llvm-project/llvm/tools/llvm-readobj/XCOFFDumper.cpp

943 lines
37 KiB
C++

//===-- XCOFFDumper.cpp - XCOFF dumping utility -----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an XCOFF specific dumper for llvm-readobj.
//
//===----------------------------------------------------------------------===//
#include "ObjDumper.h"
#include "llvm-readobj.h"
#include "llvm/Object/XCOFFObjectFile.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/ScopedPrinter.h"
#include <ctime>
using namespace llvm;
using namespace object;
namespace {
class XCOFFDumper : public ObjDumper {
public:
XCOFFDumper(const XCOFFObjectFile &Obj, ScopedPrinter &Writer)
: ObjDumper(Writer, Obj.getFileName()), Obj(Obj) {}
void printFileHeaders() override;
void printAuxiliaryHeader() override;
void printSectionHeaders() override;
void printRelocations() override;
void printSymbols() override;
void printDynamicSymbols() override;
void printUnwindInfo() override;
void printStackMap() const override;
void printNeededLibraries() override;
void printStringTable() override;
ScopedPrinter &getScopedPrinter() const { return W; }
private:
template <typename T> void printSectionHeaders(ArrayRef<T> Sections);
template <typename T> void printGenericSectionHeader(T &Sec) const;
template <typename T> void printOverflowSectionHeader(T &Sec) const;
template <typename T> const T *getAuxEntPtr(uintptr_t AuxAddress);
void printFileAuxEnt(const XCOFFFileAuxEnt *AuxEntPtr);
void printCsectAuxEnt(XCOFFCsectAuxRef AuxEntRef);
void printSectAuxEntForStat(const XCOFFSectAuxEntForStat *AuxEntPtr);
void printExceptionAuxEnt(const XCOFFExceptionAuxEnt *AuxEntPtr);
void printFunctionAuxEnt(const XCOFFFunctionAuxEnt32 *AuxEntPtr);
void printFunctionAuxEnt(const XCOFFFunctionAuxEnt64 *AuxEntPtr);
void printBlockAuxEnt(const XCOFFBlockAuxEnt32 *AuxEntPtr);
void printBlockAuxEnt(const XCOFFBlockAuxEnt64 *AuxEntPtr);
template <typename T> void printSectAuxEntForDWARF(const T *AuxEntPtr);
void printSymbol(const SymbolRef &);
template <typename RelTy> void printRelocation(RelTy Reloc);
template <typename Shdr, typename RelTy>
void printRelocations(ArrayRef<Shdr> Sections);
void printAuxiliaryHeader(const XCOFFAuxiliaryHeader32 *AuxHeader);
void printAuxiliaryHeader(const XCOFFAuxiliaryHeader64 *AuxHeader);
const XCOFFObjectFile &Obj;
};
} // anonymous namespace
void XCOFFDumper::printFileHeaders() {
DictScope DS(W, "FileHeader");
W.printHex("Magic", Obj.getMagic());
W.printNumber("NumberOfSections", Obj.getNumberOfSections());
// Negative timestamp values are reserved for future use.
int32_t TimeStamp = Obj.getTimeStamp();
if (TimeStamp > 0) {
// This handling of the time stamp assumes that the host system's time_t is
// compatible with AIX time_t. If a platform is not compatible, the lit
// tests will let us know.
time_t TimeDate = TimeStamp;
char FormattedTime[21] = {};
size_t BytesWritten =
strftime(FormattedTime, 21, "%Y-%m-%dT%H:%M:%SZ", gmtime(&TimeDate));
if (BytesWritten)
W.printHex("TimeStamp", FormattedTime, TimeStamp);
else
W.printHex("Timestamp", TimeStamp);
} else {
W.printHex("TimeStamp", TimeStamp == 0 ? "None" : "Reserved Value",
TimeStamp);
}
// The number of symbol table entries is an unsigned value in 64-bit objects
// and a signed value (with negative values being 'reserved') in 32-bit
// objects.
if (Obj.is64Bit()) {
W.printHex("SymbolTableOffset", Obj.getSymbolTableOffset64());
W.printNumber("SymbolTableEntries", Obj.getNumberOfSymbolTableEntries64());
} else {
W.printHex("SymbolTableOffset", Obj.getSymbolTableOffset32());
int32_t SymTabEntries = Obj.getRawNumberOfSymbolTableEntries32();
if (SymTabEntries >= 0)
W.printNumber("SymbolTableEntries", SymTabEntries);
else
W.printHex("SymbolTableEntries", "Reserved Value", SymTabEntries);
}
W.printHex("OptionalHeaderSize", Obj.getOptionalHeaderSize());
W.printHex("Flags", Obj.getFlags());
// TODO FIXME Add support for the auxiliary header (if any) once
// XCOFFObjectFile has the necessary support.
