forked from OSchip/llvm-project
495 lines
18 KiB
C++
495 lines
18 KiB
C++
//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the generic AliasAnalysis interface which is used as the
|
|
// common interface used by all clients and implementations of alias analysis.
|
|
//
|
|
// This file also implements the default version of the AliasAnalysis interface
|
|
// that is to be used when no other implementation is specified. This does some
|
|
// simple tests that detect obvious cases: two different global pointers cannot
|
|
// alias, a global cannot alias a malloc, two different mallocs cannot alias,
|
|
// etc.
|
|
//
|
|
// This alias analysis implementation really isn't very good for anything, but
|
|
// it is very fast, and makes a nice clean default implementation. Because it
|
|
// handles lots of little corner cases, other, more complex, alias analysis
|
|
// implementations may choose to rely on this pass to resolve these simple and
|
|
// easy cases.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/CaptureTracking.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Pass.h"
|
|
using namespace llvm;
|
|
|
|
// Register the AliasAnalysis interface, providing a nice name to refer to.
|
|
INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
|
|
char AliasAnalysis::ID = 0;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Default chaining methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AliasResult AliasAnalysis::alias(const MemoryLocation &LocA,
|
|
const MemoryLocation &LocB) {
|
|
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
|
|
return AA->alias(LocA, LocB);
|
|
}
|
|
|
|
bool AliasAnalysis::pointsToConstantMemory(const MemoryLocation &Loc,
|
|
bool OrLocal) {
|
|
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
|
|
return AA->pointsToConstantMemory(Loc, OrLocal);
|
|
}
|
|
|
|
ModRefInfo AliasAnalysis::getArgModRefInfo(ImmutableCallSite CS,
|
|
unsigned ArgIdx) {
|
|
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
|
|
return AA->getArgModRefInfo(CS, ArgIdx);
|
|
}
|
|
|
|
ModRefInfo AliasAnalysis::getModRefInfo(Instruction *I,
|
|
ImmutableCallSite Call) {
|
|
// We may have two calls
|
|
if (auto CS = ImmutableCallSite(I)) {
|
|
// Check if the two calls modify the same memory
|
|
return getModRefInfo(Call, CS);
|
|
} else {
|
|
// Otherwise, check if the call modifies or references the
|
|
// location this memory access defines. The best we can say
|
|
// is that if the call references what this instruction
|
|
// defines, it must be clobbered by this location.
|
|
const MemoryLocation DefLoc = MemoryLocation::get(I);
|
|
if (getModRefInfo(Call, DefLoc) != MRI_NoModRef)
|
|
return MRI_ModRef;
|
|
}
|
|
return MRI_NoModRef;
|
|
}
|
|
|
|
ModRefInfo AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
|
|
const MemoryLocation &Loc) {
|
|
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
|
|
|
|
auto MRB = getModRefBehavior(CS);
|
|
if (MRB == FMRB_DoesNotAccessMemory)
|
|
return MRI_NoModRef;
|
|
|
|
ModRefInfo Mask = MRI_ModRef;
|
|
if (onlyReadsMemory(MRB))
|
|
Mask = MRI_Ref;
|
|
|
|
if (onlyAccessesArgPointees(MRB)) {
|
|
bool doesAlias = false;
|
|
ModRefInfo AllArgsMask = MRI_NoModRef;
|
|
if (doesAccessArgPointees(MRB)) {
|
|
for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
|
|
AI != AE; ++AI) {
|
|
const Value *Arg = *AI;
|
|
if (!Arg->getType()->isPointerTy())
|
|
continue;
|
|
unsigned ArgIdx = std::distance(CS.arg_begin(), AI);
|
|
MemoryLocation ArgLoc =
|
|
MemoryLocation::getForArgument(CS, ArgIdx, *TLI);
|
|
if (!isNoAlias(ArgLoc, Loc)) {
|
|
ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx);
|
|
doesAlias = true;
|
|
AllArgsMask = ModRefInfo(AllArgsMask | ArgMask);
|
|
}
|
|
}
|
|
}
|
|
if (!doesAlias)
|
|
return MRI_NoModRef;
|
|
Mask = ModRefInfo(Mask & AllArgsMask);
|
|
}
|
|
|
|
// If Loc is a constant memory location, the call definitely could not
|
|
// modify the memory location.
