forked from OSchip/llvm-project
2716 lines
108 KiB
C++
2716 lines
108 KiB
C++
//===- llvm-profdata.cpp - LLVM profile data tool -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// llvm-profdata merges .profdata files.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/Object/Binary.h"
|
|
#include "llvm/ProfileData/InstrProfCorrelator.h"
|
|
#include "llvm/ProfileData/InstrProfReader.h"
|
|
#include "llvm/ProfileData/InstrProfWriter.h"
|
|
#include "llvm/ProfileData/MemProf.h"
|
|
#include "llvm/ProfileData/ProfileCommon.h"
|
|
#include "llvm/ProfileData/RawMemProfReader.h"
|
|
#include "llvm/ProfileData/SampleProfReader.h"
|
|
#include "llvm/ProfileData/SampleProfWriter.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Discriminator.h"
|
|
#include "llvm/Support/Errc.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Support/InitLLVM.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/ThreadPool.h"
|
|
#include "llvm/Support/Threading.h"
|
|
#include "llvm/Support/WithColor.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
|
|
using namespace llvm;
|
|
|
|
enum ProfileFormat {
|
|
PF_None = 0,
|
|
PF_Text,
|
|
PF_Compact_Binary,
|
|
PF_Ext_Binary,
|
|
PF_GCC,
|
|
PF_Binary
|
|
};
|
|
|
|
static void warn(Twine Message, std::string Whence = "",
|
|
std::string Hint = "") {
|
|
WithColor::warning();
|
|
if (!Whence.empty())
|
|
errs() << Whence << ": ";
|
|
errs() << Message << "\n";
|
|
if (!Hint.empty())
|
|
WithColor::note() << Hint << "\n";
|
|
}
|
|
|
|
static void warn(Error E, StringRef Whence = "") {
|
|
if (E.isA<InstrProfError>()) {
|
|
handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
|
|
warn(IPE.message(), std::string(Whence), std::string(""));
|
|
});
|
|
}
|
|
}
|
|
|
|
static void exitWithError(Twine Message, std::string Whence = "",
|
|
std::string Hint = "") {
|
|
WithColor::error();
|
|
if (!Whence.empty())
|
|
errs() << Whence << ": ";
|
|
errs() << Message << "\n";
|
|
if (!Hint.empty())
|
|
WithColor::note() << Hint << "\n";
|
|
::exit(1);
|
|
}
|
|
|
|
static void exitWithError(Error E, StringRef Whence = "") {
|
|
if (E.isA<InstrProfError>()) {
|
|
handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
|
|
instrprof_error instrError = IPE.get();
|
|
StringRef Hint = "";
|
|
if (instrError == instrprof_error::unrecognized_format) {
|
|
// Hint in case user missed specifying the profile type.
|
|
Hint = "Perhaps you forgot to use the --sample or --memory option?";
|
|
}
|
|
exitWithError(IPE.message(), std::string(Whence), std::string(Hint));
|
|
});
|
|
return;
|
|
}
|
|
|
|
exitWithError(toString(std::move(E)), std::string(Whence));
|
|
}
|
|
|
|
static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") {
|
|
exitWithError(EC.message(), std::string(Whence));
|
|
}
|
|
|
|
namespace {
|
|
enum ProfileKinds { instr, sample, memory };
|
|
enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid };
|
|
}
|
|
|
|
static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC,
|
|
StringRef Whence = "") {
|
|
if (FailMode == failIfAnyAreInvalid)
|
|
exitWithErrorCode(EC, Whence);
|
|
else
|
|
warn(EC.message(), std::string(Whence));
|
|
}
|
|
|
|
static void handleMergeWriterError(Error E, StringRef WhenceFile = "",
|
|
StringRef WhenceFunction = "",
|
|
bool ShowHint = true) {
|
|
if (!WhenceFile.empty())
|
|
errs() << WhenceFile << ": ";
|
|
if (!WhenceFunction.empty())
|
|
errs() << WhenceFunction << ": ";
|
|
|
|
auto IPE = instrprof_error::success;
|
|
E = handleErrors(std::move(E),
|
|
[&IPE](std::unique_ptr<InstrProfError> E) -> Error {
|
|
IPE = E->get();
|
|
return Error(std::move(E));
|
|
});
|
|
errs() << toString(std::move(E)) << "\n";
|
|
|
|
if (ShowHint) {
|
|
StringRef Hint = "";
|
|
if (IPE != instrprof_error::success) {
|
|
switch (IPE) {
|
|
case instrprof_error::hash_mismatch:
|
|
case instrprof_error::count_mismatch:
|
|
case instrprof_error::value_site_count_mismatch:
|
|
Hint = "Make sure that all profile data to be merged is generated "
|
|
"from the same binary.";
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Hint.empty())
|
|
errs() << Hint << "\n";
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// A remapper from original symbol names to new symbol names based on a file
|
|
/// containing a list of mappings from old name to new name.
|
|
class SymbolRemapper {
|
|
std::unique_ptr<MemoryBuffer> File;
|
|
DenseMap<StringRef, StringRef> RemappingTable;
|
|
|
|
public:
|
|
/// Build a SymbolRemapper from a file containing a list of old/new symbols.
|
|
static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) {
|
|
auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
|
|
if (!BufOrError)
|
|
exitWithErrorCode(BufOrError.getError(), InputFile);
|
|
|
|
auto Remapper = std::make_unique<SymbolRemapper>();
|
|
Remapper->File = std::move(BufOrError.get());
|
|
|
|
for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#');
|
|
!LineIt.is_at_eof(); ++LineIt) {
|
|
std::pair<StringRef, StringRef> Parts = LineIt->split(' ');
|
|
if (Parts.first.empty() || Parts.second.empty() ||
|
|
Parts.second.count(' ')) {
|
|
exitWithError("unexpected line in remapping file",
|
|
(InputFile + ":" + Twine(LineIt.line_number())).str(),
|
|
"expected 'old_symbol new_symbol'");
|
|
}
|
|
Remapper->RemappingTable.insert(Parts);
|
|
}
|
|
return Remapper;
|
|
}
|
|
|
|
/// Attempt to map the given old symbol into a new symbol.
|
|
///
|
|
/// \return The new symbol, or \p Name if no such symbol was found.
|
|
StringRef operator()(StringRef Name) {
|
|
StringRef New = RemappingTable.lookup(Name);
|
|
return New.empty() ? Name : New;
|
|
}
|
|
};
|
|
}
|
|
|
|
struct WeightedFile {
|
|
std::string Filename;
|
|
uint64_t Weight;
|
|
};
|
|
typedef SmallVector<WeightedFile, 5> WeightedFileVector;
|
|
|
|
/// Keep track of merged data and reported errors.
|
|
struct WriterContext {
|
|
std::mutex Lock;
|
|
InstrProfWriter Writer;
|
|
std::vector<std::pair<Error, std::string>> Errors;
|
|
std::mutex &ErrLock;
|
|
SmallSet<instrprof_error, 4> &WriterErrorCodes;
|
|
|
|
WriterContext(bool IsSparse, std::mutex &ErrLock,
|
|
SmallSet<instrprof_error, 4> &WriterErrorCodes)
|
|
: Writer(IsSparse), ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {
|
|
}
|
|
};
|
|
|
|
/// Computer the overlap b/w profile BaseFilename and TestFileName,
|
|
/// and store the program level result to Overlap.
|
|
static void overlapInput(const std::string &BaseFilename,
|
|
const std::string &TestFilename, WriterContext *WC,
|
|
OverlapStats &Overlap,
|
|
const OverlapFuncFilters &FuncFilter,
|
|
raw_fd_ostream &OS, bool IsCS) {
|
|
auto ReaderOrErr = InstrProfReader::create(TestFilename);
|
|
if (Error E = ReaderOrErr.takeError()) {
|
|
// Skip the empty profiles by returning sliently.
|
|
instrprof_error IPE = InstrProfError::take(std::move(E));
|
|
if (IPE != instrprof_error::empty_raw_profile)
|
|
WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename);
|
|
return;
|
|
}
|
|
|
|
auto Reader = std::move(ReaderOrErr.get());
|
|
for (auto &I : *Reader) {
|
|
OverlapStats FuncOverlap(OverlapStats::FunctionLevel);
|
|
FuncOverlap.setFuncInfo(I.Name, I.Hash);
|
|
|
|
WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter);
|
|
FuncOverlap.dump(OS);
|
|
}
|
|
}
|
|
|
|
/// Load an input into a writer context.
|
|
static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper,
|
|
const InstrProfCorrelator *Correlator,
|
|
const StringRef ProfiledBinary, WriterContext *WC) {
|
|
std::unique_lock<std::mutex> CtxGuard{WC->Lock};
|
|
|
|
// Copy the filename, because llvm::ThreadPool copied the input "const
|
|
// WeightedFile &" by value, making a reference to the filename within it
|
|
// invalid outside of this packaged task.
|
|
std::string Filename = Input.Filename;
|
|
|
|
using ::llvm::memprof::RawMemProfReader;
|
|
if (RawMemProfReader::hasFormat(Input.Filename)) {
|
|
auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary);
|
|
if (!ReaderOrErr) {
|
|
exitWithError(ReaderOrErr.takeError(), Input.Filename);
|
|
}
|
|
std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get());
|
|
// Check if the profile types can be merged, e.g. clang frontend profiles
|
|
// should not be merged with memprof profiles.
|
|
if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
|
|
consumeError(std::move(E));
|
|
WC->Errors.emplace_back(
|
|
make_error<StringError>(
|
|
"Cannot merge MemProf profile with Clang generated profile.",
|
|
std::error_code()),
|
|
Filename);
|
|
return;
|
|
}
|
|
|
|
// Add the records into the writer context.
|
|
for (auto I = Reader->begin(), E = Reader->end(); I != E; ++I) {
|
|
WC->Writer.addRecord(/*Id=*/I->first, /*Record=*/I->second, [&](Error E) {
|
|
instrprof_error IPE = InstrProfError::take(std::move(E));
|
|
WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename);
|
|
});
|
|
}
|
|
return;
|
|
}
|
|
|
|
auto ReaderOrErr = InstrProfReader::create(Input.Filename, Correlator);
|
|
if (Error E = ReaderOrErr.takeError()) {
|
|
// Skip the empty profiles by returning sliently.
|
|
instrprof_error IPE = InstrProfError::take(std::move(E));
|
|
if (IPE != instrprof_error::empty_raw_profile)
|
|
WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename);
|
|
return;
|
|
}
|
|
|
|
auto Reader = std::move(ReaderOrErr.get());
|
|
if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
|
|
consumeError(std::move(E));
|
|
WC->Errors.emplace_back(
|
|
make_error<StringError>(
|
|
"Merge IR generated profile with Clang generated profile.",
|
|
std::error_code()),
|
|
Filename);
|
|
return;
|
|
}
|
|
|
|
for (auto &I : *Reader) {
|
|
if (Remapper)
|
|
I.Name = (*Remapper)(I.Name);
|
|
const StringRef FuncName = I.Name;
|
|
bool Reported = false;
|
|
WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) {
|
|
if (Reported) {
|
|
consumeError(std::move(E));
|
|
return;
|
|
}
|
|
Reported = true;
|
|
// Only show hint the first time an error occurs.
|
|
instrprof_error IPE = InstrProfError::take(std::move(E));
|
|
std::unique_lock<std::mutex> ErrGuard{WC->ErrLock};
|
|
bool firstTime = WC->WriterErrorCodes.insert(IPE).second;
|
|
handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename,
|
|
FuncName, firstTime);
|
|
});
|
|
}
|
|
if (Reader->hasError())
|
|
if (Error E = Reader->getError())
|
|
WC->Errors.emplace_back(std::move(E), Filename);
|
|
}
|
|
|
|
/// Merge the \p Src writer context into \p Dst.
|
|
static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) {
|
|
for (auto &ErrorPair : Src->Errors)
|
|
Dst->Errors.push_back(std::move(ErrorPair));
|
|
Src->Errors.clear();
|
|
|
|
Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) {
|
|
instrprof_error IPE = InstrProfError::take(std::move(E));
|
|
std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock};
|
|
bool firstTime = Dst->WriterErrorCodes.insert(IPE).second;
|
|
if (firstTime)
|
|
warn(toString(make_error<InstrProfError>(IPE)));
|
|
});
|
|
}
|
|
|
|
static void writeInstrProfile(StringRef OutputFilename,
|
|
ProfileFormat OutputFormat,
|
|
InstrProfWriter &Writer) {
|
|
std::error_code EC;
|
|
raw_fd_ostream Output(OutputFilename.data(), EC,
|
|
OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF
|
|
: sys::fs::OF_None);
|
|
if (EC)
|
|
exitWithErrorCode(EC, OutputFilename);
|
|
|
|
if (OutputFormat == PF_Text) {
|
|
if (Error E = Writer.writeText(Output))
|
|
warn(std::move(E));
|
|
} else {
|
|
if (Output.is_displayed())
|
|
exitWithError("cannot write a non-text format profile to the terminal");
|
|
if (Error E = Writer.write(Output))
|
|
warn(std::move(E));
|
|
}
|
|
}
|
|
|
|
static void mergeInstrProfile(const WeightedFileVector &Inputs,
|
|
StringRef DebugInfoFilename,
|
|
SymbolRemapper *Remapper,
|
|
StringRef OutputFilename,
|
|
ProfileFormat OutputFormat, bool OutputSparse,
|
|
unsigned NumThreads, FailureMode FailMode,
|
|
const StringRef ProfiledBinary) {
|
|
if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary &&
|
|
OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text)
|
|
exitWithError("unknown format is specified");
|
|
|
|
std::unique_ptr<InstrProfCorrelator> Correlator;
|
|
if (!DebugInfoFilename.empty()) {
|
|
if (auto Err =
|
|
InstrProfCorrelator::get(DebugInfoFilename).moveInto(Correlator))
|
|
exitWithError(std::move(Err), DebugInfoFilename);
|
|
if (auto Err = Correlator->correlateProfileData())
|
|
exitWithError(std::move(Err), DebugInfoFilename);
|
|
}
|
|
|
|
std::mutex ErrorLock;
|
|
SmallSet<instrprof_error, 4> WriterErrorCodes;
|
|
|
|
// If NumThreads is not specified, auto-detect a good default.
|
|
if (NumThreads == 0)
|
|
NumThreads = std::min(hardware_concurrency().compute_thread_count(),
|
|
unsigned((Inputs.size() + 1) / 2));
|
|
// FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails
|
|
// the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't
|
|
// merged, thus the emitted file ends up with a PF_Unknown kind.