}
void XCOFFDumper::printAuxiliaryHeader() {
DictScope DS(W, "AuxiliaryHeader");
if (Obj.is64Bit())
printAuxiliaryHeader(Obj.auxiliaryHeader64());
else
printAuxiliaryHeader(Obj.auxiliaryHeader32());
}
void XCOFFDumper::printSectionHeaders() {
if (Obj.is64Bit())
printSectionHeaders(Obj.sections64());
else
printSectionHeaders(Obj.sections32());
}
void XCOFFDumper::printRelocations() {
if (Obj.is64Bit())
printRelocations<XCOFFSectionHeader64, XCOFFRelocation64>(Obj.sections64());
else
printRelocations<XCOFFSectionHeader32, XCOFFRelocation32>(Obj.sections32());
}
const EnumEntry<XCOFF::RelocationType> RelocationTypeNameclass[] = {
#define ECase(X) \
{ #X, XCOFF::X }
ECase(R_POS), ECase(R_RL), ECase(R_RLA), ECase(R_NEG),
ECase(R_REL), ECase(R_TOC), ECase(R_TRL), ECase(R_TRLA),
ECase(R_GL), ECase(R_TCL), ECase(R_REF), ECase(R_BA),
ECase(R_BR), ECase(R_RBA), ECase(R_RBR), ECase(R_TLS),
ECase(R_TLS_IE), ECase(R_TLS_LD), ECase(R_TLS_LE), ECase(R_TLSM),
ECase(R_TLSML), ECase(R_TOCU), ECase(R_TOCL)
#undef ECase
};
template <typename RelTy> void XCOFFDumper::printRelocation(RelTy Reloc) {
Expected<StringRef> ErrOrSymbolName =
Obj.getSymbolNameByIndex(Reloc.SymbolIndex);
if (Error E = ErrOrSymbolName.takeError()) {
reportUniqueWarning(std::move(E));
return;
}
StringRef SymbolName = *ErrOrSymbolName;
StringRef RelocName = XCOFF::getRelocationTypeString(Reloc.Type);
if (opts::ExpandRelocs) {
DictScope Group(W, "Relocation");
W.printHex("Virtual Address", Reloc.VirtualAddress);
W.printNumber("Symbol", SymbolName, Reloc.SymbolIndex);
W.printString("IsSigned", Reloc.isRelocationSigned() ? "Yes" : "No");
W.printNumber("FixupBitValue", Reloc.isFixupIndicated() ? 1 : 0);
W.printNumber("Length", Reloc.getRelocatedLength());
W.printEnum("Type", (uint8_t)Reloc.Type,
makeArrayRef(RelocationTypeNameclass));
} else {
raw_ostream &OS = W.startLine();
OS << W.hex(Reloc.VirtualAddress) << " " << RelocName << " " << SymbolName
<< "(" << Reloc.SymbolIndex << ") " << W.hex(Reloc.Info) << "\n";
}
}
template <typename Shdr, typename RelTy>
void XCOFFDumper::printRelocations(ArrayRef<Shdr> Sections) {
ListScope LS(W, "Relocations");
uint16_t Index = 0;
for (const Shdr &Sec : Sections) {
++Index;
// Only the .text, .data, .tdata, and STYP_DWARF sections have relocation.
if (Sec.Flags != XCOFF::STYP_TEXT && Sec.Flags != XCOFF::STYP_DATA &&
Sec.Flags != XCOFF::STYP_TDATA && Sec.Flags != XCOFF::STYP_DWARF)
continue;
Expected<ArrayRef<RelTy>> ErrOrRelocations = Obj.relocations<Shdr, RelTy>(Sec);
if (Error E = ErrOrRelocations.takeError()) {
reportUniqueWarning(std::move(E));
continue;
}
const ArrayRef<RelTy> Relocations = *ErrOrRelocations;
if (Relocations.empty())
continue;
W.startLine() << "Section (index: " << Index << ") " << Sec.getName()
<< " {\n";
W.indent();
for (const RelTy Reloc : Relocations)
printRelocation(Reloc);
W.unindent();
W.startLine() << "}\n";
}
}
const EnumEntry<XCOFF::CFileStringType> FileStringType[] = {
#define ECase(X) \
{ #X, XCOFF::X }
ECase(XFT_FN), ECase(XFT_CT), ECase(XFT_CV), ECase(XFT_CD)
#undef ECase
};
const EnumEntry<XCOFF::SymbolAuxType> SymAuxType[] = {
#define ECase(X) \
{ #X, XCOFF::X }
ECase(AUX_EXCEPT), ECase(AUX_FCN), ECase(AUX_SYM), ECase(AUX_FILE),
ECase(AUX_CSECT), ECase(AUX_SECT)
#undef ECase
};
void XCOFFDumper::printFileAuxEnt(const XCOFFFileAuxEnt *AuxEntPtr) {
assert((!Obj.is64Bit() || AuxEntPtr->AuxType == XCOFF::AUX_FILE) &&
"Mismatched auxiliary type!");
StringRef FileName =
unwrapOrError(Obj.getFileName(), Obj.getCFileName(AuxEntPtr));
DictScope SymDs(W, "File Auxiliary Entry");
W.printNumber("Index",
Obj.getSymbolIndex(reinterpret_cast<uintptr_t>(AuxEntPtr)));
W.printString("Name", FileName);
W.printEnum("Type", static_cast<uint8_t>(AuxEntPtr->Type),
makeArrayRef(FileStringType));
if (Obj.is64Bit()) {
W.printEnum("Auxiliary Type", static_cast<uint8_t>(AuxEntPtr->AuxType),
makeArrayRef(SymAuxType));
}
}
static const EnumEntry<XCOFF::StorageMappingClass> CsectStorageMappingClass[] =
{
#define ECase(X) \
{ #X, XCOFF::X }
ECase(XMC_PR), ECase(XMC_RO), ECase(XMC_DB), ECase(XMC_GL),
ECase(XMC_XO), ECase(XMC_SV), ECase(XMC_SV64), ECase(XMC_SV3264),
ECase(XMC_TI), ECase(XMC_TB), ECase(XMC_RW), ECase(XMC_TC0),
ECase(XMC_TC), ECase(XMC_TD), ECase(XMC_DS), ECase(XMC_UA),
ECase(XMC_BS), ECase(XMC_UC), ECase(XMC_TL), ECase(XMC_UL),
ECase(XMC_TE)
#undef ECase
};
const EnumEntry<XCOFF::SymbolType> CsectSymbolTypeClass[] = {
#define ECase(X) \
{ #X, XCOFF::X }
ECase(XTY_ER), ECase(XTY_SD), ECase(XTY_LD), ECase(XTY_CM)
#undef ECase
};
void XCOFFDumper::printCsectAuxEnt(XCOFFCsectAuxRef AuxEntRef) {
assert((!Obj.is64Bit() || AuxEntRef.getAuxType64() == XCOFF::AUX_CSECT) &&
"Mismatched auxiliary type!");
DictScope SymDs(W, "CSECT Auxiliary Entry");
W.printNumber("Index", Obj.getSymbolIndex(AuxEntRef.getEntryAddress()));
W.printNumber(AuxEntRef.isLabel() ? "ContainingCsectSymbolIndex"
: "SectionLen",
AuxEntRef.getSectionOrLength());
W.printHex("ParameterHashIndex", AuxEntRef.getParameterHashIndex());
W.printHex("TypeChkSectNum", AuxEntRef.getTypeChkSectNum());
// Print out symbol alignment and type.
