getOpcode()) {
|
|
default: return false;
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::Trunc:
|
|
return true;
|
|
case Instruction::BitCast:
|
|
return getOperand(0)->getType()->isIntegerTy() &&
|
|
getType()->isIntegerTy();
|
|
}
|
|
}
|
|
|
|
bool CastInst::isLosslessCast() const {
|
|
// Only BitCast can be lossless, exit fast if we're not BitCast
|
|
if (getOpcode() != Instruction::BitCast)
|
|
return false;
|
|
|
|
// Identity cast is always lossless
|
|
Type *SrcTy = getOperand(0)->getType();
|
|
Type *DstTy = getType();
|
|
if (SrcTy == DstTy)
|
|
return true;
|
|
|
|
// Pointer to pointer is always lossless.
|
|
if (SrcTy->isPointerTy())
|
|
return DstTy->isPointerTy();
|
|
return false; // Other types have no identity values
|
|
}
|
|
|
|
/// This function determines if the CastInst does not require any bits to be
|
|
/// changed in order to effect the cast. Essentially, it identifies cases where
|
|
/// no code gen is necessary for the cast, hence the name no-op cast. For
|
|
/// example, the following are all no-op casts:
|
|
/// # bitcast i32* %x to i8*
|
|
/// # bitcast <2 x i32> %x to <4 x i16>
|
|
/// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
|
|
/// Determine if the described cast is a no-op.
|
|
bool CastInst::isNoopCast(Instruction::CastOps Opcode,
|
|
Type *SrcTy,
|
|
Type *DestTy,
|
|
const DataLayout &DL) {
|
|
assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("Invalid CastOp");
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::AddrSpaceCast:
|
|
// TODO: Target informations may give a more accurate answer here.
|
|
return false;
|
|
case Instruction::BitCast:
|
|
return true; // BitCast never modifies bits.
|
|
case Instruction::PtrToInt:
|
|
return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
|
|
DestTy->getScalarSizeInBits();
|
|
case Instruction::IntToPtr:
|
|
return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
|
|
SrcTy->getScalarSizeInBits();
|
|
}
|
|
}
|
|
|
|
bool CastInst::isNoopCast(const DataLayout &DL) const {
|
|
return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
|
|
}
|
|
|
|
/// This function determines if a pair of casts can be eliminated and what
|
|
/// opcode should be used in the elimination. This assumes that there are two
|
|
/// instructions like this:
|
|
/// * %F = firstOpcode SrcTy %x to MidTy
|
|
/// * %S = secondOpcode MidTy %F to DstTy
|
|
/// The function returns a resultOpcode so these two casts can be replaced with:
|
|
/// * %Replacement = resultOpcode %SrcTy %x to DstTy
|
|
/// If no such cast is permitted, the function returns 0.
|
|
unsigned CastInst::isEliminableCastPair(
|
|
Instruction::CastOps firstOp, Instruction::CastOps secondOp,
|
|
Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
|
|
Type *DstIntPtrTy) {
|
|
// Define the 144 possibilities for these two cast instructions. The values
|
|
// in this matrix determine what to do in a given situation and select the
|
|
// case in the switch below. The rows correspond to firstOp, the columns
|
|
// correspond to secondOp. In looking at the table below, keep in mind
|
|
// the following cast properties:
|
|
//
|
|
// Size Compare Source Destination
|
|
// Operator Src ? Size Type Sign Type Sign
|
|
// -------- ------------ ------------------- ---------------------
|
|
// TRUNC > Integer Any Integral Any
|
|
// ZEXT < Integral Unsigned Integer Any
|
|
// SEXT < Integral Signed Integer Any
|
|
// FPTOUI n/a FloatPt n/a Integral Unsigned
|
|
// FPTOSI n/a FloatPt n/a Integral Signed
|
|
// UITOFP n/a Integral Unsigned FloatPt n/a
|
|
// SITOFP n/a Integral Signed FloatPt n/a
|
|
// FPTRUNC > FloatPt n/a FloatPt n/a
|
|
// FPEXT < FloatPt n/a FloatPt n/a
|
|
// PTRTOINT n/a Pointer n/a Integral Unsigned
|
|
// INTTOPTR n/a Integral Unsigned Pointer n/a
|
|
// BITCAST = FirstClass n/a FirstClass n/a
|
|
// ADDRSPCST n/a Pointer n/a Pointer n/a
|
|
//
|
|
// NOTE: some transforms are safe, but we consider them to be non-profitable.
|
|
// For example, we could merge "fptoui double to i32" + "zext i32 to i64",
|
|
// into "fptoui double to i64", but this loses information about the range
|
|
// of the produced value (we no longer know the top-part is all zeros).
|
|
// Further this conversion is often much more expensive for typical hardware,
|
|
// and causes issues when building libgcc. We disallow fptosi+sext for the
|
|
// same reason.
|
|
const unsigned numCastOps =
|
|
Instruction::CastOpsEnd - Instruction::CastOpsBegin;
|
|
static const uint8_t CastResults[numCastOps][numCastOps] = {
|
|
// T F F U S F F P I B A -+
|
|
// R Z S P P I I T P 2 N T S |
|
|
// U E E 2 2 2 2 R E I T C C +- secondOp
|
|
// N X X U S F F N X N 2 V V |
|
|
// C T T I I P P C T T P T T -+
|
|
{ 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
|
|
{ 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
|
|
{ 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
|
|
{ 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
|
|
{ 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
|
|
{ 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
|
|
{ 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
|
|
{ 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
|
|
{ 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
|
|
{ 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
|
|
{ 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
|
|
{ 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
|
|
};
|
|
|
|
// TODO: This logic could be encoded into the table above and handled in the
|
|
// switch below.
|
|
// If either of the casts are a bitcast from scalar to vector, disallow the
|
|
// merging. However, any pair of bitcasts are allowed.
|
|
bool IsFirstBitcast = (firstOp == Instruction::BitCast);
|
|
bool IsSecondBitcast = (secondOp == Instruction::BitCast);
|
|
bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
|
|
|
|
// Check if any of the casts convert scalars <-> vectors.
|
|
if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
|
|
(IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
|
|
if (!AreBothBitcasts)
|
|
return 0;
|
|
|
|
int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
|
|
[secondOp-Instruction::CastOpsBegin];
|
|
switch (ElimCase) {
|
|
case 0:
|
|
// Categorically disallowed.
|
|
return 0;
|
|
case 1:
|
|
// Allowed, use first cast's opcode.
|
|
return firstOp;
|
|
case 2:
|
|
// Allowed, use second cast's opcode.
|
|
return secondOp;
|
|
case 3:
|
|
// No-op cast in second op implies firstOp as long as the DestTy
|
|
// is integer and we are not converting between a vector and a
|
|
// non-vector type.
|
|
if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
|
|
return firstOp;
|
|
return 0;
|
|
case 4:
|
|
// No-op cast in second op implies firstOp as long as the DestTy
|
|
// is floating point.
|
|
if (DstTy->isFloatingPointTy())
|
|
return firstOp;
|
|
return 0;
|
|
case 5:
|
|
// No-op cast in first op implies secondOp as long as the SrcTy
|
|
// is an integer.
|
|
if (SrcTy->isIntegerTy())
|
|
return secondOp;
|
|
return 0;
|
|
case 6:
|
|
// No-op cast in first op implies secondOp as long as the SrcTy
|
|
// is a floating point.
|
|
if (SrcTy->isFloatingPointTy())
|
|
return secondOp;
|
|
return 0;
|
|
case 7: {
|
|
// Cannot simplify if address spaces are different!