|
|
|
|
// Initialize the writer contexts.
|
|
SmallVector<std::unique_ptr<WriterContext>, 4> Contexts;
|
|
for (unsigned I = 0; I < NumThreads; ++I)
|
|
Contexts.emplace_back(std::make_unique<WriterContext>(
|
|
OutputSparse, ErrorLock, WriterErrorCodes));
|
|
|
|
if (NumThreads == 1) {
|
|
for (const auto &Input : Inputs)
|
|
loadInput(Input, Remapper, Correlator.get(), ProfiledBinary,
|
|
Contexts[0].get());
|
|
} else {
|
|
ThreadPool Pool(hardware_concurrency(NumThreads));
|
|
|
|
// Load the inputs in parallel (N/NumThreads serial steps).
|
|
unsigned Ctx = 0;
|
|
for (const auto &Input : Inputs) {
|
|
Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary,
|
|
Contexts[Ctx].get());
|
|
Ctx = (Ctx + 1) % NumThreads;
|
|
}
|
|
Pool.wait();
|
|
|
|
// Merge the writer contexts together (~ lg(NumThreads) serial steps).
|
|
unsigned Mid = Contexts.size() / 2;
|
|
unsigned End = Contexts.size();
|
|
assert(Mid > 0 && "Expected more than one context");
|
|
do {
|
|
for (unsigned I = 0; I < Mid; ++I)
|
|
Pool.async(mergeWriterContexts, Contexts[I].get(),
|
|
Contexts[I + Mid].get());
|
|
Pool.wait();
|
|
if (End & 1) {
|
|
Pool.async(mergeWriterContexts, Contexts[0].get(),
|
|
Contexts[End - 1].get());
|
|
Pool.wait();
|
|
}
|
|
End = Mid;
|
|
Mid /= 2;
|
|
} while (Mid > 0);
|
|
}
|
|
|
|
// Handle deferred errors encountered during merging. If the number of errors
|
|
// is equal to the number of inputs the merge failed.
|
|
unsigned NumErrors = 0;
|
|
for (std::unique_ptr<WriterContext> &WC : Contexts) {
|
|
for (auto &ErrorPair : WC->Errors) {
|
|
++NumErrors;
|
|
warn(toString(std::move(ErrorPair.first)), ErrorPair.second);
|
|
}
|
|
}
|
|
if (NumErrors == Inputs.size() ||
|
|
(NumErrors > 0 && FailMode == failIfAnyAreInvalid))
|
|
exitWithError("no profile can be merged");
|
|
|
|
writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer);
|
|
}
|
|
|
|
/// The profile entry for a function in instrumentation profile.
|
|
struct InstrProfileEntry {
|
|
uint64_t MaxCount = 0;
|
|
float ZeroCounterRatio = 0.0;
|
|
InstrProfRecord *ProfRecord;
|
|
InstrProfileEntry(InstrProfRecord *Record);
|
|
InstrProfileEntry() = default;
|
|
};
|
|
|
|
InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) {
|
|
ProfRecord = Record;
|
|
uint64_t CntNum = Record->Counts.size();
|
|
uint64_t ZeroCntNum = 0;
|
|
for (size_t I = 0; I < CntNum; ++I) {
|
|
MaxCount = std::max(MaxCount, Record->Counts[I]);
|
|
ZeroCntNum += !Record->Counts[I];
|
|
}
|
|
ZeroCounterRatio = (float)ZeroCntNum / CntNum;
|
|
}
|
|
|
|
/// Either set all the counters in the instr profile entry \p IFE to -1
|
|
/// in order to drop the profile or scale up the counters in \p IFP to
|
|
/// be above hot threshold. We use the ratio of zero counters in the
|
|
/// profile of a function to decide the profile is helpful or harmful
|
|
/// for performance, and to choose whether to scale up or drop it.
|
|
static void updateInstrProfileEntry(InstrProfileEntry &IFE,
|
|
uint64_t HotInstrThreshold,
|
|
float ZeroCounterThreshold) {
|
|
InstrProfRecord *ProfRecord = IFE.ProfRecord;
|
|
if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) {
|
|
// If all or most of the counters of the function are zero, the
|
|
// profile is unaccountable and shuld be dropped. Reset all the
|
|
// counters to be -1 and PGO profile-use will drop the profile.
|
|
// All counters being -1 also implies that the function is hot so
|
|
// PGO profile-use will also set the entry count metadata to be
|
|
// above hot threshold.
|
|
for (size_t I = 0; I < ProfRecord->Counts.size(); ++I)
|
|
ProfRecord->Counts[I] = -1;
|
|
return;
|
|
}
|
|
|
|
// Scale up the MaxCount to be multiple times above hot threshold.
|
|
const unsigned MultiplyFactor = 3;
|
|
uint64_t Numerator = HotInstrThreshold * MultiplyFactor;
|
|
uint64_t Denominator = IFE.MaxCount;
|
|
ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) {
|
|
warn(toString(make_error<InstrProfError>(E)));
|
|
});
|
|
}
|
|
|
|
const uint64_t ColdPercentileIdx = 15;
|
|
const uint64_t HotPercentileIdx = 11;
|
|
|
|
using sampleprof::FSDiscriminatorPass;
|
|
|
|
// Internal options to set FSDiscriminatorPass. Used in merge and show
|
|
// commands.
|
|
static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption(
|
|
"fs-discriminator-pass", cl::init(PassLast), cl::Hidden,
|
|
cl::desc("Zero out the discriminator bits for the FS discrimiantor "
|
|
"pass beyond this value. The enum values are defined in "
|
|
"Support/Discriminator.h"),
|
|
cl::values(clEnumVal(Base, "Use base discriminators only"),
|
|
clEnumVal(Pass1, "Use base and pass 1 discriminators"),
|
|
clEnumVal(Pass2, "Use base and pass 1-2 discriminators"),
|
|
clEnumVal(Pass3, "Use base and pass 1-3 discriminators"),
|
|
clEnumVal(PassLast, "Use all discriminator bits (default)")));
|
|
|
|
static unsigned getDiscriminatorMask() {
|
|
return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue()));
|
|
}
|
|
|
|
/// Adjust the instr profile in \p WC based on the sample profile in
|
|
/// \p Reader.
|
|
static void
|
|
adjustInstrProfile(std::unique_ptr<WriterContext> &WC,
|
|
std::unique_ptr<sampleprof::SampleProfileReader> &Reader,
|
|
unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
|
|
unsigned InstrProfColdThreshold) {
|
|
// Function to its entry in instr profile.
|
|
StringMap<InstrProfileEntry> InstrProfileMap;
|
|
InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs);
|
|
for (auto &PD : WC->Writer.getProfileData()) {
|
|
// Populate IPBuilder.
|
|
for (const auto &PDV : PD.getValue()) {
|
|
InstrProfRecord Record = PDV.second;
|
|
IPBuilder.addRecord(Record);
|
|
}
|
|
|
|
// If a function has multiple entries in instr profile, skip it.
|
|
if (PD.getValue().size() != 1)
|
|
continue;
|
|
|
|
// Initialize InstrProfileMap.
|
|
InstrProfRecord *R = &PD.getValue().begin()->second;
|
|
InstrProfileMap[PD.getKey()] = InstrProfileEntry(R);
|
|
}
|
|
|
|
ProfileSummary InstrPS = *IPBuilder.getSummary();
|
|
ProfileSummary SamplePS = Reader->getSummary();
|
|
|
|
// Compute cold thresholds for instr profile and sample profile.
|
|
uint64_t ColdSampleThreshold =
|
|
ProfileSummaryBuilder::getEntryForPercentile(
|
|
SamplePS.getDetailedSummary(),
|
|
ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
|
|
.MinCount;
|
|
uint64_t HotInstrThreshold =
|
|
ProfileSummaryBuilder::getEntryForPercentile(
|
|
InstrPS.getDetailedSummary(),
|
|
ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
|
|
.MinCount;
|
|
uint64_t ColdInstrThreshold =
|
|
InstrProfColdThreshold
|
|
? InstrProfColdThreshold
|
|
: ProfileSummaryBuilder::getEntryForPercentile(
|
|
InstrPS.getDetailedSummary(),
|
|
ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
|
|
.MinCount;
|
|
|
|
// Find hot/warm functions in sample profile which is cold in instr profile
|
|
// and adjust the profiles of those functions in the instr profile.
|
|
for (const auto &PD : Reader->getProfiles()) {
|
|
auto &FContext = PD.first;
|
|
const sampleprof::FunctionSamples &FS = PD.second;
|
|
auto It = InstrProfileMap.find(FContext.toString());
|
|
if (FS.getHeadSamples() > ColdSampleThreshold &&
|
|
It != InstrProfileMap.end() &&
|
|
It->second.MaxCount <= ColdInstrThreshold &&
|
|
FS.getBodySamples().size() >= SupplMinSizeThreshold) {
|
|
updateInstrProfileEntry(It->second, HotInstrThreshold,
|
|
ZeroCounterThreshold);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The main function to supplement instr profile with sample profile.
|
|
/// \Inputs contains the instr profile. \p SampleFilename specifies the
|
|
/// sample profile. \p OutputFilename specifies the output profile name.
|
|
/// \p OutputFormat specifies the output profile format. \p OutputSparse
|
|
/// specifies whether to generate sparse profile. \p SupplMinSizeThreshold
|
|
/// specifies the minimal size for the functions whose profile will be
|
|
/// adjusted. \p ZeroCounterThreshold is the threshold to check whether
|
|
/// a function contains too many zero counters and whether its profile
|
|
/// should be dropped. \p InstrProfColdThreshold is the user specified
|
|
/// cold threshold which will override the cold threshold got from the
|
|
/// instr profile summary.
|
|
static void supplementInstrProfile(
|
|
const WeightedFileVector &Inputs, StringRef SampleFilename,
|
|
StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse,
|
|
unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
|
|
unsigned InstrProfColdThreshold) {
|
|
if (OutputFilename.compare("-") == 0)
|
|
exitWithError("cannot write indexed profdata format to stdout");
|
|
if (Inputs.size() != 1)
|
|
exitWithError("expect one input to be an instr profile");
|
|
if (Inputs[0].Weight != 1)
|
|
exitWithError("expect instr profile doesn't have weight");
|
|
|
|
StringRef InstrFilename = Inputs[0].Filename;
|
|
|
|
// Read sample profile.
|
|
LLVMContext Context;
|
|
auto ReaderOrErr = sampleprof::SampleProfileReader::create(
|
|
SampleFilename.str(), Context, FSDiscriminatorPassOption);
|
|
if (std::error_code EC = ReaderOrErr.getError())
|
|
exitWithErrorCode(EC, SampleFilename);
|
|
auto Reader = std::move(ReaderOrErr.get());
|
|
if (std::error_code EC = Reader->read())
|
|
exitWithErrorCode(EC, SampleFilename);
|
|
|
|
// Read instr profile.
|
|
std::mutex ErrorLock;
|
|
SmallSet<instrprof_error, 4> WriterErrorCodes;
|
|
auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock,
|
|
WriterErrorCodes);
|
|
loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get());
|
|
if (WC->Errors.size() > 0)
|
|
exitWithError(std::move(WC->Errors[0].first), InstrFilename);
|
|
|
|
adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold,
|
|
InstrProfColdThreshold);
|
|
writeInstrProfile(OutputFilename, OutputFormat, WC->Writer);
|
|
}
|
|
|
|
/// Make a copy of the given function samples with all symbol names remapped
|
|
/// by the provided symbol remapper.
|
|
static sampleprof::FunctionSamples
|
|
remapSamples(const sampleprof::FunctionSamples &Samples,
|
|
SymbolRemapper &Remapper, sampleprof_error &Error) {
|
|
sampleprof::FunctionSamples Result;
|
|
Result.setName(Remapper(Samples.getName()));
|
|
Result.addTotalSamples(Samples.getTotalSamples());
|
|
Result.addHeadSamples(Samples.getHeadSamples());
|
|
for (const auto &BodySample : Samples.getBodySamples()) {
|
|
uint32_t MaskedDiscriminator =
|
|
BodySample.first.Discriminator & getDiscriminatorMask();
|
|
Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator,
|
|
BodySample.second.getSamples());
|
|
for (const auto &Target : BodySample.second.getCallTargets()) {
|
|
Result.addCalledTargetSamples(BodySample.first.LineOffset,
|
|
MaskedDiscriminator,
|
|
Remapper(Target.first()), Target.second);
|
|
}
|
|
}
|
|
for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
|
|
sampleprof::FunctionSamplesMap &Target =
|
|
Result.functionSamplesAt(CallsiteSamples.first);
|
|
for (const auto &Callsite : CallsiteSamples.second) {
|
|
sampleprof::FunctionSamples Remapped =
|
|
remapSamples(Callsite.second, Remapper, Error);
|
|
MergeResult(Error,
|
|
Target[std::string(Remapped.getName())].merge(Remapped));
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
static sampleprof::SampleProfileFormat FormatMap[] = {
|
|
sampleprof::SPF_None,
|
|
sampleprof::SPF_Text,
|
|
sampleprof::SPF_Compact_Binary,
|
|
sampleprof::SPF_Ext_Binary,
|
|
sampleprof::SPF_GCC,
|
|
sampleprof::SPF_Binary};
|
|
|
|
static std::unique_ptr<MemoryBuffer>
|
|
getInputFileBuf(const StringRef &InputFile) {
|
|
if (InputFile == "")
|
|
return {};
|
|
|
|
auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
|
|
if (!BufOrError)
|
|
exitWithErrorCode(BufOrError.getError(), InputFile);
|
|
|
|
return std::move(*BufOrError);
|
|
}
|
|
|
|
static void populateProfileSymbolList(MemoryBuffer *Buffer,
|
|
sampleprof::ProfileSymbolList &PSL) {
|
|
if (!Buffer)
|
|
return;
|
|
|
|
SmallVector<StringRef, 32> SymbolVec;
|
|
StringRef Data = Buffer->getBuffer();
|
|
Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
|
|
|
|
for (StringRef SymbolStr : SymbolVec)
|
|
PSL.add(SymbolStr.trim());
|
|
}
|
|
|
|
static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer,
|
|
ProfileFormat OutputFormat,
|
|
MemoryBuffer *Buffer,
|
|
sampleprof::ProfileSymbolList &WriterList,
|
|
bool CompressAllSections, bool UseMD5,
|
|
bool GenPartialProfile) {
|
|
populateProfileSymbolList(Buffer, WriterList);
|
|
if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary)
|
|
warn("Profile Symbol list is not empty but the output format is not "
|
|
"ExtBinary format. The list will be lost in the output. ");
|
|
|
|
Writer.setProfileSymbolList(&WriterList);
|
|
|
|
if (CompressAllSections) {
|
|
if (OutputFormat != PF_Ext_Binary)
|
|
warn("-compress-all-section is ignored. Specify -extbinary to enable it");
|
|
else
|
|
Writer.setToCompressAllSections();
|
|
}
|
|
if (UseMD5) {
|
|
if (OutputFormat != PF_Ext_Binary)
|
|
warn("-use-md5 is ignored. Specify -extbinary to enable it");
|
|
else
|
|
Writer.setUseMD5();
|
|
}
|
|
if (GenPartialProfile) {
|
|
if (OutputFormat != PF_Ext_Binary)
|
|
warn("-gen-partial-profile is ignored. Specify -extbinary to enable it");
|
|
else
|
|
Writer.setPartialProfile();
|
|
}
|
|
}
|
|
|
|
static void
|
|
mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper,
|
|
StringRef OutputFilename, ProfileFormat OutputFormat,
|
|
StringRef ProfileSymbolListFile, bool CompressAllSections,
|
|
bool UseMD5, bool GenPartialProfile, bool GenCSNestedProfile,
|
|
bool SampleMergeColdContext, bool SampleTrimColdContext,
|
|
bool SampleColdContextFrameDepth, FailureMode FailMode) {
|
|
using namespace sampleprof;
|
|
SampleProfileMap ProfileMap;
|
|
SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers;
|
|
LLVMContext Context;
|
|
sampleprof::ProfileSymbolList WriterList;
|
|
Optional<bool> ProfileIsProbeBased;
|
|
Optional<bool> ProfileIsCSFlat;
|
|
for (const auto &Input : Inputs) {
|
|
auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context,
|
|
FSDiscriminatorPassOption);
|
|
if (std::error_code EC = ReaderOrErr.getError()) {
|
|
warnOrExitGivenError(FailMode, EC, Input.Filename);
|
|
continue;
|
|
}
|
|
|
|
// We need to keep the readers around until after all the files are
|
|
// read so that we do not lose the function names stored in each
|
|
// reader's memory. The function names are needed to write out the
|
|
// merged profile map.