W.printNumber("SymbolAlignmentLog2", AuxEntRef.getAlignmentLog2());
W.printEnum("SymbolType", AuxEntRef.getSymbolType(),
makeArrayRef(CsectSymbolTypeClass));
W.printEnum("StorageMappingClass",
static_cast<uint8_t>(AuxEntRef.getStorageMappingClass()),
makeArrayRef(CsectStorageMappingClass));
if (Obj.is64Bit()) {
W.printEnum("Auxiliary Type", static_cast<uint8_t>(XCOFF::AUX_CSECT),
makeArrayRef(SymAuxType));
} else {
W.printHex("StabInfoIndex", AuxEntRef.getStabInfoIndex32());
W.printHex("StabSectNum", AuxEntRef.getStabSectNum32());
}
}
void XCOFFDumper::printSectAuxEntForStat(
const XCOFFSectAuxEntForStat *AuxEntPtr) {
assert(!Obj.is64Bit() && "32-bit interface called on 64-bit object file.");
DictScope SymDs(W, "Sect Auxiliary Entry For Stat");
W.printNumber("Index",
Obj.getSymbolIndex(reinterpret_cast<uintptr_t>(AuxEntPtr)));
W.printNumber("SectionLength", AuxEntPtr->SectionLength);
// Unlike the corresponding fields in the section header, NumberOfRelocEnt
// and NumberOfLineNum do not handle values greater than 65535.
W.printNumber("NumberOfRelocEnt", AuxEntPtr->NumberOfRelocEnt);
W.printNumber("NumberOfLineNum", AuxEntPtr->NumberOfLineNum);
}
void XCOFFDumper::printExceptionAuxEnt(const XCOFFExceptionAuxEnt *AuxEntPtr) {
assert(Obj.is64Bit() && "64-bit interface called on 32-bit object file.");
DictScope SymDs(W, "Exception Auxiliary Entry");
W.printNumber("Index",
Obj.getSymbolIndex(reinterpret_cast<uintptr_t>(AuxEntPtr)));
W.printHex("OffsetToExceptionTable", AuxEntPtr->OffsetToExceptionTbl);
W.printHex("SizeOfFunction", AuxEntPtr->SizeOfFunction);
W.printNumber("SymbolIndexOfNextBeyond", AuxEntPtr->SymIdxOfNextBeyond);
W.printEnum("Auxiliary Type", static_cast<uint8_t>(AuxEntPtr->AuxType),
makeArrayRef(SymAuxType));
}
void XCOFFDumper::printFunctionAuxEnt(const XCOFFFunctionAuxEnt32 *AuxEntPtr) {
assert(!Obj.is64Bit() && "32-bit interface called on 64-bit object file.");
DictScope SymDs(W, "Function Auxiliary Entry");
W.printNumber("Index",
Obj.getSymbolIndex(reinterpret_cast<uintptr_t>(AuxEntPtr)));
W.printHex("OffsetToExceptionTable", AuxEntPtr->OffsetToExceptionTbl);
W.printHex("SizeOfFunction", AuxEntPtr->SizeOfFunction);
W.printHex("PointerToLineNum", AuxEntPtr->PtrToLineNum);
W.printNumber("SymbolIndexOfNextBeyond", AuxEntPtr->SymIdxOfNextBeyond);
}
void XCOFFDumper::printFunctionAuxEnt(const XCOFFFunctionAuxEnt64 *AuxEntPtr) {
assert(Obj.is64Bit() && "64-bit interface called on 32-bit object file.");
DictScope SymDs(W, "Function Auxiliary Entry");
W.printNumber("Index",
Obj.getSymbolIndex(reinterpret_cast<uintptr_t>(AuxEntPtr)));
W.printHex("SizeOfFunction", AuxEntPtr->SizeOfFunction);
W.printHex("PointerToLineNum", AuxEntPtr->PtrToLineNum);
W.printNumber("SymbolIndexOfNextBeyond", AuxEntPtr->SymIdxOfNextBeyond);
W.printEnum("Auxiliary Type", static_cast<uint8_t>(AuxEntPtr->AuxType),
makeArrayRef(SymAuxType));
}
void XCOFFDumper::printBlockAuxEnt(const XCOFFBlockAuxEnt32 *AuxEntPtr) {
assert(!Obj.is64Bit() && "32-bit interface called on 64-bit object file.");
DictScope SymDs(W, "Block Auxiliary Entry");
W.printNumber("Index",
Obj.getSymbolIndex(reinterpret_cast<uintptr_t>(AuxEntPtr)));
W.printHex("LineNumber (High 2 Bytes)", AuxEntPtr->LineNumHi);
W.printHex("LineNumber (Low 2 Bytes)", AuxEntPtr->LineNumLo);
}
void XCOFFDumper::printBlockAuxEnt(const XCOFFBlockAuxEnt64 *AuxEntPtr) {
assert(Obj.is64Bit() && "64-bit interface called on 32-bit object file.");
DictScope SymDs(W, "Block Auxiliary Entry");
W.printNumber("Index",
Obj.getSymbolIndex(reinterpret_cast<uintptr_t>(AuxEntPtr)));
W.printHex("LineNumber", AuxEntPtr->LineNum);
W.printEnum("Auxiliary Type", static_cast<uint8_t>(AuxEntPtr->AuxType),
makeArrayRef(SymAuxType));
}
template <typename T>
void XCOFFDumper::printSectAuxEntForDWARF(const T *AuxEntPtr) {
DictScope SymDs(W, "Sect Auxiliary Entry For DWARF");
W.printNumber("Index",
Obj.getSymbolIndex(reinterpret_cast<uintptr_t>(AuxEntPtr)));
W.printHex("LengthOfSectionPortion", AuxEntPtr->LengthOfSectionPortion);
W.printNumber("NumberOfRelocEntries", AuxEntPtr->NumberOfRelocEnt);
if (Obj.is64Bit())