|
|
if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
|
|
return 0;
|
|
|
|
unsigned MidSize = MidTy->getScalarSizeInBits();
|
|
// We can still fold this without knowing the actual sizes as long we
|
|
// know that the intermediate pointer is the largest possible
|
|
// pointer size.
|
|
// FIXME: Is this always true?
|
|
if (MidSize == 64)
|
|
return Instruction::BitCast;
|
|
|
|
// ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
|
|
if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
|
|
return 0;
|
|
unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
|
|
if (MidSize >= PtrSize)
|
|
return Instruction::BitCast;
|
|
return 0;
|
|
}
|
|
case 8: {
|
|
// ext, trunc -> bitcast, if the SrcTy and DstTy are same size
|
|
// ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
|
|
// ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
|
|
unsigned SrcSize = SrcTy->getScalarSizeInBits();
|
|
unsigned DstSize = DstTy->getScalarSizeInBits();
|
|
if (SrcSize == DstSize)
|
|
return Instruction::BitCast;
|
|
else if (SrcSize < DstSize)
|
|
return firstOp;
|
|
return secondOp;
|
|
}
|
|
case 9:
|
|
// zext, sext -> zext, because sext can't sign extend after zext
|
|
return Instruction::ZExt;
|
|
case 11: {
|
|
// inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
|
|
if (!MidIntPtrTy)
|
|
return 0;
|
|
unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
|
|
unsigned SrcSize = SrcTy->getScalarSizeInBits();
|
|
unsigned DstSize = DstTy->getScalarSizeInBits();
|
|
if (SrcSize <= PtrSize && SrcSize == DstSize)
|
|
return Instruction::BitCast;
|
|
return 0;
|
|
}
|
|
case 12:
|
|
// addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
|
|
// addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
|
|
if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
|
|
return Instruction::AddrSpaceCast;
|
|
return Instruction::BitCast;
|
|
case 13:
|
|
// FIXME: this state can be merged with (1), but the following assert
|
|
// is useful to check the correcteness of the sequence due to semantic
|
|
// change of bitcast.
|
|
assert(
|
|
SrcTy->isPtrOrPtrVectorTy() &&
|
|
MidTy->isPtrOrPtrVectorTy() &&
|
|
DstTy->isPtrOrPtrVectorTy() &&
|
|
SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
|
|
MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
|
|
"Illegal addrspacecast, bitcast sequence!");
|
|
// Allowed, use first cast's opcode
|
|
return firstOp;
|
|
case 14:
|
|
// bitcast, addrspacecast -> addrspacecast if the element type of
|
|
// bitcast's source is the same as that of addrspacecast's destination.
|
|
if (SrcTy->getScalarType()->getPointerElementType() ==
|
|
DstTy->getScalarType()->getPointerElementType())
|
|
return Instruction::AddrSpaceCast;
|
|
return 0;
|
|
case 15:
|
|
// FIXME: this state can be merged with (1), but the following assert
|
|
// is useful to check the correcteness of the sequence due to semantic
|
|
// change of bitcast.
|
|
assert(
|
|
SrcTy->isIntOrIntVectorTy() &&
|
|
MidTy->isPtrOrPtrVectorTy() &&
|
|
DstTy->isPtrOrPtrVectorTy() &&
|
|
MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
|
|
"Illegal inttoptr, bitcast sequence!");
|
|
// Allowed, use first cast's opcode
|
|
return firstOp;
|
|
case 16:
|
|
// FIXME: this state can be merged with (2), but the following assert
|
|
// is useful to check the correcteness of the sequence due to semantic
|
|
// change of bitcast.
|
|
assert(
|
|
SrcTy->isPtrOrPtrVectorTy() &&
|
|
MidTy->isPtrOrPtrVectorTy() &&
|
|
DstTy->isIntOrIntVectorTy() &&
|
|
SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
|
|
"Illegal bitcast, ptrtoint sequence!");
|
|
// Allowed, use second cast's opcode
|
|
return secondOp;
|
|
case 17:
|
|
// (sitofp (zext x)) -> (uitofp x)
|
|
return Instruction::UIToFP;
|
|
case 99:
|
|
// Cast combination can't happen (error in input). This is for all cases
|
|
// where the MidTy is not the same for the two cast instructions.
|
|
llvm_unreachable("Invalid Cast Combination");
|
|
default:
|
|
llvm_unreachable("Error in CastResults table!!!");
|
|
}
|
|
}
|
|
|
|
CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
|
|
const Twine &Name, Instruction *InsertBefore) {
|
|
assert(castIsValid(op, S, Ty) && "Invalid cast!");
|
|
// Construct and return the appropriate CastInst subclass
|
|
switch (op) {
|
|
case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
|
|
case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
|
|
case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
|
|
case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
|
|
case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
|
|
case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
|
|
case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
|
|
case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
|
|
case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
|
|
case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
|
|
case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
|
|
case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
|
|
case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
|
|
default: llvm_unreachable("Invalid opcode provided");
|
|
}
|
|
}
|
|
|
|
CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
|
|
const Twine &Name, BasicBlock *InsertAtEnd) {
|
|
assert(castIsValid(op, S, Ty) && "Invalid cast!");
|
|
// Construct and return the appropriate CastInst subclass
|
|
switch (op) {
|
|
case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
|
|
case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
|
|
case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
|
|
case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
|
|
case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
|
|
case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
|
|
case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
|
|
case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
|
|
case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
|
|
case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
|
|
case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
|
|
case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
|
|
case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
|
|
default: llvm_unreachable("Invalid opcode provided");
|
|
}
|
|
}
|
|
|
|
CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
|
|
return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
|
|
}
|
|
|
|
CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
|
|
return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
|
|
}
|
|
|
|
CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
|
|
return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
|
|
}
|
|
|
|
CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
|
|
return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
|
|
}
|
|
|
|
CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
|
|
return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
|
|
}
|
|
|
|
CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
|
|
return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
|
|
}
|
|
|
|
CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
|
|
assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
|
|
"Invalid cast");
|
|
assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
|
|
assert((!Ty->isVectorTy() ||
|
|
cast<VectorType>(Ty)->getElementCount() ==
|
|
cast<VectorType>(S->getType())->getElementCount()) &&
|
|
"Invalid cast");
|
|
|
|
if (Ty->isIntOrIntVectorTy())
|
|
return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
|
|
|
|
return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
|
|
}
|
|
|
|
/// Create a BitCast or a PtrToInt cast instruction
|
|
CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
|
|
assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
|
|
"Invalid cast");
|
|
assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
|
|
assert((!Ty->isVectorTy() ||
|
|
cast<VectorType>(Ty)->getElementCount() ==
|
|
cast<VectorType>(S->getType())->getElementCount()) &&
|
|
"Invalid cast");
|
|
|
|
if (Ty->isIntOrIntVectorTy())
|
|
return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
|
|
|
|
return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
|
|
}
|
|
|
|
CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
|
|
Value *S, Type *Ty,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
|
|
assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
|
|
|
|
if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
|
|
return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
|
|
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
|
|
}
|
|
|
|
CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
|
|
Value *S, Type *Ty,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
|
|
assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
|
|
|
|
if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
|
|
return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
|
|
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
|
|
}
|
|
|
|
CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
if (S->getType()->isPointerTy() && Ty->isIntegerTy())
|
|
return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
|
|
if (S->getType()->isIntegerTy() && Ty->isPointerTy())
|
|
return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
|
|
|
|
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
|
|
}
|
|
|
|
CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
|
|
bool isSigned, const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
|
|
"Invalid integer cast");
|
|
unsigned SrcBits = C->getType()->getScalarSizeInBits();
|
|
unsigned DstBits = Ty->getScalarSizeInBits();
|
|
Instruction::CastOps opcode =
|
|
(SrcBits == DstBits ? Instruction::BitCast :
|
|
(SrcBits > DstBits ? Instruction::Trunc :
|
|
(isSigned ? Instruction::SExt : Instruction::ZExt)));
|
|
return Create(opcode, C, Ty, Name, InsertBefore);
|
|
}
|
|
|
|
CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
|
|
bool isSigned, const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
|
|
"Invalid cast");
|
|
unsigned SrcBits = C->getType()->getScalarSizeInBits();
|
|
unsigned DstBits = Ty->getScalarSizeInBits();
|
|
Instruction::CastOps opcode =
|
|
(SrcBits == DstBits ? Instruction::BitCast :
|
|
(SrcBits > DstBits ? Instruction::Trunc :
|
|
(isSigned ? Instruction::SExt : Instruction::ZExt)));
|
|
return Create(opcode, C, Ty, Name, InsertAtEnd);
|
|
}
|
|
|
|
CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
|
|
const Twine &Name,
|
|
Instruction *InsertBefore) {
|
|
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
|
|
"Invalid cast");
|
|
unsigned SrcBits = C->getType()->getScalarSizeInBits();
|
|
unsigned DstBits = Ty->getScalarSizeInBits();
|
|
Instruction::CastOps opcode =
|
|
(SrcBits == DstBits ? Instruction::BitCast :
|
|
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
|
|
return Create(opcode, C, Ty, Name, InsertBefore);
|
|
}
|
|
|
|
CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
|
|
const Twine &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
|
|
"Invalid cast");
|
|
unsigned SrcBits = C->getType()->getScalarSizeInBits();
|
|
unsigned DstBits = Ty->getScalarSizeInBits();
|
|
Instruction::CastOps opcode =
|
|
(SrcBits == DstBits ? Instruction::BitCast :
|
|
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
|
|
return Create(opcode, C, Ty, Name, InsertAtEnd);
|
|
}
|
|
|
|
bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
|
|
if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
|
|
return false;
|
|
|
|
if (SrcTy == DestTy)
|
|
return true;
|
|
|
|
if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
|
|
if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
|
|
if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
|
|
// An element by element cast. Valid if casting the elements is valid.