|
|
Readers.push_back(std::move(ReaderOrErr.get()));
|
|
const auto Reader = Readers.back().get();
|
|
if (std::error_code EC = Reader->read()) {
|
|
warnOrExitGivenError(FailMode, EC, Input.Filename);
|
|
Readers.pop_back();
|
|
continue;
|
|
}
|
|
|
|
SampleProfileMap &Profiles = Reader->getProfiles();
|
|
if (ProfileIsProbeBased.hasValue() &&
|
|
ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased)
|
|
exitWithError(
|
|
"cannot merge probe-based profile with non-probe-based profile");
|
|
ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased;
|
|
if (ProfileIsCSFlat.hasValue() &&
|
|
ProfileIsCSFlat != FunctionSamples::ProfileIsCSFlat)
|
|
exitWithError("cannot merge CS profile with non-CS profile");
|
|
ProfileIsCSFlat = FunctionSamples::ProfileIsCSFlat;
|
|
for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end();
|
|
I != E; ++I) {
|
|
sampleprof_error Result = sampleprof_error::success;
|
|
FunctionSamples Remapped =
|
|
Remapper ? remapSamples(I->second, *Remapper, Result)
|
|
: FunctionSamples();
|
|
FunctionSamples &Samples = Remapper ? Remapped : I->second;
|
|
SampleContext FContext = Samples.getContext();
|
|
MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight));
|
|
if (Result != sampleprof_error::success) {
|
|
std::error_code EC = make_error_code(Result);
|
|
handleMergeWriterError(errorCodeToError(EC), Input.Filename,
|
|
FContext.toString());
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
|
|
Reader->getProfileSymbolList();
|
|
if (ReaderList)
|
|
WriterList.merge(*ReaderList);
|
|
}
|
|
|
|
if (ProfileIsCSFlat && (SampleMergeColdContext || SampleTrimColdContext)) {
|
|
// Use threshold calculated from profile summary unless specified.
|
|
SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
|
|
auto Summary = Builder.computeSummaryForProfiles(ProfileMap);
|
|
uint64_t SampleProfColdThreshold =
|
|
ProfileSummaryBuilder::getColdCountThreshold(
|
|
(Summary->getDetailedSummary()));
|
|
|
|
// Trim and merge cold context profile using cold threshold above;
|
|
SampleContextTrimmer(ProfileMap)
|
|
.trimAndMergeColdContextProfiles(
|
|
SampleProfColdThreshold, SampleTrimColdContext,
|
|
SampleMergeColdContext, SampleColdContextFrameDepth, false);
|
|
}
|
|
|
|
if (ProfileIsCSFlat && GenCSNestedProfile) {
|
|
CSProfileConverter CSConverter(ProfileMap);
|
|
CSConverter.convertProfiles();
|
|
ProfileIsCSFlat = FunctionSamples::ProfileIsCSFlat = false;
|
|
}
|
|
|
|
auto WriterOrErr =
|
|
SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]);
|
|
if (std::error_code EC = WriterOrErr.getError())
|
|
exitWithErrorCode(EC, OutputFilename);
|
|
|
|
auto Writer = std::move(WriterOrErr.get());
|
|
// WriterList will have StringRef refering to string in Buffer.
|
|
// Make sure Buffer lives as long as WriterList.
|
|
auto Buffer = getInputFileBuf(ProfileSymbolListFile);
|
|
handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList,
|
|
CompressAllSections, UseMD5, GenPartialProfile);
|
|
if (std::error_code EC = Writer->write(ProfileMap))
|
|
exitWithErrorCode(std::move(EC));
|
|
}
|
|
|
|
static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) {
|
|
StringRef WeightStr, FileName;
|
|
std::tie(WeightStr, FileName) = WeightedFilename.split(',');
|
|
|
|
uint64_t Weight;
|
|
if (WeightStr.getAsInteger(10, Weight) || Weight < 1)
|
|
exitWithError("input weight must be a positive integer");
|
|
|
|
return {std::string(FileName), Weight};
|
|
}
|
|
|
|
static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) {
|
|
StringRef Filename = WF.Filename;
|
|
uint64_t Weight = WF.Weight;
|
|
|
|
// If it's STDIN just pass it on.
|
|
if (Filename == "-") {
|
|
WNI.push_back({std::string(Filename), Weight});
|
|
return;
|
|
}
|
|
|
|
llvm::sys::fs::file_status Status;
|
|
llvm::sys::fs::status(Filename, Status);
|
|
if (!llvm::sys::fs::exists(Status))
|
|
exitWithErrorCode(make_error_code(errc::no_such_file_or_directory),
|
|
Filename);
|
|
// If it's a source file, collect it.
|
|
if (llvm::sys::fs::is_regular_file(Status)) {
|
|
WNI.push_back({std::string(Filename), Weight});
|
|
return;
|
|
}
|
|
|
|
if (llvm::sys::fs::is_directory(Status)) {
|
|
std::error_code EC;
|
|
for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E;
|
|
F != E && !EC; F.increment(EC)) {
|
|
if (llvm::sys::fs::is_regular_file(F->path())) {
|
|
addWeightedInput(WNI, {F->path(), Weight});
|
|
}
|
|
}
|
|
if (EC)
|
|
exitWithErrorCode(EC, Filename);
|
|
}
|
|
}
|
|
|
|
static void parseInputFilenamesFile(MemoryBuffer *Buffer,
|
|
WeightedFileVector &WFV) {
|
|
if (!Buffer)
|
|
return;
|
|
|
|
SmallVector<StringRef, 8> Entries;
|
|
StringRef Data = Buffer->getBuffer();
|
|
Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
|
|
for (const StringRef &FileWeightEntry : Entries) {
|
|
StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r");
|
|
// Skip comments.
|
|
if (SanitizedEntry.startswith("#"))
|
|
continue;
|
|
// If there's no comma, it's an unweighted profile.
|
|
else if (!SanitizedEntry.contains(','))
|
|
addWeightedInput(WFV, {std::string(SanitizedEntry), 1});
|
|
else
|
|
addWeightedInput(WFV, parseWeightedFile(SanitizedEntry));
|
|
}
|
|
}
|
|
|
|
static int merge_main(int argc, const char *argv[]) {
|
|
cl::list<std::string> InputFilenames(cl::Positional,
|
|
cl::desc("<filename...>"));
|
|
cl::list<std::string> WeightedInputFilenames("weighted-input",
|
|
cl::desc("<weight>,<filename>"));
|
|
cl::opt<std::string> InputFilenamesFile(
|
|
"input-files", cl::init(""),
|
|
cl::desc("Path to file containing newline-separated "
|
|
"[<weight>,]<filename> entries"));
|
|
cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"),
|
|
cl::aliasopt(InputFilenamesFile));
|
|
cl::opt<bool> DumpInputFileList(
|
|
"dump-input-file-list", cl::init(false), cl::Hidden,
|
|
cl::desc("Dump the list of input files and their weights, then exit"));
|
|
cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"),
|
|
cl::desc("Symbol remapping file"));
|
|
cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"),
|
|
cl::aliasopt(RemappingFile));
|
|
cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
|
|
cl::init("-"), cl::desc("Output file"));
|
|
cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
|
|
cl::aliasopt(OutputFilename));
|
|
cl::opt<ProfileKinds> ProfileKind(
|
|
cl::desc("Profile kind:"), cl::init(instr),
|
|
cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
|
|
clEnumVal(sample, "Sample profile")));
|
|
cl::opt<ProfileFormat> OutputFormat(
|
|
cl::desc("Format of output profile"), cl::init(PF_Binary),
|
|
cl::values(
|
|
clEnumValN(PF_Binary, "binary", "Binary encoding (default)"),
|
|
clEnumValN(PF_Compact_Binary, "compbinary",
|
|
"Compact binary encoding"),
|
|
clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"),
|
|
clEnumValN(PF_Text, "text", "Text encoding"),
|
|
clEnumValN(PF_GCC, "gcc",
|
|
"GCC encoding (only meaningful for -sample)")));
|
|
cl::opt<FailureMode> FailureMode(
|
|
"failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"),
|
|
cl::values(clEnumValN(failIfAnyAreInvalid, "any",
|
|
"Fail if any profile is invalid."),
|
|
clEnumValN(failIfAllAreInvalid, "all",
|
|
"Fail only if all profiles are invalid.")));
|
|
cl::opt<bool> OutputSparse("sparse", cl::init(false),
|
|
cl::desc("Generate a sparse profile (only meaningful for -instr)"));
|
|
cl::opt<unsigned> NumThreads(
|
|
"num-threads", cl::init(0),
|
|
cl::desc("Number of merge threads to use (default: autodetect)"));
|
|
cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"),
|
|
cl::aliasopt(NumThreads));
|
|
cl::opt<std::string> ProfileSymbolListFile(
|
|
"prof-sym-list", cl::init(""),
|
|
cl::desc("Path to file containing the list of function symbols "
|
|
"used to populate profile symbol list"));
|
|
cl::opt<bool> CompressAllSections(
|
|
"compress-all-sections", cl::init(false), cl::Hidden,
|
|
cl::desc("Compress all sections when writing the profile (only "
|
|
"meaningful for -extbinary)"));
|
|
cl::opt<bool> UseMD5(
|
|
"use-md5", cl::init(false), cl::Hidden,
|
|
cl::desc("Choose to use MD5 to represent string in name table (only "
|
|
"meaningful for -extbinary)"));
|
|
cl::opt<bool> SampleMergeColdContext(
|
|
"sample-merge-cold-context", cl::init(false), cl::Hidden,
|
|
cl::desc(
|
|
"Merge context sample profiles whose count is below cold threshold"));
|
|
cl::opt<bool> SampleTrimColdContext(
|
|
"sample-trim-cold-context", cl::init(false), cl::Hidden,
|
|
cl::desc(
|
|
"Trim context sample profiles whose count is below cold threshold"));
|
|
cl::opt<uint32_t> SampleColdContextFrameDepth(
|
|
"sample-frame-depth-for-cold-context", cl::init(1), cl::ZeroOrMore,
|
|
cl::desc("Keep the last K frames while merging cold profile. 1 means the "
|
|
"context-less base profile"));
|
|
cl::opt<bool> GenPartialProfile(
|
|
"gen-partial-profile", cl::init(false), cl::Hidden,
|
|
cl::desc("Generate a partial profile (only meaningful for -extbinary)"));
|
|
cl::opt<std::string> SupplInstrWithSample(
|
|
"supplement-instr-with-sample", cl::init(""), cl::Hidden,
|
|
cl::desc("Supplement an instr profile with sample profile, to correct "
|
|
"the profile unrepresentativeness issue. The sample "
|
|
"profile is the input of the flag. Output will be in instr "
|
|
"format (The flag only works with -instr)"));
|
|
cl::opt<float> ZeroCounterThreshold(
|
|
"zero-counter-threshold", cl::init(0.7), cl::Hidden,
|
|
cl::desc("For the function which is cold in instr profile but hot in "
|
|
"sample profile, if the ratio of the number of zero counters "
|
|
"divided by the the total number of counters is above the "
|
|
"threshold, the profile of the function will be regarded as "
|
|
"being harmful for performance and will be dropped."));
|
|
cl::opt<unsigned> SupplMinSizeThreshold(
|
|
"suppl-min-size-threshold", cl::init(10), cl::Hidden,
|
|
cl::desc("If the size of a function is smaller than the threshold, "
|
|
"assume it can be inlined by PGO early inliner and it won't "
|
|
"be adjusted based on sample profile."));
|
|
cl::opt<unsigned> InstrProfColdThreshold(
|
|
"instr-prof-cold-threshold", cl::init(0), cl::Hidden,
|
|
cl::desc("User specified cold threshold for instr profile which will "
|
|
"override the cold threshold got from profile summary. "));
|
|
cl::opt<bool> GenCSNestedProfile(
|
|
"gen-cs-nested-profile", cl::Hidden, cl::init(false),
|
|
cl::desc("Generate nested function profiles for CSSPGO"));
|
|
cl::opt<std::string> DebugInfoFilename(
|
|
"debug-info", cl::init(""),
|
|
cl::desc("Use the provided debug info to correlate the raw profile."));
|
|
cl::opt<std::string> ProfiledBinary(
|
|
"profiled-binary", cl::init(""),
|
|
cl::desc("Path to binary from which the profile was collected."));
|
|
|
|
cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n");
|
|
|
|
WeightedFileVector WeightedInputs;
|
|
for (StringRef Filename : InputFilenames)
|
|
addWeightedInput(WeightedInputs, {std::string(Filename), 1});
|
|
for (StringRef WeightedFilename : WeightedInputFilenames)
|
|
addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename));
|
|
|
|
// Make sure that the file buffer stays alive for the duration of the
|
|
// weighted input vector's lifetime.