W.printEnum("Auxiliary Type", static_cast<uint8_t>(XCOFF::AUX_SECT),
makeArrayRef(SymAuxType));
}
const EnumEntry<XCOFF::StorageClass> SymStorageClass[] = {
#define ECase(X) \
{ #X, XCOFF::X }
ECase(C_NULL), ECase(C_AUTO), ECase(C_EXT), ECase(C_STAT),
ECase(C_REG), ECase(C_EXTDEF), ECase(C_LABEL), ECase(C_ULABEL),
ECase(C_MOS), ECase(C_ARG), ECase(C_STRTAG), ECase(C_MOU),
ECase(C_UNTAG), ECase(C_TPDEF), ECase(C_USTATIC), ECase(C_ENTAG),
ECase(C_MOE), ECase(C_REGPARM), ECase(C_FIELD), ECase(C_BLOCK),
ECase(C_FCN), ECase(C_EOS), ECase(C_FILE), ECase(C_LINE),
ECase(C_ALIAS), ECase(C_HIDDEN), ECase(C_HIDEXT), ECase(C_BINCL),
ECase(C_EINCL), ECase(C_INFO), ECase(C_WEAKEXT), ECase(C_DWARF),
ECase(C_GSYM), ECase(C_LSYM), ECase(C_PSYM), ECase(C_RSYM),
ECase(C_RPSYM), ECase(C_STSYM), ECase(C_TCSYM), ECase(C_BCOMM),
ECase(C_ECOML), ECase(C_ECOMM), ECase(C_DECL), ECase(C_ENTRY),
ECase(C_FUN), ECase(C_BSTAT), ECase(C_ESTAT), ECase(C_GTLS),
ECase(C_STTLS), ECase(C_EFCN)
#undef ECase
};
static StringRef GetSymbolValueName(XCOFF::StorageClass SC) {
switch (SC) {
case XCOFF::C_EXT:
case XCOFF::C_WEAKEXT:
case XCOFF::C_HIDEXT:
case XCOFF::C_STAT:
case XCOFF::C_FCN:
case XCOFF::C_BLOCK:
return "Value (RelocatableAddress)";
case XCOFF::C_FILE:
return "Value (SymbolTableIndex)";
case XCOFF::C_DWARF:
return "Value (OffsetInDWARF)";
case XCOFF::C_FUN:
case XCOFF::C_STSYM:
case XCOFF::C_BINCL:
case XCOFF::C_EINCL:
case XCOFF::C_INFO:
case XCOFF::C_BSTAT:
case XCOFF::C_LSYM:
case XCOFF::C_PSYM:
case XCOFF::C_RPSYM:
case XCOFF::C_RSYM:
case XCOFF::C_ECOML:
assert(false && "This StorageClass for the symbol is not yet implemented.");
return "";
default:
return "Value";
}
}
const EnumEntry<XCOFF::CFileLangId> CFileLangIdClass[] = {
#define ECase(X) \
{ #X, XCOFF::X }
ECase(TB_C), ECase(TB_CPLUSPLUS)
#undef ECase
};
const EnumEntry<XCOFF::CFileCpuId> CFileCpuIdClass[] = {
#define ECase(X) \
{ #X, XCOFF::X }
ECase(TCPU_PPC64), ECase(TCPU_COM), ECase(TCPU_970)
#undef ECase
};
template <typename T> const T *XCOFFDumper::getAuxEntPtr(uintptr_t AuxAddress) {
const T *AuxEntPtr = reinterpret_cast<const T *>(AuxAddress);
Obj.checkSymbolEntryPointer(reinterpret_cast<uintptr_t>(AuxEntPtr));
return AuxEntPtr;
}
static void printUnexpectedRawAuxEnt(ScopedPrinter &W, uintptr_t AuxAddress) {
W.startLine() << "!Unexpected raw auxiliary entry data:\n";
W.startLine() << format_bytes(
ArrayRef<uint8_t>(
reinterpret_cast<const uint8_t *>(AuxAddress),
XCOFF::SymbolTableEntrySize),
None, XCOFF::SymbolTableEntrySize)
<< "\n";
}
void XCOFFDumper::printSymbol(const SymbolRef &S) {
DataRefImpl SymbolDRI = S.getRawDataRefImpl();
XCOFFSymbolRef SymbolEntRef = Obj.toSymbolRef(SymbolDRI);
uint8_t NumberOfAuxEntries = SymbolEntRef.getNumberOfAuxEntries();
DictScope SymDs(W, "Symbol");
StringRef SymbolName =
unwrapOrError(Obj.getFileName(), SymbolEntRef.getName());
uint32_t SymbolIdx = Obj.getSymbolIndex(SymbolEntRef.getEntryAddress());
XCOFF::StorageClass SymbolClass = SymbolEntRef.getStorageClass();
W.printNumber("Index", SymbolIdx);
W.printString("Name", SymbolName);
W.printHex(GetSymbolValueName(SymbolClass), SymbolEntRef.getValue());
StringRef SectionName =
unwrapOrError(Obj.getFileName(), Obj.getSymbolSectionName(SymbolEntRef));
W.printString("Section", SectionName);
if (SymbolClass == XCOFF::C_FILE) {
W.printEnum("Source Language ID", SymbolEntRef.getLanguageIdForCFile(),
makeArrayRef(CFileLangIdClass));
W.printEnum("CPU Version ID", SymbolEntRef.getCPUTypeIddForCFile(),
makeArrayRef(CFileCpuIdClass));
} else
W.printHex("Type", SymbolEntRef.getSymbolType());
W.printEnum("StorageClass", static_cast<uint8_t>(SymbolClass),
makeArrayRef(SymStorageClass));
W.printNumber("NumberOfAuxEntries", NumberOfAuxEntries);
if (NumberOfAuxEntries == 0)
return;
auto checkNumOfAux = [=] {
if (NumberOfAuxEntries > 1)
reportUniqueWarning("the " +
enumToString(static_cast<uint8_t>(SymbolClass),
makeArrayRef(SymStorageClass)) +
" symbol at index " + Twine(SymbolIdx) +
" should not have more than 1 "
"auxiliary entry");
};
switch (SymbolClass) {
case XCOFF::C_FILE:
// If the symbol is C_FILE and has auxiliary entries...