|
|
SrcTy = SrcVecTy->getElementType();
|
|
DestTy = DestVecTy->getElementType();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
|
|
if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
|
|
return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
|
|
}
|
|
}
|
|
|
|
TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
|
|
TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
|
|
|
|
// Could still have vectors of pointers if the number of elements doesn't
|
|
// match
|
|
if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
|
|
return false;
|
|
|
|
if (SrcBits != DestBits)
|
|
return false;
|
|
|
|
if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
|
|
const DataLayout &DL) {
|
|
// ptrtoint and inttoptr are not allowed on non-integral pointers
|
|
if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
|
|
if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
|
|
return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
|
|
!DL.isNonIntegralPointerType(PtrTy));
|
|
if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
|
|
if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
|
|
return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
|
|
!DL.isNonIntegralPointerType(PtrTy));
|
|
|
|
return isBitCastable(SrcTy, DestTy);
|
|
}
|
|
|
|
// Provide a way to get a "cast" where the cast opcode is inferred from the
|
|
// types and size of the operand. This, basically, is a parallel of the
|
|
// logic in the castIsValid function below. This axiom should hold:
|
|
// castIsValid( getCastOpcode(Val, Ty), Val, Ty)
|
|
// should not assert in castIsValid. In other words, this produces a "correct"
|
|
// casting opcode for the arguments passed to it.
|
|
Instruction::CastOps
|
|
CastInst::getCastOpcode(
|
|
const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
|
|
Type *SrcTy = Src->getType();
|
|
|
|
assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
|
|
"Only first class types are castable!");
|
|
|
|
if (SrcTy == DestTy)
|
|
return BitCast;
|
|
|
|
// FIXME: Check address space sizes here
|
|
if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
|
|
if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
|
|
if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
|
|
// An element by element cast. Find the appropriate opcode based on the
|
|
// element types.
|
|
SrcTy = SrcVecTy->getElementType();
|
|
DestTy = DestVecTy->getElementType();
|
|
}
|
|
|
|
// Get the bit sizes, we'll need these
|
|
unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
|
|
unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
|
|
|
|
// Run through the possibilities ...
|
|
if (DestTy->isIntegerTy()) { // Casting to integral
|
|
if (SrcTy->isIntegerTy()) { // Casting from integral
|
|
if (DestBits < SrcBits)
|
|
return Trunc; // int -> smaller int
|
|
else if (DestBits > SrcBits) { // its an extension
|
|
if (SrcIsSigned)
|
|
return SExt; // signed -> SEXT
|
|
else
|
|
return ZExt; // unsigned -> ZEXT
|
|
} else {
|
|
return BitCast; // Same size, No-op cast
|
|
}
|
|
} else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
|
|
if (DestIsSigned)
|
|
return FPToSI; // FP -> sint
|
|
else
|
|
return FPToUI; // FP -> uint
|
|
} else if (SrcTy->isVectorTy()) {
|
|
assert(DestBits == SrcBits &&
|
|
"Casting vector to integer of different width");
|
|
return BitCast; // Same size, no-op cast
|
|
} else {
|
|
assert(SrcTy->isPointerTy() &&
|
|
"Casting from a value that is not first-class type");
|
|
return PtrToInt; // ptr -> int
|
|
}
|
|
} else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
|
|
if (SrcTy->isIntegerTy()) { // Casting from integral
|
|
if (SrcIsSigned)
|
|
return SIToFP; // sint -> FP
|
|
else
|
|
return UIToFP; // uint -> FP
|
|
} else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
|
|
if (DestBits < SrcBits) {
|
|
return FPTrunc; // FP -> smaller FP
|
|
} else if (DestBits > SrcBits) {
|
|
return FPExt; // FP -> larger FP
|
|
} else {
|
|
return BitCast; // same size, no-op cast
|
|
}
|
|
} else if (SrcTy->isVectorTy()) {
|
|
assert(DestBits == SrcBits &&
|
|
"Casting vector to floating point of different width");
|
|
return BitCast; // same size, no-op cast
|
|
}
|
|
llvm_unreachable("Casting pointer or non-first class to float");
|
|
} else if (DestTy->isVectorTy()) {
|
|
assert(DestBits == SrcBits &&
|
|
"Illegal cast to vector (wrong type or size)");
|
|
return BitCast;
|
|
} else if (DestTy->isPointerTy()) {
|
|
if (SrcTy->isPointerTy()) {
|
|
if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
|
|
return AddrSpaceCast;
|
|
return BitCast; // ptr -> ptr
|
|
} else if (SrcTy->isIntegerTy()) {
|
|
return IntToPtr; // int -> ptr
|
|
}
|
|
llvm_unreachable("Casting pointer to other than pointer or int");
|
|
} else if (DestTy->isX86_MMXTy()) {
|
|
if (SrcTy->isVectorTy()) {
|
|
assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
|
|
return BitCast; // 64-bit vector to MMX
|
|
}
|
|
llvm_unreachable("Illegal cast to X86_MMX");
|
|
}
|
|
llvm_unreachable("Casting to type that is not first-class");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CastInst SubClass Constructors
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Check that the construction parameters for a CastInst are correct. This
|
|
/// could be broken out into the separate constructors but it is useful to have
|
|
/// it in one place and to eliminate the redundant code for getting the sizes
|
|
/// of the types involved.
|
|
bool
|
|
CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
|
|
if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
|
|
SrcTy->isAggregateType() || DstTy->isAggregateType())
|
|
return false;
|
|
|
|
// Get the size of the types in bits, and whether we are dealing
|
|
// with vector types, we'll need this later.