|
|
if ((Mask & MRI_Mod) && pointsToConstantMemory(Loc))
|
|
Mask = ModRefInfo(Mask & ~MRI_Mod);
|
|
|
|
// If this is the end of the chain, don't forward.
|
|
if (!AA) return Mask;
|
|
|
|
// Otherwise, fall back to the next AA in the chain. But we can merge
|
|
// in any mask we've managed to compute.
|
|
return ModRefInfo(AA->getModRefInfo(CS, Loc) & Mask);
|
|
}
|
|
|
|
ModRefInfo AliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
|
|
ImmutableCallSite CS2) {
|
|
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
|
|
|
|
// If CS1 or CS2 are readnone, they don't interact.
|
|
auto CS1B = getModRefBehavior(CS1);
|
|
if (CS1B == FMRB_DoesNotAccessMemory)
|
|
return MRI_NoModRef;
|
|
|
|
auto CS2B = getModRefBehavior(CS2);
|
|
if (CS2B == FMRB_DoesNotAccessMemory)
|
|
return MRI_NoModRef;
|
|
|
|
// If they both only read from memory, there is no dependence.
|
|
if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
|
|
return MRI_NoModRef;
|
|
|
|
ModRefInfo Mask = MRI_ModRef;
|
|
|
|
// If CS1 only reads memory, the only dependence on CS2 can be
|
|
// from CS1 reading memory written by CS2.
|
|
if (onlyReadsMemory(CS1B))
|
|
Mask = ModRefInfo(Mask & MRI_Ref);
|
|
|
|
// If CS2 only access memory through arguments, accumulate the mod/ref
|
|
// information from CS1's references to the memory referenced by
|
|
// CS2's arguments.
|
|
if (onlyAccessesArgPointees(CS2B)) {
|
|
ModRefInfo R = MRI_NoModRef;
|
|
if (doesAccessArgPointees(CS2B)) {
|
|
for (ImmutableCallSite::arg_iterator
|
|
I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
|
|
const Value *Arg = *I;
|
|
if (!Arg->getType()->isPointerTy())
|
|
continue;
|
|
unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I);
|
|
auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, *TLI);
|
|
|
|
// ArgMask indicates what CS2 might do to CS2ArgLoc, and the dependence of
|
|
// CS1 on that location is the inverse.
|
|
ModRefInfo ArgMask = getArgModRefInfo(CS2, CS2ArgIdx);
|
|
if (ArgMask == MRI_Mod)
|
|
ArgMask = MRI_ModRef;
|
|
else if (ArgMask == MRI_Ref)
|
|
ArgMask = MRI_Mod;
|
|
|
|
R = ModRefInfo((R | (getModRefInfo(CS1, CS2ArgLoc) & ArgMask)) & Mask);
|
|
if (R == Mask)
|
|
break;
|
|
}
|
|
}
|
|
return R;
|
|
}
|
|
|
|
// If CS1 only accesses memory through arguments, check if CS2 references
|
|
// any of the memory referenced by CS1's arguments. If not, return NoModRef.
|
|
if (onlyAccessesArgPointees(CS1B)) {
|
|
ModRefInfo R = MRI_NoModRef;
|
|
if (doesAccessArgPointees(CS1B)) {
|
|
for (ImmutableCallSite::arg_iterator
|
|
I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
|
|
const Value *Arg = *I;
|
|
if (!Arg->getType()->isPointerTy())
|
|
continue;
|
|
unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I);
|
|
auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, *TLI);
|
|
|
|
// ArgMask indicates what CS1 might do to CS1ArgLoc; if CS1 might Mod
|
|
// CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If CS1
|
|
// might Ref, then we care only about a Mod by CS2.