for (int I = 1; I <= NumberOfAuxEntries; I++) {
uintptr_t AuxAddress = XCOFFObjectFile::getAdvancedSymbolEntryAddress(
SymbolEntRef.getEntryAddress(), I);
if (Obj.is64Bit() &&
*Obj.getSymbolAuxType(AuxAddress) != XCOFF::SymbolAuxType::AUX_FILE) {
printUnexpectedRawAuxEnt(W, AuxAddress);
continue;
}
const XCOFFFileAuxEnt *FileAuxEntPtr =
getAuxEntPtr<XCOFFFileAuxEnt>(AuxAddress);
printFileAuxEnt(FileAuxEntPtr);
}
break;
case XCOFF::C_EXT:
case XCOFF::C_WEAKEXT:
case XCOFF::C_HIDEXT: {
if (!SymbolEntRef.isFunction() && NumberOfAuxEntries > 1)
reportUniqueWarning("the non-function " +
enumToString(static_cast<uint8_t>(SymbolClass),
makeArrayRef(SymStorageClass)) +
" symbol at index " + Twine(SymbolIdx) +
" should have only 1 auxiliary entry, i.e. the CSECT "
"auxiliary entry");
// For 32-bit objects, print the function auxiliary symbol table entry. The
// last one must be a CSECT auxiliary entry.
// For 64-bit objects, both a function auxiliary entry and an exception
// auxiliary entry may appear, print them in the loop and skip printing the
// CSECT auxiliary entry, which will be printed outside the loop.
for (int I = 1; I <= NumberOfAuxEntries; I++) {
if ((I == NumberOfAuxEntries && !Obj.is64Bit()) ||
!SymbolEntRef.isFunction())
break;
uintptr_t AuxAddress = XCOFFObjectFile::getAdvancedSymbolEntryAddress(
SymbolEntRef.getEntryAddress(), I);
if (Obj.is64Bit()) {
XCOFF::SymbolAuxType Type = *Obj.getSymbolAuxType(AuxAddress);
if (Type == XCOFF::SymbolAuxType::AUX_CSECT)
continue;
if (Type == XCOFF::SymbolAuxType::AUX_FCN) {
const XCOFFFunctionAuxEnt64 *AuxEntPtr =
getAuxEntPtr<XCOFFFunctionAuxEnt64>(AuxAddress);
printFunctionAuxEnt(AuxEntPtr);
} else if (Type == XCOFF::SymbolAuxType::AUX_EXCEPT) {
const XCOFFExceptionAuxEnt *AuxEntPtr =
getAuxEntPtr<XCOFFExceptionAuxEnt>(AuxAddress);
printExceptionAuxEnt(AuxEntPtr);
} else {
printUnexpectedRawAuxEnt(W, AuxAddress);
}
} else {
const XCOFFFunctionAuxEnt32 *AuxEntPtr =
getAuxEntPtr<XCOFFFunctionAuxEnt32>(AuxAddress);
printFunctionAuxEnt(AuxEntPtr);
}
}
// Print the CSECT auxiliary entry.