|
|
bool SrcIsVec = isa<VectorType>(SrcTy);
|
|
bool DstIsVec = isa<VectorType>(DstTy);
|
|
unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
|
|
unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
|
|
|
|
// If these are vector types, get the lengths of the vectors (using zero for
|
|
// scalar types means that checking that vector lengths match also checks that
|
|
// scalars are not being converted to vectors or vectors to scalars).
|
|
ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
|
|
: ElementCount::getFixed(0);
|
|
ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
|
|
: ElementCount::getFixed(0);
|
|
|
|
// Switch on the opcode provided
|
|
switch (op) {
|
|
default: return false; // This is an input error
|
|
case Instruction::Trunc:
|
|
return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
|
|
SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
|
|
case Instruction::ZExt:
|
|
return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
|
|
SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
|
|
case Instruction::SExt:
|
|
return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
|
|
SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
|
|
case Instruction::FPTrunc:
|
|
return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
|
|
SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
|
|
case Instruction::FPExt:
|
|
return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
|
|
SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
|
|
SrcEC == DstEC;
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
|
|
SrcEC == DstEC;
|
|
case Instruction::PtrToInt:
|
|
if (SrcEC != DstEC)
|
|
return false;
|
|
return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
|
|
case Instruction::IntToPtr:
|
|
if (SrcEC != DstEC)
|
|
return false;
|
|
return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
|
|
case Instruction::BitCast: {
|
|
PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
|
|
PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
|
|
|
|
// BitCast implies a no-op cast of type only. No bits change.
|
|
// However, you can't cast pointers to anything but pointers.
|
|
if (!SrcPtrTy != !DstPtrTy)
|
|
return false;
|
|
|
|
// For non-pointer cases, the cast is okay if the source and destination bit
|
|
// widths are identical.
|
|
if (!SrcPtrTy)
|
|
return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
|
|
|
|
// If both are pointers then the address spaces must match.
|
|
if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
|
|
return false;
|
|
|
|
// A vector of pointers must have the same number of elements.
|
|
if (SrcIsVec && DstIsVec)
|
|
return SrcEC == DstEC;
|
|
if (SrcIsVec)
|
|
return SrcEC == ElementCount::getFixed(1);
|
|
if (DstIsVec)
|
|
return DstEC == ElementCount::getFixed(1);
|
|
|
|
return true;
|
|
}
|
|
case Instruction::AddrSpaceCast: {
|
|
PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
|
|
if (!SrcPtrTy)
|
|
return false;
|
|
|
|
PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
|
|
if (!DstPtrTy)
|
|
return false;
|
|
|
|
if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
|
|
return false;
|
|
|
|
return SrcEC == DstEC;
|
|
}
|
|
}
|
|
}
|
|
|
|
TruncInst::TruncInst(
|
|
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
|
|
}
|
|
|
|
TruncInst::TruncInst(
|
|
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
|
|
}
|
|
|
|
ZExtInst::ZExtInst(
|
|
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
|
|
}
|
|
|
|
ZExtInst::ZExtInst(
|
|
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
|
|
}
|
|
SExtInst::SExtInst(
|
|
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, SExt, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
|
|
}
|
|
|
|
SExtInst::SExtInst(
|
|
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
|
|
}
|
|
|
|
FPTruncInst::FPTruncInst(
|
|
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
|
|
}
|
|
|
|
FPTruncInst::FPTruncInst(
|
|
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
|
|
}
|
|
|
|
FPExtInst::FPExtInst(
|
|
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
|
|
}
|
|
|
|
FPExtInst::FPExtInst(
|
|
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
|
|
}
|
|
|
|
UIToFPInst::UIToFPInst(
|
|
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
|
|
}
|
|
|
|
UIToFPInst::UIToFPInst(
|
|
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
|
|
}
|
|
|
|
SIToFPInst::SIToFPInst(
|
|
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
|
|
}
|
|
|
|
SIToFPInst::SIToFPInst(
|
|
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
|
|
}
|
|
|
|
FPToUIInst::FPToUIInst(
|
|
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
|
|
}
|
|
|
|
FPToUIInst::FPToUIInst(
|
|
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
|
|
}
|
|
|
|
FPToSIInst::FPToSIInst(
|
|
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
|
|
}
|
|
|
|
FPToSIInst::FPToSIInst(
|
|
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
|
|
}
|
|
|
|
PtrToIntInst::PtrToIntInst(
|
|
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
|
|
}
|
|
|
|
PtrToIntInst::PtrToIntInst(
|
|
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
|
|
}
|
|
|
|
IntToPtrInst::IntToPtrInst(
|
|
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
|
|
}
|
|
|
|
IntToPtrInst::IntToPtrInst(
|
|
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
|
|
}
|
|
|
|
BitCastInst::BitCastInst(
|
|
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
|
|
}
|
|
|
|
BitCastInst::BitCastInst(
|
|
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
|
|
}
|
|
|
|
AddrSpaceCastInst::AddrSpaceCastInst(
|
|
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
|
|
) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
|
|
}
|
|
|
|
AddrSpaceCastInst::AddrSpaceCastInst(
|
|
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
|
|
) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
|
|
assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CmpInst Classes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
|
|
Value *RHS, const Twine &Name, Instruction *InsertBefore,
|
|
Instruction *FlagsSource)
|
|
: Instruction(ty, op,
|
|
OperandTraits<CmpInst>::op_begin(this),
|
|
OperandTraits<CmpInst>::operands(this),
|
|
InsertBefore) {
|
|
Op<0>() = LHS;
|
|
Op<1>() = RHS;
|
|
setPredicate((Predicate)predicate);
|
|
setName(Name);
|
|
if (FlagsSource)
|
|
copyIRFlags(FlagsSource);
|
|
}
|
|
|
|
CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
|
|
Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
|
|
: Instruction(ty, op,
|
|
OperandTraits<CmpInst>::op_begin(this),
|
|
OperandTraits<CmpInst>::operands(this),
|
|
InsertAtEnd) {
|
|
Op<0>() = LHS;
|
|
Op<1>() = RHS;
|
|
setPredicate((Predicate)predicate);
|
|
setName(Name);
|
|
}
|
|
|
|
CmpInst *
|
|
CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
|
|