|
|
auto Buffer = getInputFileBuf(InputFilenamesFile);
|
|
parseInputFilenamesFile(Buffer.get(), WeightedInputs);
|
|
|
|
if (WeightedInputs.empty())
|
|
exitWithError("no input files specified. See " +
|
|
sys::path::filename(argv[0]) + " -help");
|
|
|
|
if (DumpInputFileList) {
|
|
for (auto &WF : WeightedInputs)
|
|
outs() << WF.Weight << "," << WF.Filename << "\n";
|
|
return 0;
|
|
}
|
|
|
|
std::unique_ptr<SymbolRemapper> Remapper;
|
|
if (!RemappingFile.empty())
|
|
Remapper = SymbolRemapper::create(RemappingFile);
|
|
|
|
if (!SupplInstrWithSample.empty()) {
|
|
if (ProfileKind != instr)
|
|
exitWithError(
|
|
"-supplement-instr-with-sample can only work with -instr. ");
|
|
|
|
supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename,
|
|
OutputFormat, OutputSparse, SupplMinSizeThreshold,
|
|
ZeroCounterThreshold, InstrProfColdThreshold);
|
|
return 0;
|
|
}
|
|
|
|
if (ProfileKind == instr)
|
|
mergeInstrProfile(WeightedInputs, DebugInfoFilename, Remapper.get(),
|
|
OutputFilename, OutputFormat, OutputSparse, NumThreads,
|
|
FailureMode, ProfiledBinary);
|
|
else
|
|
mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename,
|
|
OutputFormat, ProfileSymbolListFile, CompressAllSections,
|
|
UseMD5, GenPartialProfile, GenCSNestedProfile,
|
|
SampleMergeColdContext, SampleTrimColdContext,
|
|
SampleColdContextFrameDepth, FailureMode);
|
|
return 0;
|
|
}
|
|
|
|
/// Computer the overlap b/w profile BaseFilename and profile TestFilename.
|
|
static void overlapInstrProfile(const std::string &BaseFilename,
|
|
const std::string &TestFilename,
|
|
const OverlapFuncFilters &FuncFilter,
|
|
raw_fd_ostream &OS, bool IsCS) {
|
|
std::mutex ErrorLock;
|
|
SmallSet<instrprof_error, 4> WriterErrorCodes;
|
|
WriterContext Context(false, ErrorLock, WriterErrorCodes);
|
|
WeightedFile WeightedInput{BaseFilename, 1};
|
|
OverlapStats Overlap;
|
|
Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS);
|
|
if (E)
|
|
exitWithError(std::move(E), "error in getting profile count sums");
|
|
if (Overlap.Base.CountSum < 1.0f) {
|
|
OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n";
|
|
exit(0);
|
|
}
|
|
if (Overlap.Test.CountSum < 1.0f) {
|
|
OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n";
|
|
exit(0);
|
|
}
|
|
loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context);
|
|
overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS,
|
|
IsCS);
|
|
Overlap.dump(OS);
|
|
}
|
|
|
|
namespace {
|
|
struct SampleOverlapStats {
|
|
SampleContext BaseName;
|
|
SampleContext TestName;
|
|
// Number of overlap units
|
|
uint64_t OverlapCount;
|
|
// Total samples of overlap units
|
|
uint64_t OverlapSample;
|
|
// Number of and total samples of units that only present in base or test
|
|
// profile
|
|
uint64_t BaseUniqueCount;
|
|
uint64_t BaseUniqueSample;
|
|
uint64_t TestUniqueCount;
|
|
uint64_t TestUniqueSample;
|
|
// Number of units and total samples in base or test profile
|
|
uint64_t BaseCount;
|
|
uint64_t BaseSample;
|
|
uint64_t TestCount;
|
|
uint64_t TestSample;
|
|
// Number of and total samples of units that present in at least one profile
|
|
uint64_t UnionCount;
|
|
uint64_t UnionSample;
|
|
// Weighted similarity
|
|
double Similarity;
|
|
// For SampleOverlapStats instances representing functions, weights of the
|
|
// function in base and test profiles
|
|
double BaseWeight;
|
|
double TestWeight;
|
|
|
|
SampleOverlapStats()
|
|
: OverlapCount(0), OverlapSample(0), BaseUniqueCount(0),
|
|
BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0),
|
|
BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0),
|
|
UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
struct FuncSampleStats {
|
|
uint64_t SampleSum;
|
|
uint64_t MaxSample;
|
|
uint64_t HotBlockCount;
|
|
FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {}
|
|
FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample,
|
|
uint64_t HotBlockCount)
|
|
: SampleSum(SampleSum), MaxSample(MaxSample),
|
|
HotBlockCount(HotBlockCount) {}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None };
|
|
|
|
// Class for updating merging steps for two sorted maps. The class should be
|
|
// instantiated with a map iterator type.
|
|
template <class T> class MatchStep {
|
|
public:
|
|
MatchStep() = delete;
|
|
|
|
MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd)
|
|
: FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter),
|
|
SecondEnd(SecondEnd), Status(MS_None) {}
|
|
|
|
bool areBothFinished() const {
|
|
return (FirstIter == FirstEnd && SecondIter == SecondEnd);
|
|
}
|
|
|
|
bool isFirstFinished() const { return FirstIter == FirstEnd; }
|
|
|
|
bool isSecondFinished() const { return SecondIter == SecondEnd; }
|
|
|
|
/// Advance one step based on the previous match status unless the previous
|
|
/// status is MS_None. Then update Status based on the comparison between two
|
|
/// container iterators at the current step. If the previous status is
|
|
/// MS_None, it means two iterators are at the beginning and no comparison has
|
|
/// been made, so we simply update Status without advancing the iterators.
|
|
void updateOneStep();
|
|
|
|
T getFirstIter() const { return FirstIter; }
|
|
|
|
T getSecondIter() const { return SecondIter; }
|
|
|
|
MatchStatus getMatchStatus() const { return Status; }
|
|
|
|
private:
|
|
// Current iterator and end iterator of the first container.
|
|
T FirstIter;
|
|
T FirstEnd;
|
|
// Current iterator and end iterator of the second container.
|
|
T SecondIter;
|
|
T SecondEnd;
|
|
// Match status of the current step.
|
|
MatchStatus Status;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
template <class T> void MatchStep<T>::updateOneStep() {
|
|
switch (Status) {
|
|
case MS_Match:
|
|
++FirstIter;
|
|
++SecondIter;
|
|
break;
|
|
case MS_FirstUnique:
|
|
++FirstIter;
|
|
break;
|
|
case MS_SecondUnique:
|
|
++SecondIter;
|
|
break;
|
|
case MS_None:
|
|
break;
|
|
}
|
|
|
|
// Update Status according to iterators at the current step.
|
|
if (areBothFinished())
|
|
return;
|
|
if (FirstIter != FirstEnd &&
|
|
(SecondIter == SecondEnd || FirstIter->first < SecondIter->first))
|
|
Status = MS_FirstUnique;
|
|
else if (SecondIter != SecondEnd &&
|
|
(FirstIter == FirstEnd || SecondIter->first < FirstIter->first))
|
|
Status = MS_SecondUnique;
|
|
else
|
|
Status = MS_Match;
|
|
}
|
|
|
|
// Return the sum of line/block samples, the max line/block sample, and the
|
|
// number of line/block samples above the given threshold in a function
|
|
// including its inlinees.
|
|
static void getFuncSampleStats(const sampleprof::FunctionSamples &Func,
|
|
FuncSampleStats &FuncStats,
|
|
uint64_t HotThreshold) {
|
|
for (const auto &L : Func.getBodySamples()) {
|
|
uint64_t Sample = L.second.getSamples();
|
|
FuncStats.SampleSum += Sample;
|
|
FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample);
|
|
if (Sample >= HotThreshold)
|
|
++FuncStats.HotBlockCount;
|
|
}
|
|
|
|
for (const auto &C : Func.getCallsiteSamples()) {
|
|
for (const auto &F : C.second)
|
|
getFuncSampleStats(F.second, FuncStats, HotThreshold);
|
|
}
|
|
}
|
|
|
|
/// Predicate that determines if a function is hot with a given threshold. We
|
|
/// keep it separate from its callsites for possible extension in the future.
|
|
static bool isFunctionHot(const FuncSampleStats &FuncStats,
|
|
uint64_t HotThreshold) {
|
|
// We intentionally compare the maximum sample count in a function with the
|
|
// HotThreshold to get an approximate determination on hot functions.
|
|
return (FuncStats.MaxSample >= HotThreshold);
|
|
}
|
|
|
|
namespace {
|
|
class SampleOverlapAggregator {
|
|
public:
|
|
SampleOverlapAggregator(const std::string &BaseFilename,
|
|
const std::string &TestFilename,
|
|
double LowSimilarityThreshold, double Epsilon,
|
|
const OverlapFuncFilters &FuncFilter)
|
|
: BaseFilename(BaseFilename), TestFilename(TestFilename),
|
|
LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon),
|
|
FuncFilter(FuncFilter) {}
|
|
|
|
/// Detect 0-sample input profile and report to output stream. This interface
|
|
/// should be called after loadProfiles().
|
|
bool detectZeroSampleProfile(raw_fd_ostream &OS) const;
|
|
|
|
/// Write out function-level similarity statistics for functions specified by
|
|
/// options --function, --value-cutoff, and --similarity-cutoff.
|
|
void dumpFuncSimilarity(raw_fd_ostream &OS) const;
|
|
|
|
/// Write out program-level similarity and overlap statistics.
|
|
void dumpProgramSummary(raw_fd_ostream &OS) const;
|
|
|
|
/// Write out hot-function and hot-block statistics for base_profile,
|
|
/// test_profile, and their overlap. For both cases, the overlap HO is
|
|
/// calculated as follows:
|
|
/// Given the number of functions (or blocks) that are hot in both profiles
|
|
/// HCommon and the number of functions (or blocks) that are hot in at
|
|
/// least one profile HUnion, HO = HCommon / HUnion.
|
|
void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const;
|
|
|
|
/// This function tries matching functions in base and test profiles. For each
|
|
/// pair of matched functions, it aggregates the function-level
|
|
/// similarity into a profile-level similarity. It also dump function-level
|
|
/// similarity information of functions specified by --function,
|
|
/// --value-cutoff, and --similarity-cutoff options. The program-level
|
|
/// similarity PS is computed as follows:
|
|
/// Given function-level similarity FS(A) for all function A, the
|
|
/// weight of function A in base profile WB(A), and the weight of function
|
|
/// A in test profile WT(A), compute PS(base_profile, test_profile) =
|
|
/// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0
|
|
/// meaning no-overlap.
|
|
void computeSampleProfileOverlap(raw_fd_ostream &OS);
|
|
|
|
/// Initialize ProfOverlap with the sum of samples in base and test
|
|
/// profiles. This function also computes and keeps the sum of samples and
|
|
/// max sample counts of each function in BaseStats and TestStats for later
|
|
/// use to avoid re-computations.
|
|
void initializeSampleProfileOverlap();
|
|
|
|
/// Load profiles specified by BaseFilename and TestFilename.
|
|
std::error_code loadProfiles();
|
|
|
|
using FuncSampleStatsMap =
|
|
std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>;
|
|
|
|
private:
|
|
SampleOverlapStats ProfOverlap;
|
|
SampleOverlapStats HotFuncOverlap;
|
|
SampleOverlapStats HotBlockOverlap;
|
|
std::string BaseFilename;
|
|
std::string TestFilename;
|
|
std::unique_ptr<sampleprof::SampleProfileReader> BaseReader;
|
|
std::unique_ptr<sampleprof::SampleProfileReader> TestReader;
|
|
// BaseStats and TestStats hold FuncSampleStats for each function, with
|
|
// function name as the key.
|
|
FuncSampleStatsMap BaseStats;
|
|
FuncSampleStatsMap TestStats;
|
|
// Low similarity threshold in floating point number
|
|
double LowSimilarityThreshold;
|
|
// Block samples above BaseHotThreshold or TestHotThreshold are considered hot
|
|
// for tracking hot blocks.
|
|
uint64_t BaseHotThreshold;
|
|
uint64_t TestHotThreshold;
|
|
// A small threshold used to round the results of floating point accumulations
|
|
// to resolve imprecision.
|
|
const double Epsilon;
|
|
std::multimap<double, SampleOverlapStats, std::greater<double>>
|
|
FuncSimilarityDump;
|
|
// FuncFilter carries specifications in options --value-cutoff and
|
|
// --function.
|
|
OverlapFuncFilters FuncFilter;
|
|
// Column offsets for printing the function-level details table.
|
|
static const unsigned int TestWeightCol = 15;
|
|
static const unsigned int SimilarityCol = 30;
|
|
static const unsigned int OverlapCol = 43;
|
|
static const unsigned int BaseUniqueCol = 53;
|
|
static const unsigned int TestUniqueCol = 67;
|
|
static const unsigned int BaseSampleCol = 81;
|
|
static const unsigned int TestSampleCol = 96;
|
|
static const unsigned int FuncNameCol = 111;
|
|
|
|
/// Return a similarity of two line/block sample counters in the same
|
|
/// function in base and test profiles. The line/block-similarity BS(i) is
|
|
/// computed as follows:
|
|
/// For an offsets i, given the sample count at i in base profile BB(i),
|
|
/// the sample count at i in test profile BT(i), the sum of sample counts
|
|
/// in this function in base profile SB, and the sum of sample counts in
|
|
/// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB -
|
|
/// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap.
|
|
double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample,
|
|
const SampleOverlapStats &FuncOverlap) const;
|
|
|
|
void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample,
|
|
uint64_t HotBlockCount);
|
|
|
|
void getHotFunctions(const FuncSampleStatsMap &ProfStats,
|
|
FuncSampleStatsMap &HotFunc,
|
|
uint64_t HotThreshold) const;
|
|
|
|
void computeHotFuncOverlap();
|
|
|
|
/// This function updates statistics in FuncOverlap, HotBlockOverlap, and
|
|
/// Difference for two sample units in a matched function according to the
|
|
/// given match status.