|
|
ModRefInfo ArgMask = getArgModRefInfo(CS1, CS1ArgIdx);
|
|
ModRefInfo ArgR = getModRefInfo(CS2, CS1ArgLoc);
|
|
if (((ArgMask & MRI_Mod) != MRI_NoModRef &&
|
|
(ArgR & MRI_ModRef) != MRI_NoModRef) ||
|
|
((ArgMask & MRI_Ref) != MRI_NoModRef &&
|
|
(ArgR & MRI_Mod) != MRI_NoModRef))
|
|
R = ModRefInfo((R | ArgMask) & Mask);
|
|
|
|
if (R == Mask)
|
|
break;
|
|
}
|
|
}
|
|
return R;
|
|
}
|
|
|
|
// If this is the end of the chain, don't forward.
|
|
if (!AA) return Mask;
|
|
|
|
// Otherwise, fall back to the next AA in the chain. But we can merge
|
|
// in any mask we've managed to compute.
|
|
return ModRefInfo(AA->getModRefInfo(CS1, CS2) & Mask);
|
|
}
|
|
|
|
FunctionModRefBehavior AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
|
|
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
|
|
|
|
auto Min = FMRB_UnknownModRefBehavior;
|
|
|
|
// Call back into the alias analysis with the other form of getModRefBehavior
|
|
// to see if it can give a better response.
|
|
if (const Function *F = CS.getCalledFunction())
|
|
Min = getModRefBehavior(F);
|
|
|
|
// If this is the end of the chain, don't forward.
|
|
if (!AA) return Min;
|
|
|
|
// Otherwise, fall back to the next AA in the chain. But we can merge
|
|
// in any result we've managed to compute.
|
|
return FunctionModRefBehavior(AA->getModRefBehavior(CS) & Min);
|
|
}
|
|
|
|
FunctionModRefBehavior AliasAnalysis::getModRefBehavior(const Function *F) {
|
|
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
|
|
return AA->getModRefBehavior(F);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AliasAnalysis non-virtual helper method implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ModRefInfo AliasAnalysis::getModRefInfo(const LoadInst *L,
|
|
const MemoryLocation &Loc) {
|
|
// Be conservative in the face of volatile/atomic.
|
|
if (!L->isUnordered())
|
|
return MRI_ModRef;
|
|
|
|
// If the load address doesn't alias the given address, it doesn't read
|
|
// or write the specified memory.
|
|
if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc))
|
|
return MRI_NoModRef;
|
|
|
|
// Otherwise, a load just reads.
|
|
return MRI_Ref;
|
|
}
|
|
|
|
ModRefInfo AliasAnalysis::getModRefInfo(const StoreInst *S,
|
|
const MemoryLocation &Loc) {
|
|
// Be conservative in the face of volatile/atomic.
|
|
if (!S->isUnordered())
|
|
return MRI_ModRef;
|
|
|
|
if (Loc.Ptr) {
|
|
// If the store address cannot alias the pointer in question, then the
|
|
// specified memory cannot be modified by the store.
|
|
if (!alias(MemoryLocation::get(S), Loc))
|
|
return MRI_NoModRef;
|
|
|
|
// If the pointer is a pointer to constant memory, then it could not have
|
|
// been modified by this store.
|
|
if (pointsToConstantMemory(Loc))
|
|
return MRI_NoModRef;
|
|
}
|
|
|
|
// Otherwise, a store just writes.
|
|
return MRI_Mod;
|
|
}
|
|
|
|
ModRefInfo AliasAnalysis::getModRefInfo(const VAArgInst *V,
|
|
const MemoryLocation &Loc) {
|
|
|
|
if (Loc.Ptr) {
|
|
// If the va_arg address cannot alias the pointer in question, then the
|
|
// specified memory cannot be accessed by the va_arg.
|
|
if (!alias(MemoryLocation::get(V), Loc))
|
|
return MRI_NoModRef;
|
|
|
|
// If the pointer is a pointer to constant memory, then it could not have
|
|
// been modified by this va_arg.