const Twine &Name, Instruction *InsertBefore) {
|
|
if (Op == Instruction::ICmp) {
|
|
if (InsertBefore)
|
|
return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
|
|
S1, S2, Name);
|
|
else
|
|
return new ICmpInst(CmpInst::Predicate(predicate),
|
|
S1, S2, Name);
|
|
}
|
|
|
|
if (InsertBefore)
|
|
return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
|
|
S1, S2, Name);
|
|
else
|
|
return new FCmpInst(CmpInst::Predicate(predicate),
|
|
S1, S2, Name);
|
|
}
|
|
|
|
CmpInst *
|
|
CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
|
|
const Twine &Name, BasicBlock *InsertAtEnd) {
|
|
if (Op == Instruction::ICmp) {
|
|
return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
|
|
S1, S2, Name);
|
|
}
|
|
return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
|
|
S1, S2, Name);
|
|
}
|
|
|
|
void CmpInst::swapOperands() {
|
|
if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
|
|
IC->swapOperands();
|
|
else
|
|
cast<FCmpInst>(this)->swapOperands();
|
|
}
|
|
|
|
bool CmpInst::isCommutative() const {
|
|
if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
|
|
return IC->isCommutative();
|
|
return cast<FCmpInst>(this)->isCommutative();
|
|
}
|
|
|
|
bool CmpInst::isEquality(Predicate P) {
|
|
if (ICmpInst::isIntPredicate(P))
|
|
return ICmpInst::isEquality(P);
|
|
if (FCmpInst::isFPPredicate(P))
|
|
return FCmpInst::isEquality(P);
|
|
llvm_unreachable("Unsupported predicate kind");
|
|
}
|
|
|
|
CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
|
|
switch (pred) {
|
|
default: llvm_unreachable("Unknown cmp predicate!");
|
|
case ICMP_EQ: return ICMP_NE;
|
|
case ICMP_NE: return ICMP_EQ;
|
|
case ICMP_UGT: return ICMP_ULE;
|
|
case ICMP_ULT: return ICMP_UGE;
|
|
case ICMP_UGE: return ICMP_ULT;
|
|
case ICMP_ULE: return ICMP_UGT;
|
|
case ICMP_SGT: return ICMP_SLE;
|
|
case ICMP_SLT: return ICMP_SGE;
|
|
case ICMP_SGE: return ICMP_SLT;
|
|
case ICMP_SLE: return ICMP_SGT;
|
|
|
|
case FCMP_OEQ: return FCMP_UNE;
|
|
case FCMP_ONE: return FCMP_UEQ;
|
|
case FCMP_OGT: return FCMP_ULE;
|
|
case FCMP_OLT: return FCMP_UGE;
|
|
case FCMP_OGE: return FCMP_ULT;
|
|
case FCMP_OLE: return FCMP_UGT;
|
|
case FCMP_UEQ: return FCMP_ONE;
|
|
case FCMP_UNE: return FCMP_OEQ;
|
|
case FCMP_UGT: return FCMP_OLE;
|
|
case FCMP_ULT: return FCMP_OGE;
|
|
case FCMP_UGE: return FCMP_OLT;
|
|
case FCMP_ULE: return FCMP_OGT;
|
|
case FCMP_ORD: return FCMP_UNO;
|
|
case FCMP_UNO: return FCMP_ORD;
|
|
case FCMP_TRUE: return FCMP_FALSE;
|
|
case FCMP_FALSE: return FCMP_TRUE;
|
|
}
|
|
}
|
|
|
|
StringRef CmpInst::getPredicateName(Predicate Pred) {
|
|
switch (Pred) {
|
|
default: return "unknown";
|
|
case FCmpInst::FCMP_FALSE: return "false";
|
|
case FCmpInst::FCMP_OEQ: return "oeq";
|
|
case FCmpInst::FCMP_OGT: return "ogt";
|
|
case FCmpInst::FCMP_OGE: return "oge";
|
|
case FCmpInst::FCMP_OLT: return "olt";
|
|
case FCmpInst::FCMP_OLE: return "ole";
|
|
case FCmpInst::FCMP_ONE: return "one";
|
|
case FCmpInst::FCMP_ORD: return "ord";
|
|
case FCmpInst::FCMP_UNO: return "uno";
|
|
case FCmpInst::FCMP_UEQ: return "ueq";
|
|
case FCmpInst::FCMP_UGT: return "ugt";
|
|
case FCmpInst::FCMP_UGE: return "uge";
|
|
case FCmpInst::FCMP_ULT: return "ult";
|
|
case FCmpInst::FCMP_ULE: return "ule";
|
|
case FCmpInst::FCMP_UNE: return "une";
|
|
case FCmpInst::FCMP_TRUE: return "true";
|
|
case ICmpInst::ICMP_EQ: return "eq";
|
|
case ICmpInst::ICMP_NE: return "ne";
|
|
case ICmpInst::ICMP_SGT: return "sgt";
|
|
case ICmpInst::ICMP_SGE: return "sge";
|
|
case ICmpInst::ICMP_SLT: return "slt";
|
|
case ICmpInst::ICMP_SLE: return "sle";
|
|
case ICmpInst::ICMP_UGT: return "ugt";
|
|
case ICmpInst::ICMP_UGE: return "uge";
|
|
case ICmpInst::ICMP_ULT: return "ult";
|
|
case ICmpInst::ICMP_ULE: return "ule";
|
|
}
|
|
}
|
|
|
|
ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
|
|
switch (pred) {
|
|
default: llvm_unreachable("Unknown icmp predicate!");
|
|
case ICMP_EQ: case ICMP_NE:
|
|
case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
|
|
return pred;
|
|
case ICMP_UGT: return ICMP_SGT;
|
|
case ICMP_ULT: return ICMP_SLT;
|
|
case ICMP_UGE: return ICMP_SGE;
|
|
case ICMP_ULE: return ICMP_SLE;
|
|
}
|
|
}
|
|
|
|
ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
|
|
switch (pred) {
|
|
default: llvm_unreachable("Unknown icmp predicate!");
|
|
case ICMP_EQ: case ICMP_NE:
|
|
case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
|
|
return pred;
|
|
case ICMP_SGT: return ICMP_UGT;
|
|
case ICMP_SLT: return ICMP_ULT;
|
|
case ICMP_SGE: return ICMP_UGE;
|
|
case ICMP_SLE: return ICMP_ULE;
|
|
}
|
|
}
|
|
|
|
CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
|
|
switch (pred) {
|
|
default: llvm_unreachable("Unknown cmp predicate!");
|
|
case ICMP_EQ: case ICMP_NE:
|
|
return pred;
|
|
case ICMP_SGT: return ICMP_SLT;
|
|
case ICMP_SLT: return ICMP_SGT;
|
|
case ICMP_SGE: return ICMP_SLE;
|
|
case ICMP_SLE: return ICMP_SGE;
|
|
case ICMP_UGT: return ICMP_ULT;
|
|
case ICMP_ULT: return ICMP_UGT;
|
|
case ICMP_UGE: return ICMP_ULE;
|
|
case ICMP_ULE: return ICMP_UGE;
|
|
|
|
case FCMP_FALSE: case FCMP_TRUE:
|
|
case FCMP_OEQ: case FCMP_ONE:
|
|
case FCMP_UEQ: case FCMP_UNE:
|
|
case FCMP_ORD: case FCMP_UNO:
|
|
return pred;
|
|
case FCMP_OGT: return FCMP_OLT;
|
|
case FCMP_OLT: return FCMP_OGT;
|
|
case FCMP_OGE: return FCMP_OLE;
|
|
case FCMP_OLE: return FCMP_OGE;
|
|
case FCMP_UGT: return FCMP_ULT;
|
|
case FCMP_ULT: return FCMP_UGT;
|
|
case FCMP_UGE: return FCMP_ULE;
|
|
case FCMP_ULE: return FCMP_UGE;
|
|
}
|
|
}
|
|
|
|
bool CmpInst::isNonStrictPredicate(Predicate pred) {
|
|
switch (pred) {
|
|
case ICMP_SGE:
|
|
case ICMP_SLE:
|
|
case ICMP_UGE:
|
|
case ICMP_ULE:
|
|
case FCMP_OGE:
|
|
case FCMP_OLE:
|
|
case FCMP_UGE:
|
|
case FCMP_ULE:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool CmpInst::isStrictPredicate(Predicate pred) {
|
|
switch (pred) {
|
|
case ICMP_SGT:
|
|
case ICMP_SLT:
|
|
case ICMP_UGT:
|
|
case ICMP_ULT:
|
|
case FCMP_OGT:
|
|
case FCMP_OLT:
|
|
case FCMP_UGT:
|
|
case FCMP_ULT:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
|
|
switch (pred) {
|
|
case ICMP_SGE:
|
|
return ICMP_SGT;
|
|
case ICMP_SLE:
|
|
return ICMP_SLT;
|
|
case ICMP_UGE:
|
|
return ICMP_UGT;
|
|
case ICMP_ULE:
|
|
return ICMP_ULT;
|
|
case FCMP_OGE:
|
|
return FCMP_OGT;
|
|
case FCMP_OLE:
|
|
return FCMP_OLT;
|
|
case FCMP_UGE:
|
|
return FCMP_UGT;
|
|
case FCMP_ULE:
|
|
return FCMP_ULT;
|
|
default:
|
|
return pred;
|
|
}
|
|
}
|
|
|
|
CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
|
|
switch (pred) {
|
|
case ICMP_SGT:
|
|
return ICMP_SGE;
|
|
case ICMP_SLT:
|
|
return ICMP_SLE;
|
|
case ICMP_UGT:
|
|
return ICMP_UGE;
|
|
case ICMP_ULT:
|
|
return ICMP_ULE;
|
|
case FCMP_OGT:
|
|
return FCMP_OGE;
|
|
case FCMP_OLT:
|
|
return FCMP_OLE;
|
|
case FCMP_UGT:
|
|
return FCMP_UGE;
|
|
case FCMP_ULT:
|
|
return FCMP_ULE;
|
|