|
|
void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample,
|
|
uint64_t HotBlockCount,
|
|
SampleOverlapStats &FuncOverlap,
|
|
double &Difference, MatchStatus Status);
|
|
|
|
/// This function updates statistics in FuncOverlap, HotBlockOverlap, and
|
|
/// Difference for unmatched callees that only present in one profile in a
|
|
/// matched caller function.
|
|
void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func,
|
|
SampleOverlapStats &FuncOverlap,
|
|
double &Difference, MatchStatus Status);
|
|
|
|
/// This function updates sample overlap statistics of an overlap function in
|
|
/// base and test profile. It also calculates a function-internal similarity
|
|
/// FIS as follows:
|
|
/// For offsets i that have samples in at least one profile in this
|
|
/// function A, given BS(i) returned by computeBlockSimilarity(), compute
|
|
/// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with
|
|
/// 0.0 meaning no overlap.
|
|
double computeSampleFunctionInternalOverlap(
|
|
const sampleprof::FunctionSamples &BaseFunc,
|
|
const sampleprof::FunctionSamples &TestFunc,
|
|
SampleOverlapStats &FuncOverlap);
|
|
|
|
/// Function-level similarity (FS) is a weighted value over function internal
|
|
/// similarity (FIS). This function computes a function's FS from its FIS by
|
|
/// applying the weight.
|
|
double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample,
|
|
uint64_t TestFuncSample) const;
|
|
|
|
/// The function-level similarity FS(A) for a function A is computed as
|
|
/// follows:
|
|
/// Compute a function-internal similarity FIS(A) by
|
|
/// computeSampleFunctionInternalOverlap(). Then, with the weight of
|
|
/// function A in base profile WB(A), and the weight of function A in test
|
|
/// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A)))
|
|
/// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap.
|
|
double
|
|
computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc,
|
|
const sampleprof::FunctionSamples *TestFunc,
|
|
SampleOverlapStats *FuncOverlap,
|
|
uint64_t BaseFuncSample,
|
|
uint64_t TestFuncSample);
|
|
|
|
/// Profile-level similarity (PS) is a weighted aggregate over function-level
|
|
/// similarities (FS). This method weights the FS value by the function
|
|
/// weights in the base and test profiles for the aggregation.
|
|
double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample,
|
|
uint64_t TestFuncSample) const;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
bool SampleOverlapAggregator::detectZeroSampleProfile(
|
|
raw_fd_ostream &OS) const {
|
|
bool HaveZeroSample = false;
|
|
if (ProfOverlap.BaseSample == 0) {
|
|
OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n";
|
|
HaveZeroSample = true;
|
|
}
|
|
if (ProfOverlap.TestSample == 0) {
|
|
OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n";
|
|
HaveZeroSample = true;
|
|
}
|
|
return HaveZeroSample;
|
|
}
|
|
|
|
double SampleOverlapAggregator::computeBlockSimilarity(
|
|
uint64_t BaseSample, uint64_t TestSample,
|
|
const SampleOverlapStats &FuncOverlap) const {
|
|
double BaseFrac = 0.0;
|
|
double TestFrac = 0.0;
|
|
if (FuncOverlap.BaseSample > 0)
|
|
BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample;
|
|
if (FuncOverlap.TestSample > 0)
|
|
TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample;
|
|
return 1.0 - std::fabs(BaseFrac - TestFrac);
|
|
}
|
|
|
|
void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample,
|
|
uint64_t TestSample,
|
|
uint64_t HotBlockCount) {
|
|
bool IsBaseHot = (BaseSample >= BaseHotThreshold);
|
|
bool IsTestHot = (TestSample >= TestHotThreshold);
|
|
if (!IsBaseHot && !IsTestHot)
|
|
return;
|
|
|
|
HotBlockOverlap.UnionCount += HotBlockCount;
|
|
if (IsBaseHot)
|
|
HotBlockOverlap.BaseCount += HotBlockCount;
|
|
if (IsTestHot)
|
|
HotBlockOverlap.TestCount += HotBlockCount;
|
|
if (IsBaseHot && IsTestHot)
|
|
HotBlockOverlap.OverlapCount += HotBlockCount;
|
|
}
|
|
|
|
void SampleOverlapAggregator::getHotFunctions(
|
|
const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc,
|
|
uint64_t HotThreshold) const {
|
|
for (const auto &F : ProfStats) {
|
|
if (isFunctionHot(F.second, HotThreshold))
|
|
HotFunc.emplace(F.first, F.second);
|
|
}
|
|
}
|
|
|
|
void SampleOverlapAggregator::computeHotFuncOverlap() {
|
|
FuncSampleStatsMap BaseHotFunc;
|
|
getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold);
|
|
HotFuncOverlap.BaseCount = BaseHotFunc.size();
|
|
|
|
FuncSampleStatsMap TestHotFunc;
|
|
getHotFunctions(TestStats, TestHotFunc, TestHotThreshold);
|
|
HotFuncOverlap.TestCount = TestHotFunc.size();
|
|
HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount;
|
|
|
|
for (const auto &F : BaseHotFunc) {
|
|
if (TestHotFunc.count(F.first))
|
|
++HotFuncOverlap.OverlapCount;
|
|
else
|
|
++HotFuncOverlap.UnionCount;
|
|
}
|
|
}
|
|
|
|
void SampleOverlapAggregator::updateOverlapStatsForFunction(
|
|
uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount,
|
|
SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) {
|
|
assert(Status != MS_None &&
|
|
"Match status should be updated before updating overlap statistics");
|
|
if (Status == MS_FirstUnique) {
|
|
TestSample = 0;
|
|
FuncOverlap.BaseUniqueSample += BaseSample;
|
|
} else if (Status == MS_SecondUnique) {
|
|
BaseSample = 0;
|
|
FuncOverlap.TestUniqueSample += TestSample;
|
|
} else {
|
|
++FuncOverlap.OverlapCount;
|
|
}
|
|
|
|
FuncOverlap.UnionSample += std::max(BaseSample, TestSample);
|
|
FuncOverlap.OverlapSample += std::min(BaseSample, TestSample);
|
|
Difference +=
|
|
1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap);
|
|
updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount);
|
|
}
|
|
|
|
void SampleOverlapAggregator::updateForUnmatchedCallee(
|
|
const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap,
|
|
double &Difference, MatchStatus Status) {
|
|
assert((Status == MS_FirstUnique || Status == MS_SecondUnique) &&
|
|
"Status must be either of the two unmatched cases");
|
|
FuncSampleStats FuncStats;
|
|
if (Status == MS_FirstUnique) {
|
|
getFuncSampleStats(Func, FuncStats, BaseHotThreshold);
|
|
updateOverlapStatsForFunction(FuncStats.SampleSum, 0,
|
|
FuncStats.HotBlockCount, FuncOverlap,
|
|
Difference, Status);
|
|
} else {
|
|
getFuncSampleStats(Func, FuncStats, TestHotThreshold);
|
|
updateOverlapStatsForFunction(0, FuncStats.SampleSum,
|
|
FuncStats.HotBlockCount, FuncOverlap,
|
|
Difference, Status);
|
|
}
|
|
}
|
|
|
|
double SampleOverlapAggregator::computeSampleFunctionInternalOverlap(
|
|
const sampleprof::FunctionSamples &BaseFunc,
|
|
const sampleprof::FunctionSamples &TestFunc,
|
|
SampleOverlapStats &FuncOverlap) {
|
|
|
|
using namespace sampleprof;
|
|
|
|
double Difference = 0;
|
|
|
|
// Accumulate Difference for regular line/block samples in the function.
|
|
// We match them through sort-merge join algorithm because
|
|
// FunctionSamples::getBodySamples() returns a map of sample counters ordered
|
|
// by their offsets.
|
|
MatchStep<BodySampleMap::const_iterator> BlockIterStep(
|
|
BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(),
|
|
TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend());
|
|
BlockIterStep.updateOneStep();
|
|
while (!BlockIterStep.areBothFinished()) {
|
|
uint64_t BaseSample =
|
|
BlockIterStep.isFirstFinished()
|
|
? 0
|
|
: BlockIterStep.getFirstIter()->second.getSamples();
|
|
uint64_t TestSample =
|
|
BlockIterStep.isSecondFinished()
|
|
? 0
|
|
: BlockIterStep.getSecondIter()->second.getSamples();
|
|
updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap,
|
|
Difference, BlockIterStep.getMatchStatus());
|
|
|
|
BlockIterStep.updateOneStep();
|
|
}
|
|
|
|
// Accumulate Difference for callsite lines in the function. We match
|
|
// them through sort-merge algorithm because
|
|
// FunctionSamples::getCallsiteSamples() returns a map of callsite records
|
|
// ordered by their offsets.
|
|
MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep(
|
|
BaseFunc.getCallsiteSamples().cbegin(),
|
|
BaseFunc.getCallsiteSamples().cend(),
|
|
TestFunc.getCallsiteSamples().cbegin(),
|
|
TestFunc.getCallsiteSamples().cend());
|
|
CallsiteIterStep.updateOneStep();
|
|
while (!CallsiteIterStep.areBothFinished()) {
|
|
MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus();
|
|
assert(CallsiteStepStatus != MS_None &&
|
|
"Match status should be updated before entering loop body");
|
|
|
|
if (CallsiteStepStatus != MS_Match) {
|
|
auto Callsite = (CallsiteStepStatus == MS_FirstUnique)
|
|
? CallsiteIterStep.getFirstIter()
|
|
: CallsiteIterStep.getSecondIter();
|
|
for (const auto &F : Callsite->second)
|
|
updateForUnmatchedCallee(F.second, FuncOverlap, Difference,
|
|
CallsiteStepStatus);
|
|
} else {
|
|
// There may be multiple inlinees at the same offset, so we need to try
|
|
// matching all of them. This match is implemented through sort-merge
|
|
// algorithm because callsite records at the same offset are ordered by
|
|
// function names.
|
|
MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep(
|
|
CallsiteIterStep.getFirstIter()->second.cbegin(),
|
|
CallsiteIterStep.getFirstIter()->second.cend(),
|
|
CallsiteIterStep.getSecondIter()->second.cbegin(),
|
|
CallsiteIterStep.getSecondIter()->second.cend());
|
|
CalleeIterStep.updateOneStep();
|
|
while (!CalleeIterStep.areBothFinished()) {
|
|
MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus();
|
|
if (CalleeStepStatus != MS_Match) {
|
|
auto Callee = (CalleeStepStatus == MS_FirstUnique)
|
|
? CalleeIterStep.getFirstIter()
|
|
: CalleeIterStep.getSecondIter();
|
|
updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference,
|
|
CalleeStepStatus);
|
|
} else {
|
|
// An inlined function can contain other inlinees inside, so compute
|
|
// the Difference recursively.
|
|
Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap(
|
|
CalleeIterStep.getFirstIter()->second,
|
|
CalleeIterStep.getSecondIter()->second,
|
|
FuncOverlap);
|
|
}
|
|
CalleeIterStep.updateOneStep();
|
|
}
|
|
}
|
|
CallsiteIterStep.updateOneStep();
|
|
}
|
|
|
|
// Difference reflects the total differences of line/block samples in this
|
|
// function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to
|
|
// reflect the similarity between function profiles in [0.0f to 1.0f].
|
|
return (2.0 - Difference) / 2;
|
|
}
|
|
|
|
double SampleOverlapAggregator::weightForFuncSimilarity(
|
|
double FuncInternalSimilarity, uint64_t BaseFuncSample,
|
|
uint64_t TestFuncSample) const {
|
|
// Compute the weight as the distance between the function weights in two
|
|
// profiles.
|
|
double BaseFrac = 0.0;
|
|
double TestFrac = 0.0;
|
|
assert(ProfOverlap.BaseSample > 0 &&
|
|
"Total samples in base profile should be greater than 0");
|
|
BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample;
|
|
assert(ProfOverlap.TestSample > 0 &&
|
|
"Total samples in test profile should be greater than 0");
|
|
TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample;
|
|
double WeightDistance = std::fabs(BaseFrac - TestFrac);
|
|
|
|
// Take WeightDistance into the similarity.
|
|
return FuncInternalSimilarity * (1 - WeightDistance);
|
|
}
|
|
|
|
double
|
|
SampleOverlapAggregator::weightByImportance(double FuncSimilarity,
|
|
uint64_t BaseFuncSample,
|
|
uint64_t TestFuncSample) const {
|
|
|
|
double BaseFrac = 0.0;
|
|
double TestFrac = 0.0;
|
|
assert(ProfOverlap.BaseSample > 0 &&
|
|
"Total samples in base profile should be greater than 0");
|
|
BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0;
|
|
assert(ProfOverlap.TestSample > 0 &&
|
|
"Total samples in test profile should be greater than 0");
|
|
TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0;
|
|
return FuncSimilarity * (BaseFrac + TestFrac);
|
|
}
|
|
|
|
double SampleOverlapAggregator::computeSampleFunctionOverlap(
|
|
const sampleprof::FunctionSamples *BaseFunc,
|
|
const sampleprof::FunctionSamples *TestFunc,
|
|
SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample,
|
|
uint64_t TestFuncSample) {
|
|
// Default function internal similarity before weighted, meaning two functions
|
|
// has no overlap.
|
|
const double DefaultFuncInternalSimilarity = 0;
|
|
double FuncSimilarity;
|
|
double FuncInternalSimilarity;
|
|
|
|
// If BaseFunc or TestFunc is nullptr, it means the functions do not overlap.
|
|
// In this case, we use DefaultFuncInternalSimilarity as the function internal
|
|
// similarity.
|
|
if (!BaseFunc || !TestFunc) {
|
|
FuncInternalSimilarity = DefaultFuncInternalSimilarity;
|
|
} else {
|
|
assert(FuncOverlap != nullptr &&
|
|
"FuncOverlap should be provided in this case");
|
|
FuncInternalSimilarity = computeSampleFunctionInternalOverlap(
|
|
*BaseFunc, *TestFunc, *FuncOverlap);
|
|
// Now, FuncInternalSimilarity may be a little less than 0 due to
|
|
// imprecision of floating point accumulations. Make it zero if the
|
|
// difference is below Epsilon.