auto ErrOrCsectAuxRef = SymbolEntRef.getXCOFFCsectAuxRef();
if (!ErrOrCsectAuxRef)
reportUniqueWarning(ErrOrCsectAuxRef.takeError());
else
printCsectAuxEnt(*ErrOrCsectAuxRef);
break;
}
case XCOFF::C_STAT: {
checkNumOfAux();
const XCOFFSectAuxEntForStat *StatAuxEntPtr =
getAuxEntPtr<XCOFFSectAuxEntForStat>(
XCOFFObjectFile::getAdvancedSymbolEntryAddress(
SymbolEntRef.getEntryAddress(), 1));
printSectAuxEntForStat(StatAuxEntPtr);
break;
}
case XCOFF::C_DWARF: {
checkNumOfAux();
uintptr_t AuxAddress = XCOFFObjectFile::getAdvancedSymbolEntryAddress(
SymbolEntRef.getEntryAddress(), 1);
if (Obj.is64Bit()) {
const XCOFFSectAuxEntForDWARF64 *AuxEntPtr =
getAuxEntPtr<XCOFFSectAuxEntForDWARF64>(AuxAddress);
printSectAuxEntForDWARF<XCOFFSectAuxEntForDWARF64>(AuxEntPtr);
} else {
const XCOFFSectAuxEntForDWARF32 *AuxEntPtr =
getAuxEntPtr<XCOFFSectAuxEntForDWARF32>(AuxAddress);
printSectAuxEntForDWARF<XCOFFSectAuxEntForDWARF32>(AuxEntPtr);
}
break;
}
case XCOFF::C_BLOCK:
case XCOFF::C_FCN: {
checkNumOfAux();
uintptr_t AuxAddress = XCOFFObjectFile::getAdvancedSymbolEntryAddress(
SymbolEntRef.getEntryAddress(), 1);
if (Obj.is64Bit()) {
const XCOFFBlockAuxEnt64 *AuxEntPtr =
getAuxEntPtr<XCOFFBlockAuxEnt64>(AuxAddress);
printBlockAuxEnt(AuxEntPtr);
} else {
const XCOFFBlockAuxEnt32 *AuxEntPtr =
getAuxEntPtr<XCOFFBlockAuxEnt32>(AuxAddress);
printBlockAuxEnt(AuxEntPtr);
}
break;
}
default:
for (int i = 1; i <= NumberOfAuxEntries; i++) {
printUnexpectedRawAuxEnt(W,
XCOFFObjectFile::getAdvancedSymbolEntryAddress(
SymbolEntRef.getEntryAddress(), i));
}
break;
}
}
void XCOFFDumper::printSymbols() {
ListScope Group(W, "Symbols");
for (const SymbolRef &S : Obj.symbols())
printSymbol(S);
}
void XCOFFDumper::printStringTable() {
DictScope DS(W, "StringTable");
StringRef StrTable = Obj.getStringTable();
uint32_t StrTabSize = StrTable.size();
W.printNumber("Length", StrTabSize);
// Print strings from the fifth byte, since the first four bytes contain the
// length (in bytes) of the string table (including the length field).
if (StrTabSize > 4)
printAsStringList(StrTable, 4);
}
void XCOFFDumper::printDynamicSymbols() {
llvm_unreachable("Unimplemented functionality for XCOFFDumper");
}
void XCOFFDumper::printUnwindInfo() {
llvm_unreachable("Unimplemented functionality for XCOFFDumper");
}
void XCOFFDumper::printStackMap() const {
llvm_unreachable("Unimplemented functionality for XCOFFDumper");
}
void XCOFFDumper::printNeededLibraries() {
ListScope D(W, "NeededLibraries");
auto ImportFilesOrError = Obj.getImportFileTable();
if (!ImportFilesOrError) {
reportUniqueWarning(ImportFilesOrError.takeError());
return;
}
StringRef ImportFileTable = ImportFilesOrError.get();
const char *CurrentStr = ImportFileTable.data();
const char *TableEnd = ImportFileTable.end();
// Default column width for names is 13 even if no names are that long.
size_t BaseWidth = 13;
// Get the max width of BASE columns.
for (size_t StrIndex = 0; CurrentStr < TableEnd; ++StrIndex) {
size_t CurrentLen = strlen(CurrentStr);
CurrentStr += strlen(CurrentStr) + 1;
if (StrIndex % 3 == 1)
BaseWidth = std::max(BaseWidth, CurrentLen);
}
auto &OS = static_cast<formatted_raw_ostream &>(W.startLine());
// Each entry consists of 3 strings: the path_name, base_name and
// archive_member_name. The first entry is a default LIBPATH value and other
// entries have no path_name. We just dump the base_name and
// archive_member_name here.
OS << left_justify("BASE", BaseWidth) << " MEMBER\n";
CurrentStr = ImportFileTable.data();
for (size_t StrIndex = 0; CurrentStr < TableEnd;
++StrIndex, CurrentStr += strlen(CurrentStr) + 1) {
if (StrIndex >= 3 && StrIndex % 3 != 0) {
if (StrIndex % 3 == 1)
OS << " " << left_justify(CurrentStr, BaseWidth) << " ";
else
OS << CurrentStr << "\n";
}
}
}
const EnumEntry<XCOFF::SectionTypeFlags> SectionTypeFlagsNames[] = {
#define ECase(X) \
{ #X, XCOFF::X }
ECase(STYP_PAD), ECase(STYP_DWARF), ECase(STYP_TEXT),
ECase(STYP_DATA), ECase(STYP_BSS), ECase(STYP_EXCEPT),
ECase(STYP_INFO), ECase(STYP_TDATA), ECase(STYP_TBSS),
ECase(STYP_LOADER), ECase(STYP_DEBUG), ECase(STYP_TYPCHK),
ECase(STYP_OVRFLO)
#undef ECase
};
template <typename T>
void XCOFFDumper::printOverflowSectionHeader(T &Sec) const {
if (Obj.is64Bit()) {
reportWarning(make_error<StringError>("An 64-bit XCOFF object file may not "
"contain an overflow section header.",
object_error::parse_failed),
Obj.getFileName());
}
W.printString("Name", Sec.getName());
W.printNumber("NumberOfRelocations", Sec.PhysicalAddress);
W.printNumber("NumberOfLineNumbers", Sec.VirtualAddress);
W.printHex("Size", Sec.SectionSize);