|
|
if (pointsToConstantMemory(Loc))
|
|
return MRI_NoModRef;
|
|
}
|
|
|
|
// Otherwise, a va_arg reads and writes.
|
|
return MRI_ModRef;
|
|
}
|
|
|
|
ModRefInfo AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX,
|
|
const MemoryLocation &Loc) {
|
|
// Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
|
|
if (CX->getSuccessOrdering() > Monotonic)
|
|
return MRI_ModRef;
|
|
|
|
// If the cmpxchg address does not alias the location, it does not access it.
|
|
if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc))
|
|
return MRI_NoModRef;
|
|
|
|
return MRI_ModRef;
|
|
}
|
|
|
|
ModRefInfo AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW,
|
|
const MemoryLocation &Loc) {
|
|
// Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
|
|
if (RMW->getOrdering() > Monotonic)
|
|
return MRI_ModRef;
|
|
|
|
// If the atomicrmw address does not alias the location, it does not access it.
|
|
if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc))
|
|
return MRI_NoModRef;
|
|
|
|
return MRI_ModRef;
|
|
}
|
|
|
|
// FIXME: this is really just shoring-up a deficiency in alias analysis.
|
|
// BasicAA isn't willing to spend linear time determining whether an alloca
|
|
// was captured before or after this particular call, while we are. However,
|
|
// with a smarter AA in place, this test is just wasting compile time.
|
|
ModRefInfo AliasAnalysis::callCapturesBefore(const Instruction *I,
|
|
const MemoryLocation &MemLoc,
|
|
DominatorTree *DT) {
|
|
if (!DT)
|
|
return MRI_ModRef;
|
|
|
|
const Value *Object = GetUnderlyingObject(MemLoc.Ptr, *DL);
|
|
if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
|
|
isa<Constant>(Object))
|
|
return MRI_ModRef;
|
|
|
|
ImmutableCallSite CS(I);
|
|
if (!CS.getInstruction() || CS.getInstruction() == Object)
|
|
return MRI_ModRef;
|
|
|
|
if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
|
|
/* StoreCaptures */ true, I, DT,
|
|
/* include Object */ true))
|
|
return MRI_ModRef;
|
|
|
|
unsigned ArgNo = 0;
|
|
ModRefInfo R = MRI_NoModRef;
|
|
for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
|
|
CI != CE; ++CI, ++ArgNo) {
|
|
// Only look at the no-capture or byval pointer arguments. If this
|
|
// pointer were passed to arguments that were neither of these, then it
|
|
// couldn't be no-capture.
|
|
if (!(*CI)->getType()->isPointerTy() ||
|
|
(!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
|
|
continue;
|
|
|
|
// If this is a no-capture pointer argument, see if we can tell that it
|
|
// is impossible to alias the pointer we're checking. If not, we have to
|
|
// assume that the call could touch the pointer, even though it doesn't
|
|
// escape.
|
|
if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object)))
|
|
continue;
|
|
if (CS.doesNotAccessMemory(ArgNo))
|
|
continue;
|
|
if (CS.onlyReadsMemory(ArgNo)) {
|
|
R = MRI_Ref;
|
|
continue;
|
|
}
|
|
return MRI_ModRef;
|
|
}
|
|
return R;
|
|
}
|
|
|
|
// AliasAnalysis destructor: DO NOT move this to the header file for
|
|
// AliasAnalysis or else clients of the AliasAnalysis class may not depend on
|
|
// the AliasAnalysis.o file in the current .a file, causing alias analysis
|
|
// support to not be included in the tool correctly!
|
|
//
|
|
AliasAnalysis::~AliasAnalysis() {}
|
|
|
|
/// InitializeAliasAnalysis - Subclasses must call this method to initialize the
|
|
/// AliasAnalysis interface before any other methods are called.