|
|
FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon)
|
|
? 0
|
|
: FuncInternalSimilarity;
|
|
}
|
|
FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity,
|
|
BaseFuncSample, TestFuncSample);
|
|
return FuncSimilarity;
|
|
}
|
|
|
|
void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) {
|
|
using namespace sampleprof;
|
|
|
|
std::unordered_map<SampleContext, const FunctionSamples *,
|
|
SampleContext::Hash>
|
|
BaseFuncProf;
|
|
const auto &BaseProfiles = BaseReader->getProfiles();
|
|
for (const auto &BaseFunc : BaseProfiles) {
|
|
BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second));
|
|
}
|
|
ProfOverlap.UnionCount = BaseFuncProf.size();
|
|
|
|
const auto &TestProfiles = TestReader->getProfiles();
|
|
for (const auto &TestFunc : TestProfiles) {
|
|
SampleOverlapStats FuncOverlap;
|
|
FuncOverlap.TestName = TestFunc.second.getContext();
|
|
assert(TestStats.count(FuncOverlap.TestName) &&
|
|
"TestStats should have records for all functions in test profile "
|
|
"except inlinees");
|
|
FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum;
|
|
|
|
bool Matched = false;
|
|
const auto Match = BaseFuncProf.find(FuncOverlap.TestName);
|
|
if (Match == BaseFuncProf.end()) {
|
|
const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName];
|
|
++ProfOverlap.TestUniqueCount;
|
|
ProfOverlap.TestUniqueSample += FuncStats.SampleSum;
|
|
FuncOverlap.TestUniqueSample = FuncStats.SampleSum;
|
|
|
|
updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount);
|
|
|
|
double FuncSimilarity = computeSampleFunctionOverlap(
|
|
nullptr, nullptr, nullptr, 0, FuncStats.SampleSum);
|
|
ProfOverlap.Similarity +=
|
|
weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum);
|
|
|
|
++ProfOverlap.UnionCount;
|
|
ProfOverlap.UnionSample += FuncStats.SampleSum;
|
|
} else {
|
|
++ProfOverlap.OverlapCount;
|
|
|
|
// Two functions match with each other. Compute function-level overlap and
|
|
// aggregate them into profile-level overlap.
|
|
FuncOverlap.BaseName = Match->second->getContext();
|
|
assert(BaseStats.count(FuncOverlap.BaseName) &&
|
|
"BaseStats should have records for all functions in base profile "
|
|
"except inlinees");
|
|
FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum;
|
|
|
|
FuncOverlap.Similarity = computeSampleFunctionOverlap(
|
|
Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample,
|
|
FuncOverlap.TestSample);
|
|
ProfOverlap.Similarity +=
|
|
weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample,
|
|
FuncOverlap.TestSample);
|
|
ProfOverlap.OverlapSample += FuncOverlap.OverlapSample;
|
|
ProfOverlap.UnionSample += FuncOverlap.UnionSample;
|
|
|
|
// Accumulate the percentage of base unique and test unique samples into
|
|
// ProfOverlap.
|
|
ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample;
|
|
ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample;
|
|
|
|
// Remove matched base functions for later reporting functions not found
|
|
// in test profile.
|
|
BaseFuncProf.erase(Match);
|
|
Matched = true;
|
|
}
|
|
|
|
// Print function-level similarity information if specified by options.
|
|
assert(TestStats.count(FuncOverlap.TestName) &&
|
|
"TestStats should have records for all functions in test profile "
|
|
"except inlinees");
|
|
if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff ||
|
|
(Matched && FuncOverlap.Similarity < LowSimilarityThreshold) ||
|
|
(Matched && !FuncFilter.NameFilter.empty() &&
|
|
FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) !=
|
|
std::string::npos)) {
|
|
assert(ProfOverlap.BaseSample > 0 &&
|
|
"Total samples in base profile should be greater than 0");
|
|
FuncOverlap.BaseWeight =
|
|
static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample;
|
|
assert(ProfOverlap.TestSample > 0 &&
|
|
"Total samples in test profile should be greater than 0");
|
|
FuncOverlap.TestWeight =
|
|
static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample;
|
|
FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap);
|
|
}
|
|
}
|
|
|
|
// Traverse through functions in base profile but not in test profile.
|
|
for (const auto &F : BaseFuncProf) {
|
|
assert(BaseStats.count(F.second->getContext()) &&
|
|
"BaseStats should have records for all functions in base profile "
|
|
"except inlinees");
|
|
const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()];
|
|
++ProfOverlap.BaseUniqueCount;
|
|
ProfOverlap.BaseUniqueSample += FuncStats.SampleSum;
|
|
|
|
updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount);
|
|
|
|
double FuncSimilarity = computeSampleFunctionOverlap(
|
|
nullptr, nullptr, nullptr, FuncStats.SampleSum, 0);
|
|
ProfOverlap.Similarity +=
|
|
weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0);
|
|
|
|
ProfOverlap.UnionSample += FuncStats.SampleSum;
|
|
}
|
|
|
|
// Now, ProfSimilarity may be a little greater than 1 due to imprecision
|
|
// of floating point accumulations. Make it 1.0 if the difference is below
|
|
// Epsilon.
|
|
ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon)
|
|
? 1
|
|
: ProfOverlap.Similarity;
|
|
|
|
computeHotFuncOverlap();
|
|
}
|
|
|
|
void SampleOverlapAggregator::initializeSampleProfileOverlap() {
|
|
const auto &BaseProf = BaseReader->getProfiles();
|
|
for (const auto &I : BaseProf) {
|
|
++ProfOverlap.BaseCount;
|
|
FuncSampleStats FuncStats;
|
|
getFuncSampleStats(I.second, FuncStats, BaseHotThreshold);
|
|
ProfOverlap.BaseSample += FuncStats.SampleSum;
|
|
BaseStats.emplace(I.second.getContext(), FuncStats);
|
|
}
|
|
|
|
const auto &TestProf = TestReader->getProfiles();
|
|
for (const auto &I : TestProf) {
|
|
++ProfOverlap.TestCount;
|
|
FuncSampleStats FuncStats;
|
|
getFuncSampleStats(I.second, FuncStats, TestHotThreshold);
|
|
ProfOverlap.TestSample += FuncStats.SampleSum;
|
|
TestStats.emplace(I.second.getContext(), FuncStats);
|
|
}
|
|
|
|
ProfOverlap.BaseName = StringRef(BaseFilename);
|
|
ProfOverlap.TestName = StringRef(TestFilename);
|
|
}
|
|
|
|
void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const {
|
|
using namespace sampleprof;
|
|
|
|
if (FuncSimilarityDump.empty())
|
|
return;
|
|
|
|
formatted_raw_ostream FOS(OS);
|
|
FOS << "Function-level details:\n";
|
|
FOS << "Base weight";
|
|
FOS.PadToColumn(TestWeightCol);
|
|
FOS << "Test weight";
|
|
FOS.PadToColumn(SimilarityCol);
|
|
FOS << "Similarity";
|
|
FOS.PadToColumn(OverlapCol);
|
|
FOS << "Overlap";
|
|
FOS.PadToColumn(BaseUniqueCol);
|
|
FOS << "Base unique";
|
|
FOS.PadToColumn(TestUniqueCol);
|
|
FOS << "Test unique";
|
|
FOS.PadToColumn(BaseSampleCol);
|
|
FOS << "Base samples";
|
|
FOS.PadToColumn(TestSampleCol);
|
|
FOS << "Test samples";
|
|
FOS.PadToColumn(FuncNameCol);
|
|
FOS << "Function name\n";
|
|
for (const auto &F : FuncSimilarityDump) {
|
|
double OverlapPercent =
|
|
F.second.UnionSample > 0
|
|
? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample
|
|
: 0;
|
|
double BaseUniquePercent =
|
|
F.second.BaseSample > 0
|
|
? static_cast<double>(F.second.BaseUniqueSample) /
|
|
F.second.BaseSample
|
|
: 0;
|
|
double TestUniquePercent =
|
|
F.second.TestSample > 0
|
|
? static_cast<double>(F.second.TestUniqueSample) /
|
|
F.second.TestSample
|
|
: 0;
|
|
|
|
FOS << format("%.2f%%", F.second.BaseWeight * 100);
|
|
FOS.PadToColumn(TestWeightCol);
|
|
FOS << format("%.2f%%", F.second.TestWeight * 100);
|
|
FOS.PadToColumn(SimilarityCol);
|
|
FOS << format("%.2f%%", F.second.Similarity * 100);
|
|
FOS.PadToColumn(OverlapCol);
|
|
FOS << format("%.2f%%", OverlapPercent * 100);
|
|
FOS.PadToColumn(BaseUniqueCol);
|
|
FOS << format("%.2f%%", BaseUniquePercent * 100);
|
|
FOS.PadToColumn(TestUniqueCol);
|
|
FOS << format("%.2f%%", TestUniquePercent * 100);
|
|
FOS.PadToColumn(BaseSampleCol);
|
|
FOS << F.second.BaseSample;
|
|
FOS.PadToColumn(TestSampleCol);
|
|
FOS << F.second.TestSample;
|
|
FOS.PadToColumn(FuncNameCol);
|
|
FOS << F.second.TestName.toString() << "\n";
|
|
}
|
|
}
|
|
|
|
void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const {
|
|
OS << "Profile overlap infomation for base_profile: "
|
|
<< ProfOverlap.BaseName.toString()
|
|
<< " and test_profile: " << ProfOverlap.TestName.toString()
|
|
<< "\nProgram level:\n";
|
|
|
|
OS << " Whole program profile similarity: "
|
|
<< format("%.3f%%", ProfOverlap.Similarity * 100) << "\n";
|
|
|
|
assert(ProfOverlap.UnionSample > 0 &&
|
|
"Total samples in two profile should be greater than 0");
|
|
double OverlapPercent =
|
|
static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample;
|
|
assert(ProfOverlap.BaseSample > 0 &&
|
|
"Total samples in base profile should be greater than 0");
|
|
double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) /
|
|
ProfOverlap.BaseSample;
|
|
assert(ProfOverlap.TestSample > 0 &&
|
|
"Total samples in test profile should be greater than 0");
|
|
double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) /
|
|
ProfOverlap.TestSample;
|
|
|
|
OS << " Whole program sample overlap: "
|
|
<< format("%.3f%%", OverlapPercent * 100) << "\n";
|
|
OS << " percentage of samples unique in base profile: "
|
|
<< format("%.3f%%", BaseUniquePercent * 100) << "\n";
|
|
OS << " percentage of samples unique in test profile: "
|
|
<< format("%.3f%%", TestUniquePercent * 100) << "\n";
|
|
OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n"
|
|
<< " total samples in test profile: " << ProfOverlap.TestSample << "\n";
|
|
|
|
assert(ProfOverlap.UnionCount > 0 &&
|
|
"There should be at least one function in two input profiles");
|
|
double FuncOverlapPercent =
|
|
static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount;
|
|
OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100)
|
|
<< "\n";
|
|
OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n";
|
|
OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount
|
|
<< "\n";
|
|
OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount
|
|
<< "\n";
|
|
}
|
|
|
|
void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap(
|
|
raw_fd_ostream &OS) const {
|
|
assert(HotFuncOverlap.UnionCount > 0 &&
|
|
"There should be at least one hot function in two input profiles");
|
|
OS << " Hot-function overlap: "
|
|
<< format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) /
|
|
HotFuncOverlap.UnionCount * 100)
|
|
<< "\n";
|
|
OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n";
|
|
OS << " hot functions unique in base profile: "
|
|
<< HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n";
|
|
OS << " hot functions unique in test profile: "
|
|
<< HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n";
|
|
|
|
assert(HotBlockOverlap.UnionCount > 0 &&
|
|
"There should be at least one hot block in two input profiles");
|
|
OS << " Hot-block overlap: "
|
|
<< format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) /
|
|
HotBlockOverlap.UnionCount * 100)
|
|
<< "\n";
|
|
OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n";
|
|
OS << " hot blocks unique in base profile: "
|
|
<< HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n";
|
|
OS << " hot blocks unique in test profile: "
|
|
<< HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n";
|
|
}
|
|
|
|
std::error_code SampleOverlapAggregator::loadProfiles() {
|
|
using namespace sampleprof;
|
|
|
|
LLVMContext Context;
|
|
auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context,
|
|
FSDiscriminatorPassOption);
|
|
if (std::error_code EC = BaseReaderOrErr.getError())
|
|
exitWithErrorCode(EC, BaseFilename);
|
|
|
|
auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context,
|
|
FSDiscriminatorPassOption);
|
|
if (std::error_code EC = TestReaderOrErr.getError())
|
|
exitWithErrorCode(EC, TestFilename);
|
|
|
|
BaseReader = std::move(BaseReaderOrErr.get());
|
|
TestReader = std::move(TestReaderOrErr.get());
|
|
|
|
if (std::error_code EC = BaseReader->read())
|
|
exitWithErrorCode(EC, BaseFilename);
|
|
if (std::error_code EC = TestReader->read())
|
|
exitWithErrorCode(EC, TestFilename);
|
|
if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased())
|
|
exitWithError(
|
|
"cannot compare probe-based profile with non-probe-based profile");
|
|
if (BaseReader->profileIsCSFlat() != TestReader->profileIsCSFlat())
|
|
exitWithError("cannot compare CS profile with non-CS profile");
|
|
|
|
// Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in
|
|
// profile summary.
|
|
ProfileSummary &BasePS = BaseReader->getSummary();
|
|
ProfileSummary &TestPS = TestReader->getSummary();
|
|
BaseHotThreshold =
|
|
ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary());
|
|
TestHotThreshold =
|
|
ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary());
|
|
|
|
return std::error_code();
|
|
}
|
|
|
|
void overlapSampleProfile(const std::string &BaseFilename,
|
|
const std::string &TestFilename,
|
|
const OverlapFuncFilters &FuncFilter,
|
|
uint64_t SimilarityCutoff, raw_fd_ostream &OS) {
|
|
using namespace sampleprof;
|
|
|
|
// We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics
|
|
// report 2--3 places after decimal point in percentage numbers.