W.printHex("RawDataOffset", Sec.FileOffsetToRawData);
W.printHex("RelocationPointer", Sec.FileOffsetToRelocationInfo);
W.printHex("LineNumberPointer", Sec.FileOffsetToLineNumberInfo);
W.printNumber("IndexOfSectionOverflowed", Sec.NumberOfRelocations);
W.printNumber("IndexOfSectionOverflowed", Sec.NumberOfLineNumbers);
}
template <typename T>
void XCOFFDumper::printGenericSectionHeader(T &Sec) const {
W.printString("Name", Sec.getName());
W.printHex("PhysicalAddress", Sec.PhysicalAddress);
W.printHex("VirtualAddress", Sec.VirtualAddress);
W.printHex("Size", Sec.SectionSize);
W.printHex("RawDataOffset", Sec.FileOffsetToRawData);
W.printHex("RelocationPointer", Sec.FileOffsetToRelocationInfo);
W.printHex("LineNumberPointer", Sec.FileOffsetToLineNumberInfo);
W.printNumber("NumberOfRelocations", Sec.NumberOfRelocations);
W.printNumber("NumberOfLineNumbers", Sec.NumberOfLineNumbers);
}
enum PrintStyle { Hex, Number };
template <typename T, typename V>
static void printAuxMemberHelper(PrintStyle Style, const char *MemberName,
const T &Member, const V *AuxHeader,
uint16_t AuxSize, uint16_t &PartialFieldOffset,
const char *&PartialFieldName,
ScopedPrinter &W) {
ptrdiff_t Offset = reinterpret_cast<const char *>(&Member) -
reinterpret_cast<const char *>(AuxHeader);
if (Offset + sizeof(Member) <= AuxSize)
Style == Hex ? W.printHex(MemberName, Member)
: W.printNumber(MemberName, Member);
else if (Offset < AuxSize) {
PartialFieldOffset = Offset;
PartialFieldName = MemberName;
}
}
template <class T>
void checkAndPrintAuxHeaderParseError(const char *PartialFieldName,
uint16_t PartialFieldOffset,
uint16_t AuxSize, T &AuxHeader,
XCOFFDumper *Dumper) {
if (PartialFieldOffset < AuxSize) {
Dumper->reportUniqueWarning(Twine("only partial field for ") +
PartialFieldName + " at offset (" +
Twine(PartialFieldOffset) + ")");
Dumper->getScopedPrinter().printBinary(
"Raw data", "",
ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(&AuxHeader) +
PartialFieldOffset,
AuxSize - PartialFieldOffset));
} else if (sizeof(AuxHeader) < AuxSize)
Dumper->getScopedPrinter().printBinary(
"Extra raw data", "",
ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(&AuxHeader) +
sizeof(AuxHeader),
AuxSize - sizeof(AuxHeader)));
}
void XCOFFDumper::printAuxiliaryHeader(
const XCOFFAuxiliaryHeader32 *AuxHeader) {
if (AuxHeader == nullptr)
return;
uint16_t AuxSize = Obj.getOptionalHeaderSize();
uint16_t PartialFieldOffset = AuxSize;
const char *PartialFieldName = nullptr;
auto PrintAuxMember = [&](PrintStyle Style, const char *MemberName,
auto &Member) {
printAuxMemberHelper(Style, MemberName, Member, AuxHeader, AuxSize,
PartialFieldOffset, PartialFieldName, W);
};
PrintAuxMember(Hex, "Magic", AuxHeader->AuxMagic);
PrintAuxMember(Hex, "Version", AuxHeader->Version);
PrintAuxMember(Hex, "Size of .text section", AuxHeader->TextSize);
PrintAuxMember(Hex, "Size of .data section", AuxHeader->InitDataSize);
PrintAuxMember(Hex, "Size of .bss section", AuxHeader->BssDataSize);
PrintAuxMember(Hex, "Entry point address", AuxHeader->EntryPointAddr);
PrintAuxMember(Hex, ".text section start address", AuxHeader->TextStartAddr);
PrintAuxMember(Hex, ".data section start address", AuxHeader->DataStartAddr);
PrintAuxMember(Hex, "TOC anchor address", AuxHeader->TOCAnchorAddr);
PrintAuxMember(Number, "Section number of entryPoint",
AuxHeader->SecNumOfEntryPoint);
PrintAuxMember(Number, "Section number of .text", AuxHeader->SecNumOfText);
PrintAuxMember(Number, "Section number of .data", AuxHeader->SecNumOfData);
PrintAuxMember(Number, "Section number of TOC", AuxHeader->SecNumOfTOC);
PrintAuxMember(Number, "Section number of loader data",
AuxHeader->SecNumOfLoader);
PrintAuxMember(Number, "Section number of .bss", AuxHeader->SecNumOfBSS);
PrintAuxMember(Hex, "Maxium alignment of .text", AuxHeader->MaxAlignOfText);
PrintAuxMember(Hex, "Maxium alignment of .data", AuxHeader->MaxAlignOfData);
PrintAuxMember(Hex, "Module type", AuxHeader->ModuleType);
PrintAuxMember(Hex, "CPU type of objects", AuxHeader->CpuFlag);
PrintAuxMember(Hex, "(Reserved)", AuxHeader->CpuType);
PrintAuxMember(Hex, "Maximum stack size", AuxHeader->MaxStackSize);
PrintAuxMember(Hex, "Maximum data size", AuxHeader->MaxDataSize);
PrintAuxMember(Hex, "Reserved for debugger", AuxHeader->ReservedForDebugger);
PrintAuxMember(Hex, "Text page size", AuxHeader->TextPageSize);
PrintAuxMember(Hex, "Data page size", AuxHeader->DataPageSize);
PrintAuxMember(Hex, "Stack page size", AuxHeader->StackPageSize);
if (offsetof(XCOFFAuxiliaryHeader32, FlagAndTDataAlignment) +
sizeof(XCOFFAuxiliaryHeader32::FlagAndTDataAlignment) <=