|
|
///
|
|
void AliasAnalysis::InitializeAliasAnalysis(Pass *P, const DataLayout *NewDL) {
|
|
DL = NewDL;
|
|
auto *TLIP = P->getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
|
|
TLI = TLIP ? &TLIP->getTLI() : nullptr;
|
|
AA = &P->getAnalysis<AliasAnalysis>();
|
|
}
|
|
|
|
// getAnalysisUsage - All alias analysis implementations should invoke this
|
|
// directly (using AliasAnalysis::getAnalysisUsage(AU)).
|
|
void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<AliasAnalysis>(); // All AA's chain
|
|
}
|
|
|
|
/// getTypeStoreSize - Return the DataLayout store size for the given type,
|
|
/// if known, or a conservative value otherwise.
|
|
///
|
|
uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
|
|
return DL ? DL->getTypeStoreSize(Ty) : MemoryLocation::UnknownSize;
|
|
}
|
|
|
|
/// canBasicBlockModify - Return true if it is possible for execution of the
|
|
/// specified basic block to modify the location Loc.
|
|
///
|
|
bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
|
|
const MemoryLocation &Loc) {
|
|
return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod);
|
|
}
|
|
|
|
/// canInstructionRangeModRef - Return true if it is possible for the
|
|
/// execution of the specified instructions to mod\ref (according to the
|
|
/// mode) the location Loc. The instructions to consider are all
|
|
/// of the instructions in the range of [I1,I2] INCLUSIVE.
|
|
/// I1 and I2 must be in the same basic block.
|
|
bool AliasAnalysis::canInstructionRangeModRef(const Instruction &I1,
|
|
const Instruction &I2,
|
|
const MemoryLocation &Loc,
|
|
const ModRefInfo Mode) {
|
|
assert(I1.getParent() == I2.getParent() &&
|
|
"Instructions not in same basic block!");
|
|
BasicBlock::const_iterator I = &I1;
|
|
BasicBlock::const_iterator E = &I2;
|
|
++E; // Convert from inclusive to exclusive range.
|
|
|
|
for (; I != E; ++I) // Check every instruction in range
|
|
if (getModRefInfo(I, Loc) & Mode)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// isNoAliasCall - Return true if this pointer is returned by a noalias
|
|
/// function.
|
|
bool llvm::isNoAliasCall(const Value *V) {
|
|
if (isa<CallInst>(V) || isa<InvokeInst>(V))
|
|
return ImmutableCallSite(cast<Instruction>(V))
|
|
.paramHasAttr(0, Attribute::NoAlias);
|
|
return false;
|
|
}
|
|
|
|
/// isNoAliasArgument - Return true if this is an argument with the noalias
|
|
/// attribute.
|
|
bool llvm::isNoAliasArgument(const Value *V)
|
|
{
|
|
if (const Argument *A = dyn_cast<Argument>(V))
|
|
return A->hasNoAliasAttr();
|
|
return false;
|
|
}
|
|
|
|
/// isIdentifiedObject - Return true if this pointer refers to a distinct and
|
|
/// identifiable object. This returns true for:
|
|
/// Global Variables and Functions (but not Global Aliases)
|
|
/// Allocas and Mallocs
|
|
/// ByVal and NoAlias Arguments
|
|
/// NoAlias returns
|
|
///
|
|
bool llvm::isIdentifiedObject(const Value *V) {
|
|
if (isa<AllocaInst>(V))
|
|
return true;
|
|
if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
|
|
return true;
|
|
if (isNoAliasCall(V))
|
|
return true;
|
|
if (const Argument *A = dyn_cast<Argument>(V))
|
|
return A->hasNoAliasAttr() || A->hasByValAttr();
|
|
return false;
|
|
}
|
|
|
|
/// isIdentifiedFunctionLocal - Return true if V is umabigously identified
|
|
/// at the function-level. Different IdentifiedFunctionLocals can't alias.
|
|
/// Further, an IdentifiedFunctionLocal can not alias with any function
|
|
/// arguments other than itself, which is not necessarily true for
|
|
/// IdentifiedObjects.
|
|
bool llvm::isIdentifiedFunctionLocal(const Value *V)
|
|
{
|
|
return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
|
|
}
|