default:
|
|
return pred;
|
|
}
|
|
}
|
|
|
|
CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
|
|
assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
|
|
|
|
if (isStrictPredicate(pred))
|
|
return getNonStrictPredicate(pred);
|
|
if (isNonStrictPredicate(pred))
|
|
return getStrictPredicate(pred);
|
|
|
|
llvm_unreachable("Unknown predicate!");
|
|
}
|
|
|
|
CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
|
|
assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
|
|
|
|
switch (pred) {
|
|
default:
|
|
llvm_unreachable("Unknown predicate!");
|
|
case CmpInst::ICMP_ULT:
|
|
return CmpInst::ICMP_SLT;
|
|
case CmpInst::ICMP_ULE:
|
|
return CmpInst::ICMP_SLE;
|
|
case CmpInst::ICMP_UGT:
|
|
return CmpInst::ICMP_SGT;
|
|
case CmpInst::ICMP_UGE:
|
|
return CmpInst::ICMP_SGE;
|
|
}
|
|
}
|
|
|
|
CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
|
|
assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
|
|
|
|
switch (pred) {
|
|
default:
|
|
llvm_unreachable("Unknown predicate!");
|
|
case CmpInst::ICMP_SLT:
|
|
return CmpInst::ICMP_ULT;
|
|
case CmpInst::ICMP_SLE:
|
|
return CmpInst::ICMP_ULE;
|
|
case CmpInst::ICMP_SGT:
|
|
return CmpInst::ICMP_UGT;
|
|
case CmpInst::ICMP_SGE:
|
|
return CmpInst::ICMP_UGE;
|
|
}
|
|
}
|
|
|
|
bool CmpInst::isUnsigned(Predicate predicate) {
|
|
switch (predicate) {
|
|
default: return false;
|
|
case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
|
|
case ICmpInst::ICMP_UGE: return true;
|
|
}
|
|
}
|
|
|
|
bool CmpInst::isSigned(Predicate predicate) {
|
|
switch (predicate) {
|
|
default: return false;
|
|
case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
|
|
case ICmpInst::ICMP_SGE: return true;
|
|
}
|
|
}
|
|
|
|
CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
|
|
assert(CmpInst::isRelational(pred) &&
|
|
"Call only with non-equality predicates!");
|
|
|
|
if (isSigned(pred))
|
|
return getUnsignedPredicate(pred);
|
|
if (isUnsigned(pred))
|
|
return getSignedPredicate(pred);
|
|
|
|
llvm_unreachable("Unknown predicate!");
|
|
}
|
|
|
|
bool CmpInst::isOrdered(Predicate predicate) {
|
|
switch (predicate) {
|
|
default: return false;
|
|
case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
|
|
case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
|
|
case FCmpInst::FCMP_ORD: return true;
|
|
}
|
|
}
|
|
|
|
bool CmpInst::isUnordered(Predicate predicate) {
|
|
switch (predicate) {
|
|
default: return false;
|
|
case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
|
|
case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
|
|
case FCmpInst::FCMP_UNO: return true;
|
|
}
|
|
}
|
|
|
|
bool CmpInst::isTrueWhenEqual(Predicate predicate) {
|
|
switch(predicate) {
|
|
default: return false;
|
|
case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
|
|
case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
|
|
}
|
|
}
|
|
|
|
bool CmpInst::isFalseWhenEqual(Predicate predicate) {
|
|
switch(predicate) {
|
|
case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
|
|
case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
|
|
default: return false;
|
|
}
|
|
}
|
|
|
|
bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
|
|
// If the predicates match, then we know the first condition implies the
|
|
// second is true.
|
|
if (Pred1 == Pred2)
|
|
return true;
|
|
|
|
switch (Pred1) {
|
|
default:
|
|
break;
|
|
case ICMP_EQ:
|
|
// A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
|
|
return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
|
|
Pred2 == ICMP_SLE;
|
|
case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
|
|
return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
|
|
case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
|
|
return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
|
|
case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
|
|
return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
|
|
case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
|
|
return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
|
|
return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SwitchInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
|
|
assert(Value && Default && NumReserved);
|
|
ReservedSpace = NumReserved;
|
|
setNumHungOffUseOperands(2);
|
|
allocHungoffUses(ReservedSpace);
|
|
|
|
Op<0>() = Value;
|
|
Op<1>() = Default;
|
|
}
|
|
|
|
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
|
|
/// switch on and a default destination. The number of additional cases can
|
|
/// be specified here to make memory allocation more efficient. This
|
|
/// constructor can also autoinsert before another instruction.
|
|
SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
|
|
Instruction *InsertBefore)
|
|
: Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
|
|
nullptr, 0, InsertBefore) {
|
|
init(Value, Default, 2+NumCases*2);
|
|
}
|
|
|
|
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
|
|
/// switch on and a default destination. The number of additional cases can
|
|
/// be specified here to make memory allocation more efficient. This
|
|
/// constructor also autoinserts at the end of the specified BasicBlock.
|
|
SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
|
|
nullptr, 0, InsertAtEnd) {
|
|
init(Value, Default, 2+NumCases*2);
|
|
}
|
|
|
|
SwitchInst::SwitchInst(const SwitchInst &SI)
|
|
: Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
|
|
init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
|
|
setNumHungOffUseOperands(SI.getNumOperands());
|
|
Use *OL = getOperandList();
|
|
const Use *InOL = SI.getOperandList();
|
|
for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
|
|
OL[i] = InOL[i];
|
|
OL[i+1] = InOL[i+1];
|
|
}
|
|
SubclassOptionalData = SI.SubclassOptionalData;
|
|
}
|
|
|
|
/// addCase - Add an entry to the switch instruction...
|
|
///
|
|
void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
|
|
unsigned NewCaseIdx = getNumCases();
|
|
unsigned OpNo = getNumOperands();
|
|
if (OpNo+2 > ReservedSpace)
|
|
growOperands(); // Get more space!
|
|
// Initialize some new operands.
|
|
assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
|
|
setNumHungOffUseOperands(OpNo+2);
|
|
CaseHandle Case(this, NewCaseIdx);
|
|
Case.setValue(OnVal);
|
|
Case.setSuccessor(Dest);
|
|
}
|
|
|
|
/// removeCase - This method removes the specified case and its successor
|
|
/// from the switch instruction.
|
|
SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
|
|
unsigned idx = I->getCaseIndex();
|
|
|
|
assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
|
|
|
|
unsigned NumOps = getNumOperands();
|
|
Use *OL = getOperandList();
|
|
|
|
// Overwrite this case with the end of the list.
|
|
if (2 + (idx + 1) * 2 != NumOps) {
|
|
OL[2 + idx * 2] = OL[NumOps - 2];
|
|
OL[2 + idx * 2 + 1] = OL[NumOps - 1];
|
|
}
|
|
|
|
// Nuke the last value.