AuxSize) {
W.printHex("Flag", AuxHeader->getFlag());
W.printHex("Alignment of thread-local storage",
AuxHeader->getTDataAlignment());
}
PrintAuxMember(Number, "Section number for .tdata", AuxHeader->SecNumOfTData);
PrintAuxMember(Number, "Section number for .tbss", AuxHeader->SecNumOfTBSS);
checkAndPrintAuxHeaderParseError(PartialFieldName, PartialFieldOffset,
AuxSize, *AuxHeader, this);
}
void XCOFFDumper::printAuxiliaryHeader(
const XCOFFAuxiliaryHeader64 *AuxHeader) {
if (AuxHeader == nullptr)
return;
uint16_t AuxSize = Obj.getOptionalHeaderSize();
uint16_t PartialFieldOffset = AuxSize;
const char *PartialFieldName = nullptr;
auto PrintAuxMember = [&](PrintStyle Style, const char *MemberName,
auto &Member) {
printAuxMemberHelper(Style, MemberName, Member, AuxHeader, AuxSize,
PartialFieldOffset, PartialFieldName, W);
};
PrintAuxMember(Hex, "Magic", AuxHeader->AuxMagic);
PrintAuxMember(Hex, "Version", AuxHeader->Version);
PrintAuxMember(Hex, "Reserved for debugger", AuxHeader->ReservedForDebugger);
PrintAuxMember(Hex, ".text section start address", AuxHeader->TextStartAddr);
PrintAuxMember(Hex, ".data section start address", AuxHeader->DataStartAddr);
PrintAuxMember(Hex, "TOC anchor address", AuxHeader->TOCAnchorAddr);
PrintAuxMember(Number, "Section number of entryPoint",
AuxHeader->SecNumOfEntryPoint);
PrintAuxMember(Number, "Section number of .text", AuxHeader->SecNumOfText);
PrintAuxMember(Number, "Section number of .data", AuxHeader->SecNumOfData);
PrintAuxMember(Number, "Section number of TOC", AuxHeader->SecNumOfTOC);
PrintAuxMember(Number, "Section number of loader data",
AuxHeader->SecNumOfLoader);
PrintAuxMember(Number, "Section number of .bss", AuxHeader->SecNumOfBSS);
PrintAuxMember(Hex, "Maxium alignment of .text", AuxHeader->MaxAlignOfText);
PrintAuxMember(Hex, "Maxium alignment of .data", AuxHeader->MaxAlignOfData);
PrintAuxMember(Hex, "Module type", AuxHeader->ModuleType);
PrintAuxMember(Hex, "CPU type of objects", AuxHeader->CpuFlag);
PrintAuxMember(Hex, "(Reserved)", AuxHeader->CpuType);
PrintAuxMember(Hex, "Text page size", AuxHeader->TextPageSize);
PrintAuxMember(Hex, "Data page size", AuxHeader->DataPageSize);
PrintAuxMember(Hex, "Stack page size", AuxHeader->StackPageSize);
if (offsetof(XCOFFAuxiliaryHeader64, FlagAndTDataAlignment) +
sizeof(XCOFFAuxiliaryHeader64::FlagAndTDataAlignment) <=
AuxSize) {
W.printHex("Flag", AuxHeader->getFlag());
W.printHex("Alignment of thread-local storage",
AuxHeader->getTDataAlignment());
}
PrintAuxMember(Hex, "Size of .text section", AuxHeader->TextSize);
PrintAuxMember(Hex, "Size of .data section", AuxHeader->InitDataSize);
PrintAuxMember(Hex, "Size of .bss section", AuxHeader->BssDataSize);
PrintAuxMember(Hex, "Entry point address", AuxHeader->EntryPointAddr);
PrintAuxMember(Hex, "Maximum stack size", AuxHeader->MaxStackSize);
PrintAuxMember(Hex, "Maximum data size", AuxHeader->MaxDataSize);
PrintAuxMember(Number, "Section number for .tdata", AuxHeader->SecNumOfTData);
PrintAuxMember(Number, "Section number for .tbss", AuxHeader->SecNumOfTBSS);
PrintAuxMember(Hex, "Additional flags 64-bit XCOFF", AuxHeader->XCOFF64Flag);
checkAndPrintAuxHeaderParseError(PartialFieldName, PartialFieldOffset,
AuxSize, *AuxHeader, this);
}
template <typename T>
void XCOFFDumper::printSectionHeaders(ArrayRef<T> Sections) {
ListScope Group(W, "Sections");
uint16_t Index = 1;
for (const T &Sec : Sections) {
DictScope SecDS(W, "Section");
W.printNumber("Index", Index++);
uint16_t SectionType = Sec.getSectionType();
switch (SectionType) {
case XCOFF::STYP_OVRFLO:
printOverflowSectionHeader(Sec);
break;
case XCOFF::STYP_LOADER:
case XCOFF::STYP_EXCEPT:
case XCOFF::STYP_TYPCHK:
// TODO The interpretation of loader, exception and type check section
// headers are different from that of generic section headers. We will
// implement them later. We interpret them as generic section headers for
// now.
default:
printGenericSectionHeader(Sec);
break;
}
if (Sec.isReservedSectionType())
W.printHex("Flags", "Reserved", SectionType);
else
W.printEnum("Type", SectionType, makeArrayRef(SectionTypeFlagsNames));
}
if (opts::SectionRelocations)
report_fatal_error("Dumping section relocations is unimplemented");
if (opts::SectionSymbols)
report_fatal_error("Dumping symbols is unimplemented");
if (opts::SectionData)
report_fatal_error("Dumping section data is unimplemented");
}
namespace llvm {
std::unique_ptr<ObjDumper>
createXCOFFDumper(const object::XCOFFObjectFile &XObj, ScopedPrinter &Writer) {
return std::make_unique<XCOFFDumper>(XObj, Writer);
}
} // namespace llvm