|
|
SampleOverlapAggregator OverlapAggr(
|
|
BaseFilename, TestFilename,
|
|
static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter);
|
|
if (std::error_code EC = OverlapAggr.loadProfiles())
|
|
exitWithErrorCode(EC);
|
|
|
|
OverlapAggr.initializeSampleProfileOverlap();
|
|
if (OverlapAggr.detectZeroSampleProfile(OS))
|
|
return;
|
|
|
|
OverlapAggr.computeSampleProfileOverlap(OS);
|
|
|
|
OverlapAggr.dumpProgramSummary(OS);
|
|
OverlapAggr.dumpHotFuncAndBlockOverlap(OS);
|
|
OverlapAggr.dumpFuncSimilarity(OS);
|
|
}
|
|
|
|
static int overlap_main(int argc, const char *argv[]) {
|
|
cl::opt<std::string> BaseFilename(cl::Positional, cl::Required,
|
|
cl::desc("<base profile file>"));
|
|
cl::opt<std::string> TestFilename(cl::Positional, cl::Required,
|
|
cl::desc("<test profile file>"));
|
|
cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"),
|
|
cl::desc("Output file"));
|
|
cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output));
|
|
cl::opt<bool> IsCS(
|
|
"cs", cl::init(false),
|
|
cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."));
|
|
cl::opt<unsigned long long> ValueCutoff(
|
|
"value-cutoff", cl::init(-1),
|
|
cl::desc(
|
|
"Function level overlap information for every function (with calling "
|
|
"context for csspgo) in test "
|
|
"profile with max count value greater then the parameter value"));
|
|
cl::opt<std::string> FuncNameFilter(
|
|
"function",
|
|
cl::desc("Function level overlap information for matching functions. For "
|
|
"CSSPGO this takes a a function name with calling context"));
|
|
cl::opt<unsigned long long> SimilarityCutoff(
|
|
"similarity-cutoff", cl::init(0),
|
|
cl::desc("For sample profiles, list function names (with calling context "
|
|
"for csspgo) for overlapped functions "
|
|
"with similarities below the cutoff (percentage times 10000)."));
|
|
cl::opt<ProfileKinds> ProfileKind(
|
|
cl::desc("Profile kind:"), cl::init(instr),
|
|
cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
|
|
clEnumVal(sample, "Sample profile")));
|
|
cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n");
|
|
|
|
std::error_code EC;
|
|
raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF);
|
|
if (EC)
|
|
exitWithErrorCode(EC, Output);
|
|
|
|
if (ProfileKind == instr)
|
|
overlapInstrProfile(BaseFilename, TestFilename,
|
|
OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS,
|
|
IsCS);
|
|
else
|
|
overlapSampleProfile(BaseFilename, TestFilename,
|
|
OverlapFuncFilters{ValueCutoff, FuncNameFilter},
|
|
SimilarityCutoff, OS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
namespace {
|
|
struct ValueSitesStats {
|
|
ValueSitesStats()
|
|
: TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0),
|
|
TotalNumValues(0) {}
|
|
uint64_t TotalNumValueSites;
|
|
uint64_t TotalNumValueSitesWithValueProfile;
|
|
uint64_t TotalNumValues;
|
|
std::vector<unsigned> ValueSitesHistogram;
|
|
};
|
|
} // namespace
|
|
|
|
static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK,
|
|
ValueSitesStats &Stats, raw_fd_ostream &OS,
|
|
InstrProfSymtab *Symtab) {
|
|
uint32_t NS = Func.getNumValueSites(VK);
|
|
Stats.TotalNumValueSites += NS;
|
|
for (size_t I = 0; I < NS; ++I) {
|
|
uint32_t NV = Func.getNumValueDataForSite(VK, I);
|
|
std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I);
|
|
Stats.TotalNumValues += NV;
|
|
if (NV) {
|
|
Stats.TotalNumValueSitesWithValueProfile++;
|
|
if (NV > Stats.ValueSitesHistogram.size())
|
|
Stats.ValueSitesHistogram.resize(NV, 0);
|
|
Stats.ValueSitesHistogram[NV - 1]++;
|
|
}
|
|
|
|
uint64_t SiteSum = 0;
|
|
for (uint32_t V = 0; V < NV; V++)
|
|
SiteSum += VD[V].Count;
|
|
if (SiteSum == 0)
|
|
SiteSum = 1;
|
|
|
|
for (uint32_t V = 0; V < NV; V++) {
|
|
OS << "\t[ " << format("%2u", I) << ", ";
|
|
if (Symtab == nullptr)
|
|
OS << format("%4" PRIu64, VD[V].Value);
|
|
else
|
|
OS << Symtab->getFuncName(VD[V].Value);
|
|
OS << ", " << format("%10" PRId64, VD[V].Count) << " ] ("
|
|
<< format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK,
|
|
ValueSitesStats &Stats) {
|
|
OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n";
|
|
OS << " Total number of sites with values: "
|
|
<< Stats.TotalNumValueSitesWithValueProfile << "\n";
|
|
OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n";
|
|
|
|
OS << " Value sites histogram:\n\tNumTargets, SiteCount\n";
|
|
for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) {
|
|
if (Stats.ValueSitesHistogram[I] > 0)
|
|
OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n";
|
|
}
|
|
}
|
|
|
|
static int showInstrProfile(const std::string &Filename, bool ShowCounts,
|
|
uint32_t TopN, bool ShowIndirectCallTargets,
|
|
bool ShowMemOPSizes, bool ShowDetailedSummary,
|
|
std::vector<uint32_t> DetailedSummaryCutoffs,
|
|
bool ShowAllFunctions, bool ShowCS,
|
|
uint64_t ValueCutoff, bool OnlyListBelow,
|
|
const std::string &ShowFunction, bool TextFormat,
|
|
bool ShowBinaryIds, bool ShowCovered,
|
|
raw_fd_ostream &OS) {
|
|
auto ReaderOrErr = InstrProfReader::create(Filename);
|
|
std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs);
|
|
if (ShowDetailedSummary && Cutoffs.empty()) {
|
|
Cutoffs = ProfileSummaryBuilder::DefaultCutoffs;
|
|
}
|
|
InstrProfSummaryBuilder Builder(std::move(Cutoffs));
|
|
if (Error E = ReaderOrErr.takeError())
|
|
exitWithError(std::move(E), Filename);
|
|
|
|
auto Reader = std::move(ReaderOrErr.get());
|
|
bool IsIRInstr = Reader->isIRLevelProfile();
|
|
size_t ShownFunctions = 0;
|
|
size_t BelowCutoffFunctions = 0;
|
|
int NumVPKind = IPVK_Last - IPVK_First + 1;
|
|
std::vector<ValueSitesStats> VPStats(NumVPKind);
|
|
|
|
auto MinCmp = [](const std::pair<std::string, uint64_t> &v1,
|
|
const std::pair<std::string, uint64_t> &v2) {
|
|
return v1.second > v2.second;
|
|
};
|
|
|
|
std::priority_queue<std::pair<std::string, uint64_t>,
|
|
std::vector<std::pair<std::string, uint64_t>>,
|
|
decltype(MinCmp)>
|
|
HottestFuncs(MinCmp);
|
|
|
|
if (!TextFormat && OnlyListBelow) {
|
|
OS << "The list of functions with the maximum counter less than "
|
|
<< ValueCutoff << ":\n";
|
|
}
|
|
|
|
// Add marker so that IR-level instrumentation round-trips properly.
|
|
if (TextFormat && IsIRInstr)
|
|
OS << ":ir\n";
|
|
|
|
for (const auto &Func : *Reader) {
|
|
if (Reader->isIRLevelProfile()) {
|
|
bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
|
|
if (FuncIsCS != ShowCS)
|
|
continue;
|
|
}
|
|
bool Show = ShowAllFunctions ||
|
|
(!ShowFunction.empty() && Func.Name.contains(ShowFunction));
|
|
|
|
bool doTextFormatDump = (Show && TextFormat);
|
|
|
|
if (doTextFormatDump) {
|
|
InstrProfSymtab &Symtab = Reader->getSymtab();
|
|
InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab,
|
|
OS);
|
|
continue;
|
|
}
|
|
|
|
assert(Func.Counts.size() > 0 && "function missing entry counter");
|
|
Builder.addRecord(Func);
|
|
|
|
if (ShowCovered) {
|
|
if (std::any_of(Func.Counts.begin(), Func.Counts.end(),
|
|
[](uint64_t C) { return C; }))
|
|
OS << Func.Name << "\n";
|
|
continue;
|
|
}
|
|
|
|
uint64_t FuncMax = 0;
|
|
uint64_t FuncSum = 0;
|
|
for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) {
|
|
if (Func.Counts[I] == (uint64_t)-1)
|
|
continue;
|
|
FuncMax = std::max(FuncMax, Func.Counts[I]);
|
|
FuncSum += Func.Counts[I];
|
|
}
|
|
|
|
if (FuncMax < ValueCutoff) {
|
|
++BelowCutoffFunctions;
|
|
if (OnlyListBelow) {
|
|
OS << " " << Func.Name << ": (Max = " << FuncMax
|
|
<< " Sum = " << FuncSum << ")\n";
|
|
}
|
|
continue;
|
|
} else if (OnlyListBelow)
|
|
continue;
|
|
|
|
if (TopN) {
|
|
if (HottestFuncs.size() == TopN) {
|
|
if (HottestFuncs.top().second < FuncMax) {
|
|
HottestFuncs.pop();
|
|
HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
|
|
}
|
|
} else
|
|
HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
|
|
}
|
|
|
|
if (Show) {
|
|
if (!ShownFunctions)
|
|
OS << "Counters:\n";
|
|
|
|
++ShownFunctions;
|
|
|
|
OS << " " << Func.Name << ":\n"
|
|
<< " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
|
|
<< " Counters: " << Func.Counts.size() << "\n";
|
|
if (!IsIRInstr)
|
|
OS << " Function count: " << Func.Counts[0] << "\n";
|
|
|
|
if (ShowIndirectCallTargets)
|
|
OS << " Indirect Call Site Count: "
|
|
<< Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n";
|
|
|
|
uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize);
|
|
if (ShowMemOPSizes && NumMemOPCalls > 0)
|
|
OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls
|
|
<< "\n";
|
|
|
|
if (ShowCounts) {
|
|
OS << " Block counts: [";
|
|
size_t Start = (IsIRInstr ? 0 : 1);
|
|
for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) {
|
|
OS << (I == Start ? "" : ", ") << Func.Counts[I];
|
|
}
|
|
OS << "]\n";
|
|
}
|
|
|
|
if (ShowIndirectCallTargets) {
|
|
OS << " Indirect Target Results:\n";
|
|
traverseAllValueSites(Func, IPVK_IndirectCallTarget,
|
|
VPStats[IPVK_IndirectCallTarget], OS,
|
|
&(Reader->getSymtab()));
|
|
}
|
|
|
|
if (ShowMemOPSizes && NumMemOPCalls > 0) {
|
|
OS << " Memory Intrinsic Size Results:\n";
|
|
traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS,
|
|
nullptr);
|
|
}
|
|
}
|
|
}
|
|
if (Reader->hasError())
|
|
exitWithError(Reader->getError(), Filename);
|
|
|
|
if (TextFormat || ShowCovered)
|
|
return 0;
|
|
std::unique_ptr<ProfileSummary> PS(Builder.getSummary());
|
|
bool IsIR = Reader->isIRLevelProfile();
|
|
OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end");
|
|
if (IsIR)
|
|
OS << " entry_first = " << Reader->instrEntryBBEnabled();
|
|
OS << "\n";
|
|
if (ShowAllFunctions || !ShowFunction.empty())
|
|
OS << "Functions shown: " << ShownFunctions << "\n";
|
|
OS << "Total functions: " << PS->getNumFunctions() << "\n";
|
|
if (ValueCutoff > 0) {
|
|
OS << "Number of functions with maximum count (< " << ValueCutoff
|
|
<< "): " << BelowCutoffFunctions << "\n";
|
|
OS << "Number of functions with maximum count (>= " << ValueCutoff
|
|
<< "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n";
|
|
}
|
|
OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n";
|
|
OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n";
|
|
|
|
if (TopN) {
|
|
std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs;
|
|
while (!HottestFuncs.empty()) {
|
|
SortedHottestFuncs.emplace_back(HottestFuncs.top());
|
|
HottestFuncs.pop();
|
|
}
|
|
OS << "Top " << TopN
|
|
<< " functions with the largest internal block counts: \n";
|
|
for (auto &hotfunc : llvm::reverse(SortedHottestFuncs))
|
|
OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n";
|
|
}
|
|
|
|
if (ShownFunctions && ShowIndirectCallTargets) {
|
|
OS << "Statistics for indirect call sites profile:\n";
|
|
showValueSitesStats(OS, IPVK_IndirectCallTarget,
|
|
VPStats[IPVK_IndirectCallTarget]);
|
|
}
|
|
|
|
if (ShownFunctions && ShowMemOPSizes) {
|
|
OS << "Statistics for memory intrinsic calls sizes profile:\n";
|
|
showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]);
|
|
}
|
|
|
|
if (ShowDetailedSummary) {
|
|
OS << "Total number of blocks: " << PS->getNumCounts() << "\n";
|
|
OS << "Total count: " << PS->getTotalCount() << "\n";
|
|
PS->printDetailedSummary(OS);
|
|
}
|
|
|
|
if (ShowBinaryIds)
|
|
if (Error E = Reader->printBinaryIds(OS))
|
|
exitWithError(std::move(E), Filename);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void showSectionInfo(sampleprof::SampleProfileReader *Reader,
|
|
raw_fd_ostream &OS) {
|
|
if (!Reader->dumpSectionInfo(OS)) {
|
|
WithColor::warning() << "-show-sec-info-only is only supported for "
|
|
<< "sample profile in extbinary format and is "
|
|
<< "ignored for other formats.\n";
|
|
return;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct HotFuncInfo {
|
|
std::string FuncName;
|
|
uint64_t TotalCount;
|
|
double TotalCountPercent;
|
|
uint64_t MaxCount;
|
|
uint64_t EntryCount;
|
|
|
|
HotFuncInfo()
|
|
: TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), EntryCount(0) {}
|
|
|
|
HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES)
|
|
: FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP),
|
|
MaxCount(MS), EntryCount(ES) {}
|
|
};
|
|
} // namespace
|
|
|
|
// Print out detailed information about hot functions in PrintValues vector.
|
|
// Users specify titles and offset of every columns through ColumnTitle and
|
|
// ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same
|
|
// and at least 4. Besides, users can optionally give a HotFuncMetric string to
|
|
// print out or let it be an empty string.