|
|
OL[NumOps-2].set(nullptr);
|
|
OL[NumOps-2+1].set(nullptr);
|
|
setNumHungOffUseOperands(NumOps-2);
|
|
|
|
return CaseIt(this, idx);
|
|
}
|
|
|
|
/// growOperands - grow operands - This grows the operand list in response
|
|
/// to a push_back style of operation. This grows the number of ops by 3 times.
|
|
///
|
|
void SwitchInst::growOperands() {
|
|
unsigned e = getNumOperands();
|
|
unsigned NumOps = e*3;
|
|
|
|
ReservedSpace = NumOps;
|
|
growHungoffUses(ReservedSpace);
|
|
}
|
|
|
|
MDNode *
|
|
SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
|
|
if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
|
|
if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
|
|
if (MDName->getString() == "branch_weights")
|
|
return ProfileData;
|
|
return nullptr;
|
|
}
|
|
|
|
MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
|
|
assert(Changed && "called only if metadata has changed");
|
|
|
|
if (!Weights)
|
|
return nullptr;
|
|
|
|
assert(SI.getNumSuccessors() == Weights->size() &&
|
|
"num of prof branch_weights must accord with num of successors");
|
|
|
|
bool AllZeroes =
|
|
all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
|
|
|
|
if (AllZeroes || Weights.getValue().size() < 2)
|
|
return nullptr;
|
|
|
|
return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
|
|
}
|
|
|
|
void SwitchInstProfUpdateWrapper::init() {
|
|
MDNode *ProfileData = getProfBranchWeightsMD(SI);
|
|
if (!ProfileData)
|
|
return;
|
|
|
|
if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
|
|
llvm_unreachable("number of prof branch_weights metadata operands does "
|
|
"not correspond to number of succesors");
|
|
}
|
|
|
|
SmallVector<uint32_t, 8> Weights;
|
|
for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
|
|
ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
|
|
uint32_t CW = C->getValue().getZExtValue();
|
|
Weights.push_back(CW);
|
|
}
|
|
this->Weights = std::move(Weights);
|
|
}
|
|
|
|
SwitchInst::CaseIt
|
|
SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
|
|
if (Weights) {
|
|
assert(SI.getNumSuccessors() == Weights->size() &&
|
|
"num of prof branch_weights must accord with num of successors");
|
|
Changed = true;
|
|
// Copy the last case to the place of the removed one and shrink.
|
|
// This is tightly coupled with the way SwitchInst::removeCase() removes
|
|
// the cases in SwitchInst::removeCase(CaseIt).
|
|
Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
|
|
Weights.getValue().pop_back();
|
|
}
|
|
return SI.removeCase(I);
|
|
}
|
|
|
|
void SwitchInstProfUpdateWrapper::addCase(
|
|
ConstantInt *OnVal, BasicBlock *Dest,
|
|
SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
|
|
SI.addCase(OnVal, Dest);
|
|
|
|
if (!Weights && W && *W) {
|
|
Changed = true;
|
|
Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
|
|
Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
|
|
} else if (Weights) {
|
|
Changed = true;
|
|
Weights.getValue().push_back(W ? *W : 0);
|
|
}
|
|
if (Weights)
|
|
assert(SI.getNumSuccessors() == Weights->size() &&
|
|
"num of prof branch_weights must accord with num of successors");
|
|
}
|
|
|
|
SymbolTableList<Instruction>::iterator
|
|
SwitchInstProfUpdateWrapper::eraseFromParent() {
|
|
// Instruction is erased. Mark as unchanged to not touch it in the destructor.
|
|
Changed = false;
|
|
if (Weights)
|
|
Weights->resize(0);
|
|
return SI.eraseFromParent();
|
|
}
|
|
|
|
SwitchInstProfUpdateWrapper::CaseWeightOpt
|
|
SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
|
|
if (!Weights)
|
|
return None;
|
|
return Weights.getValue()[idx];
|
|
}
|
|
|
|
void SwitchInstProfUpdateWrapper::setSuccessorWeight(
|
|
unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
|
|
if (!W)
|
|
return;
|
|
|
|
if (!Weights && *W)
|
|
Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
|
|
|
|
if (Weights) {
|
|
auto &OldW = Weights.getValue()[idx];
|
|
if (*W != OldW) {
|
|
Changed = true;
|
|
OldW = *W;
|
|
}
|
|
}
|
|
}
|
|
|
|
SwitchInstProfUpdateWrapper::CaseWeightOpt
|
|
SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
|
|
unsigned idx) {
|
|
if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
|
|
if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
|
|
return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
|
|
->getValue()
|
|
.getZExtValue();
|
|
|
|
return None;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IndirectBrInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void IndirectBrInst::init(Value *Address, unsigned NumDests) {
|
|
assert(Address && Address->getType()->isPointerTy() &&
|
|
"Address of indirectbr must be a pointer");
|
|
ReservedSpace = 1+NumDests;
|
|
setNumHungOffUseOperands(1);
|
|
allocHungoffUses(ReservedSpace);
|
|
|
|
Op<0>() = Address;
|
|
}
|
|
|
|
|
|
/// growOperands - grow operands - This grows the operand list in response
|
|
/// to a push_back style of operation. This grows the number of ops by 2 times.
|
|
///
|
|
void IndirectBrInst::growOperands() {
|
|
unsigned e = getNumOperands();
|
|
unsigned NumOps = e*2;
|
|
|
|
ReservedSpace = NumOps;
|
|
growHungoffUses(ReservedSpace);
|
|
}
|
|
|
|
IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
|
|
Instruction *InsertBefore)
|
|
: Instruction(Type::getVoidTy(Address->getContext()),
|
|
Instruction::IndirectBr, nullptr, 0, InsertBefore) {
|
|
init(Address, NumCases);
|
|
}
|
|
|
|
IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::getVoidTy(Address->getContext()),
|
|
Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
|
|
init(Address, NumCases);
|
|
}
|
|
|
|
IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
|
|
: Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
|
|
nullptr, IBI.getNumOperands()) {
|
|
allocHungoffUses(IBI.getNumOperands());
|
|
Use *OL = getOperandList();
|
|
const Use *InOL = IBI.getOperandList();
|
|
for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
|
|
OL[i] = InOL[i];
|
|
SubclassOptionalData = IBI.SubclassOptionalData;
|
|
}
|
|
|
|
/// addDestination - Add a destination.
|
|
///
|
|
void IndirectBrInst::addDestination(BasicBlock *DestBB) {
|
|
unsigned OpNo = getNumOperands();
|
|
if (OpNo+1 > ReservedSpace)
|
|
growOperands(); // Get more space!
|
|
// Initialize some new operands.
|
|
assert(OpNo < ReservedSpace && "Growing didn't work!");
|
|
setNumHungOffUseOperands(OpNo+1);
|
|
getOperandList()[OpNo] = DestBB;
|
|
}
|
|
|
|
/// removeDestination - This method removes the specified successor from the
|
|
/// indirectbr instruction.
|
|
void IndirectBrInst::removeDestination(unsigned idx) {
|
|
assert(idx < getNumOperands()-1 && "Successor index out of range!");
|
|
|
|
unsigned NumOps = getNumOperands();
|
|
Use *OL = getOperandList();
|
|
|
|
// Replace this value with the last one.
|
|
OL[idx+1] = OL[NumOps-1];
|
|
|
|
// Nuke the last value.
|
|
OL[NumOps-1].set(nullptr);
|
|
setNumHungOffUseOperands(NumOps-1);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FreezeInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FreezeInst::FreezeInst(Value *S,
|
|
const Twine &Name, Instruction *InsertBefore)
|
|
: UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
|
|
setName(Name);
|
|
}
|
|
|
|
FreezeInst::FreezeInst(Value *S,
|
|
const Twine &Name, BasicBlock *InsertAtEnd)
|
|
: UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
|
|
setName(Name);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// cloneImpl() implementations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Define these methods here so vtables don't get emitted into every translation
|
|
// unit that uses these classes.
|
|
|
|
GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
|
|
return new (getNumOperands()) GetElementPtrInst(*this);
|
|
}
|
|
|
|
UnaryOperator *UnaryOperator::cloneImpl() const {
|
|
return Create(getOpcode(), Op<0>());
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::cloneImpl() const {
|
|
return Create(getOpcode(), Op<0>(), Op<1>());
|
|
}
|
|
|
|
FCmpInst *FCmpInst::cloneImpl() const {
|
|
return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
|
|
}
|
|
|
|
ICmpInst *ICmpInst::cloneImpl() const {
|
|
return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
|
|
}
|
|
|
|
ExtractValueInst *ExtractValueInst::cloneImpl() const {
|
|
return new ExtractValueInst(*this);
|
|
}
|
|
|
|
InsertValueInst *InsertValueInst::cloneImpl() const {
|
|
return new InsertValueInst(*this);
|
|
}
|
|
|
|
AllocaInst *AllocaInst::cloneImpl() const {
|
|
AllocaInst *Result =
|
|
new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
|
|
getOperand(0), getAlign());
|
|
Result->setUsedWithInAlloca(isUsedWithInAlloca());
|
|
Result->setSwiftError(isSwiftError());
|
|
return Result;
|
|
}
|
|
|
|
LoadInst *LoadInst::cloneImpl() const {
|
|
return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
|
|
getAlign(), getOrdering(), getSyncScopeID());
|
|
}
|
|
|
|
StoreInst *StoreInst::cloneImpl() const {
|
|
return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
|
|
getOrdering(), getSyncScopeID());
|
|
}
|
|
|
|
AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
|
|
AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
|
|
getOperand(0), getOperand(1), getOperand(2), getAlign(),
|
|
getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
|
|
Result->setVolatile(isVolatile());
|
|
Result->setWeak(isWeak());
|
|
return Result;
|
|
}
|
|
|
|
AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
|
|
AtomicRMWInst *Result =
|
|
new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
|
|
getAlign(), getOrdering(), getSyncScopeID());
|
|
Result->setVolatile(isVolatile());
|
|
return Result;
|
|
}
|
|
|
|
FenceInst *FenceInst::cloneImpl() const {
|
|
return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
|
|
}
|
|
|
|
TruncInst *TruncInst::cloneImpl() const {
|
|
return new TruncInst(getOperand(0), getType());
|
|
}
|
|
|
|
ZExtInst *ZExtInst::cloneImpl() const {
|
|
return new ZExtInst(getOperand(0), getType());
|
|
}
|
|
|
|
SExtInst *SExtInst::cloneImpl() const {
|
|
return new SExtInst(getOperand(0), getType());
|
|
}
|
|
|
|
FPTruncInst *FPTruncInst::cloneImpl() const {
|
|
return new FPTruncInst(getOperand(0), getType());
|
|
}
|
|
|
|
FPExtInst *FPExtInst::cloneImpl() const {
|
|
return new FPExtInst(getOperand(0), getType());
|
|
}
|
|
|
|
UIToFPInst *UIToFPInst::cloneImpl() const {
|
|
return new UIToFPInst(getOperand(0), getType());
|
|
}
|
|
|
|
SIToFPInst *SIToFPInst::cloneImpl() const {
|
|
return new SIToFPInst(getOperand(0), getType());
|
|
}
|
|
|
|
FPToUIInst *FPToUIInst::cloneImpl() const {
|
|
return new FPToUIInst(getOperand(0), getType());
|
|
}
|
|
|
|
FPToSIInst *FPToSIInst::cloneImpl() const {
|
|
return new FPToSIInst(getOperand(0), getType());
|
|
}
|
|
|
|
PtrToIntInst *PtrToIntInst::cloneImpl() const {
|
|
return new PtrToIntInst(getOperand(0), getType());
|
|
}
|
|
|
|
IntToPtrInst *IntToPtrInst::cloneImpl() const {
|
|
return new IntToPtrInst(getOperand(0), getType());
|
|
}
|
|
|
|
BitCastInst *BitCastInst::cloneImpl() const {
|
|
return new BitCastInst(getOperand(0), getType());
|
|
}
|
|
|
|
AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
|
|
return new AddrSpaceCastInst(getOperand(0), getType());
|
|
}
|
|
|
|
CallInst *CallInst::cloneImpl() const {
|
|
if (hasOperandBundles()) {
|
|
unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
|
|
return new(getNumOperands(), DescriptorBytes) CallInst(*this);
|
|
}
|
|
return new(getNumOperands()) CallInst(*this);
|
|
}
|
|
|
|
SelectInst *SelectInst::cloneImpl() const {
|
|
return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
|
|
}
|
|
|
|
VAArgInst *VAArgInst::cloneImpl() const {
|
|
return new VAArgInst(getOperand(0), getType());
|
|
}
|
|
|
|
ExtractElementInst *ExtractElementInst::cloneImpl() const {
|
|
return ExtractElementInst::Create(getOperand(0), getOperand(1));
|
|
}
|
|
|
|
InsertElementInst *InsertElementInst::cloneImpl() const {
|
|
return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
|
|
}
|
|
|
|
ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
|
|
return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
|
|
}
|
|
|
|
PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
|
|
|
|
LandingPadInst *LandingPadInst::cloneImpl() const {
|
|
return new LandingPadInst(*this);
|
|
}
|
|
|
|
ReturnInst *ReturnInst::cloneImpl() const {
|
|
return new(getNumOperands()) ReturnInst(*this);
|
|
}
|
|
|
|
BranchInst *BranchInst::cloneImpl() const {
|
|
return new(getNumOperands()) BranchInst(*this);
|
|
}
|
|
|
|
SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
|
|
|
|
IndirectBrInst *IndirectBrInst::cloneImpl() const {
|
|
return new IndirectBrInst(*this);
|
|
}
|
|
|
|
InvokeInst *InvokeInst::cloneImpl() const {
|
|
if (hasOperandBundles()) {
|
|
unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
|
|
return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
|
|
}
|
|
return new(getNumOperands()) InvokeInst(*this);
|
|
}
|
|
|
|
CallBrInst *CallBrInst::cloneImpl() const {
|
|
if (hasOperandBundles()) {
|
|
unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
|
|
return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
|
|
}
|
|
return new (getNumOperands()) CallBrInst(*this);
|
|
}
|
|
|
|
ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
|
|
|
|
CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
|
|
return new (getNumOperands()) CleanupReturnInst(*this);
|
|
}
|
|
|
|
CatchReturnInst *CatchReturnInst::cloneImpl() const {
|
|
return new (getNumOperands()) CatchReturnInst(*this);
|
|
}
|
|
|
|
CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
|
|
return new CatchSwitchInst(*this);
|
|
}
|
|
|
|
FuncletPadInst *FuncletPadInst::cloneImpl() const {
|
|
return new (getNumOperands()) FuncletPadInst(*this);
|
|
}
|
|
|
|
UnreachableInst *UnreachableInst::cloneImpl() const {
|
|
LLVMContext &Context = getContext();
|
|
return new UnreachableInst(Context);
|
|
}
|
|
|
|
FreezeInst *FreezeInst::cloneImpl() const {
|
|
return new FreezeInst(getOperand(0));
|
|
}
|