|
|
static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle,
|
|
const std::vector<int> &ColumnOffset,
|
|
const std::vector<HotFuncInfo> &PrintValues,
|
|
uint64_t HotFuncCount, uint64_t TotalFuncCount,
|
|
uint64_t HotProfCount, uint64_t TotalProfCount,
|
|
const std::string &HotFuncMetric,
|
|
uint32_t TopNFunctions, raw_fd_ostream &OS) {
|
|
assert(ColumnOffset.size() == ColumnTitle.size() &&
|
|
"ColumnOffset and ColumnTitle should have the same size");
|
|
assert(ColumnTitle.size() >= 4 &&
|
|
"ColumnTitle should have at least 4 elements");
|
|
assert(TotalFuncCount > 0 &&
|
|
"There should be at least one function in the profile");
|
|
double TotalProfPercent = 0;
|
|
if (TotalProfCount > 0)
|
|
TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100;
|
|
|
|
formatted_raw_ostream FOS(OS);
|
|
FOS << HotFuncCount << " out of " << TotalFuncCount
|
|
<< " functions with profile ("
|
|
<< format("%.2f%%",
|
|
(static_cast<double>(HotFuncCount) / TotalFuncCount * 100))
|
|
<< ") are considered hot functions";
|
|
if (!HotFuncMetric.empty())
|
|
FOS << " (" << HotFuncMetric << ")";
|
|
FOS << ".\n";
|
|
FOS << HotProfCount << " out of " << TotalProfCount << " profile counts ("
|
|
<< format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n";
|
|
|
|
for (size_t I = 0; I < ColumnTitle.size(); ++I) {
|
|
FOS.PadToColumn(ColumnOffset[I]);
|
|
FOS << ColumnTitle[I];
|
|
}
|
|
FOS << "\n";
|
|
|
|
uint32_t Count = 0;
|
|
for (const auto &R : PrintValues) {
|
|
if (TopNFunctions && (Count++ == TopNFunctions))
|
|
break;
|
|
FOS.PadToColumn(ColumnOffset[0]);
|
|
FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")";
|
|
FOS.PadToColumn(ColumnOffset[1]);
|
|
FOS << R.MaxCount;
|
|
FOS.PadToColumn(ColumnOffset[2]);
|
|
FOS << R.EntryCount;
|
|
FOS.PadToColumn(ColumnOffset[3]);
|
|
FOS << R.FuncName << "\n";
|
|
}
|
|
}
|
|
|
|
static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles,
|
|
ProfileSummary &PS, uint32_t TopN,
|
|
raw_fd_ostream &OS) {
|
|
using namespace sampleprof;
|
|
|
|
const uint32_t HotFuncCutoff = 990000;
|
|
auto &SummaryVector = PS.getDetailedSummary();
|
|
uint64_t MinCountThreshold = 0;
|
|
for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) {
|
|
if (SummaryEntry.Cutoff == HotFuncCutoff) {
|
|
MinCountThreshold = SummaryEntry.MinCount;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Traverse all functions in the profile and keep only hot functions.
|
|
// The following loop also calculates the sum of total samples of all
|
|
// functions.
|
|
std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>,
|
|
std::greater<uint64_t>>
|
|
HotFunc;
|
|
uint64_t ProfileTotalSample = 0;
|
|
uint64_t HotFuncSample = 0;
|
|
uint64_t HotFuncCount = 0;
|
|
|
|
for (const auto &I : Profiles) {
|
|
FuncSampleStats FuncStats;
|
|
const FunctionSamples &FuncProf = I.second;
|
|
ProfileTotalSample += FuncProf.getTotalSamples();
|
|
getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold);
|
|
|
|
if (isFunctionHot(FuncStats, MinCountThreshold)) {
|
|
HotFunc.emplace(FuncProf.getTotalSamples(),
|
|
std::make_pair(&(I.second), FuncStats.MaxSample));
|
|
HotFuncSample += FuncProf.getTotalSamples();
|
|
++HotFuncCount;
|
|
}
|
|
}
|
|
|
|
std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample",
|
|
"Entry sample", "Function name"};
|
|
std::vector<int> ColumnOffset{0, 24, 42, 58};
|
|
std::string Metric =
|
|
std::string("max sample >= ") + std::to_string(MinCountThreshold);
|
|
std::vector<HotFuncInfo> PrintValues;
|
|
for (const auto &FuncPair : HotFunc) {
|
|
const FunctionSamples &Func = *FuncPair.second.first;
|
|
double TotalSamplePercent =
|
|
(ProfileTotalSample > 0)
|
|
? (Func.getTotalSamples() * 100.0) / ProfileTotalSample
|
|
: 0;
|
|
PrintValues.emplace_back(HotFuncInfo(
|
|
Func.getContext().toString(), Func.getTotalSamples(),
|
|
TotalSamplePercent, FuncPair.second.second, Func.getEntrySamples()));
|
|
}
|
|
dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount,
|
|
Profiles.size(), HotFuncSample, ProfileTotalSample,
|
|
Metric, TopN, OS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int showSampleProfile(const std::string &Filename, bool ShowCounts,
|
|
uint32_t TopN, bool ShowAllFunctions,
|
|
bool ShowDetailedSummary,
|
|
const std::string &ShowFunction,
|
|
bool ShowProfileSymbolList,
|
|
bool ShowSectionInfoOnly, bool ShowHotFuncList,
|
|
raw_fd_ostream &OS) {
|
|
using namespace sampleprof;
|
|
LLVMContext Context;
|
|
auto ReaderOrErr =
|
|
SampleProfileReader::create(Filename, Context, FSDiscriminatorPassOption);
|
|
if (std::error_code EC = ReaderOrErr.getError())
|
|
exitWithErrorCode(EC, Filename);
|
|
|
|
auto Reader = std::move(ReaderOrErr.get());
|
|
if (ShowSectionInfoOnly) {
|
|
showSectionInfo(Reader.get(), OS);
|
|
return 0;
|
|
}
|
|
|
|
if (std::error_code EC = Reader->read())
|
|
exitWithErrorCode(EC, Filename);
|
|
|
|
if (ShowAllFunctions || ShowFunction.empty())
|
|
Reader->dump(OS);
|
|
else
|
|
// TODO: parse context string to support filtering by contexts.
|
|
Reader->dumpFunctionProfile(StringRef(ShowFunction), OS);
|
|
|
|
if (ShowProfileSymbolList) {
|
|
std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
|
|
Reader->getProfileSymbolList();
|
|
ReaderList->dump(OS);
|
|
}
|
|
|
|
if (ShowDetailedSummary) {
|
|
auto &PS = Reader->getSummary();
|
|
PS.printSummary(OS);
|
|
PS.printDetailedSummary(OS);
|
|
}
|
|
|
|
if (ShowHotFuncList || TopN)
|
|
showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), TopN, OS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int showMemProfProfile(const std::string &Filename,
|
|
const std::string &ProfiledBinary,
|
|
raw_fd_ostream &OS) {
|
|
auto ReaderOr =
|
|
llvm::memprof::RawMemProfReader::create(Filename, ProfiledBinary);
|
|
if (Error E = ReaderOr.takeError())
|
|
// Since the error can be related to the profile or the binary we do not
|
|
// pass whence. Instead additional context is provided where necessary in
|
|
// the error message.
|
|
exitWithError(std::move(E), /*Whence*/ "");
|
|
|
|
std::unique_ptr<llvm::memprof::RawMemProfReader> Reader(
|
|
ReaderOr.get().release());
|
|
|
|
Reader->printYAML(OS);
|
|
return 0;
|
|
}
|
|
|
|
static int showDebugInfoCorrelation(const std::string &Filename,
|
|
bool ShowDetailedSummary,
|
|
bool ShowProfileSymbolList,
|
|
raw_fd_ostream &OS) {
|
|
std::unique_ptr<InstrProfCorrelator> Correlator;
|
|
if (auto Err = InstrProfCorrelator::get(Filename).moveInto(Correlator))
|
|
exitWithError(std::move(Err), Filename);
|
|
if (auto Err = Correlator->correlateProfileData())
|
|
exitWithError(std::move(Err), Filename);
|
|
|
|
InstrProfSymtab Symtab;
|
|
if (auto Err = Symtab.create(
|
|
StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize())))
|
|
exitWithError(std::move(Err), Filename);
|
|
|
|
if (ShowProfileSymbolList)
|
|
Symtab.dumpNames(OS);
|
|
// TODO: Read "Profile Data Type" from debug info to compute and show how many
|
|
// counters the section holds.
|
|
if (ShowDetailedSummary)
|
|
OS << "Counters section size: 0x"
|
|
<< Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n";
|
|
OS << "Found " << Correlator->getDataSize() << " functions\n";
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int show_main(int argc, const char *argv[]) {
|
|
cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"));
|
|
|
|
cl::opt<bool> ShowCounts("counts", cl::init(false),
|
|
cl::desc("Show counter values for shown functions"));
|
|
cl::opt<bool> TextFormat(
|
|
"text", cl::init(false),
|
|
cl::desc("Show instr profile data in text dump format"));
|
|
cl::opt<bool> ShowIndirectCallTargets(
|
|
"ic-targets", cl::init(false),
|
|
cl::desc("Show indirect call site target values for shown functions"));
|
|
cl::opt<bool> ShowMemOPSizes(
|
|
"memop-sizes", cl::init(false),
|
|
cl::desc("Show the profiled sizes of the memory intrinsic calls "
|
|
"for shown functions"));
|
|
cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false),
|
|
cl::desc("Show detailed profile summary"));
|
|
cl::list<uint32_t> DetailedSummaryCutoffs(
|
|
cl::CommaSeparated, "detailed-summary-cutoffs",
|
|
cl::desc(
|
|
"Cutoff percentages (times 10000) for generating detailed summary"),
|
|
cl::value_desc("800000,901000,999999"));
|
|
cl::opt<bool> ShowHotFuncList(
|
|
"hot-func-list", cl::init(false),
|
|
cl::desc("Show profile summary of a list of hot functions"));
|
|
cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false),
|
|
cl::desc("Details for every function"));
|
|
cl::opt<bool> ShowCS("showcs", cl::init(false),
|
|
cl::desc("Show context sensitive counts"));
|
|
cl::opt<std::string> ShowFunction("function",
|
|
cl::desc("Details for matching functions"));
|
|
|
|
cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
|
|
cl::init("-"), cl::desc("Output file"));
|
|
cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
|
|
cl::aliasopt(OutputFilename));
|
|
cl::opt<ProfileKinds> ProfileKind(
|
|
cl::desc("Profile kind:"), cl::init(instr),
|
|
cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
|
|
clEnumVal(sample, "Sample profile"),
|
|
clEnumVal(memory, "MemProf memory access profile")));
|
|
cl::opt<uint32_t> TopNFunctions(
|
|
"topn", cl::init(0),
|
|
cl::desc("Show the list of functions with the largest internal counts"));
|
|
cl::opt<uint32_t> ValueCutoff(
|
|
"value-cutoff", cl::init(0),
|
|
cl::desc("Set the count value cutoff. Functions with the maximum count "
|
|
"less than this value will not be printed out. (Default is 0)"));
|
|
cl::opt<bool> OnlyListBelow(
|
|
"list-below-cutoff", cl::init(false),
|
|
cl::desc("Only output names of functions whose max count values are "
|
|
"below the cutoff value"));
|
|
cl::opt<bool> ShowProfileSymbolList(
|
|
"show-prof-sym-list", cl::init(false),
|
|
cl::desc("Show profile symbol list if it exists in the profile. "));
|
|
cl::opt<bool> ShowSectionInfoOnly(
|
|
"show-sec-info-only", cl::init(false),
|
|
cl::desc("Show the information of each section in the sample profile. "
|
|
"The flag is only usable when the sample profile is in "
|
|
"extbinary format"));
|
|
cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false),
|
|
cl::desc("Show binary ids in the profile. "));
|
|
cl::opt<std::string> DebugInfoFilename(
|
|
"debug-info", cl::init(""),
|
|
cl::desc("Read and extract profile metadata from debug info and show "
|
|
"the functions it found."));
|
|
cl::opt<bool> ShowCovered(
|
|
"covered", cl::init(false),
|
|
cl::desc("Show only the functions that have been executed."));
|
|
cl::opt<std::string> ProfiledBinary(
|
|
"profiled-binary", cl::init(""),
|
|
cl::desc("Path to binary from which the profile was collected."));
|
|
|
|
cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n");
|
|
|
|
if (Filename.empty() && DebugInfoFilename.empty())
|
|
exitWithError(
|
|
"the positional argument '<profdata-file>' is required unless '--" +
|
|
DebugInfoFilename.ArgStr + "' is provided");
|
|
|
|
if (Filename == OutputFilename) {
|
|
errs() << sys::path::filename(argv[0])
|
|
<< ": Input file name cannot be the same as the output file name!\n";
|
|
return 1;
|
|
}
|
|
|
|
std::error_code EC;
|
|
raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
|
|
if (EC)
|
|
exitWithErrorCode(EC, OutputFilename);
|
|
|
|
if (ShowAllFunctions && !ShowFunction.empty())
|
|
WithColor::warning() << "-function argument ignored: showing all functions\n";
|
|
|
|
if (!DebugInfoFilename.empty())
|
|
return showDebugInfoCorrelation(DebugInfoFilename, ShowDetailedSummary,
|
|
ShowProfileSymbolList, OS);
|
|
|
|
if (ProfileKind == instr)
|
|
return showInstrProfile(
|
|
Filename, ShowCounts, TopNFunctions, ShowIndirectCallTargets,
|
|
ShowMemOPSizes, ShowDetailedSummary, DetailedSummaryCutoffs,
|
|
ShowAllFunctions, ShowCS, ValueCutoff, OnlyListBelow, ShowFunction,
|
|
TextFormat, ShowBinaryIds, ShowCovered, OS);
|
|
if (ProfileKind == sample)
|
|
return showSampleProfile(Filename, ShowCounts, TopNFunctions,
|
|
ShowAllFunctions, ShowDetailedSummary,
|
|
ShowFunction, ShowProfileSymbolList,
|
|
ShowSectionInfoOnly, ShowHotFuncList, OS);
|
|
return showMemProfProfile(Filename, ProfiledBinary, OS);
|
|
}
|
|
|
|
int main(int argc, const char *argv[]) {
|
|
InitLLVM X(argc, argv);
|
|
|
|
StringRef ProgName(sys::path::filename(argv[0]));
|
|
if (argc > 1) {
|
|
int (*func)(int, const char *[]) = nullptr;
|
|
|
|
if (strcmp(argv[1], "merge") == 0)
|
|
func = merge_main;
|
|
else if (strcmp(argv[1], "show") == 0)
|
|
func = show_main;
|
|
else if (strcmp(argv[1], "overlap") == 0)
|
|
func = overlap_main;
|
|
|
|
if (func) {
|
|
std::string Invocation(ProgName.str() + " " + argv[1]);
|
|
argv[1] = Invocation.c_str();
|
|
return func(argc - 1, argv + 1);
|
|
}
|
|
|
|
if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 ||
|
|
strcmp(argv[1], "--help") == 0) {
|
|
|
|
errs() << "OVERVIEW: LLVM profile data tools\n\n"
|
|
<< "USAGE: " << ProgName << " <command> [args...]\n"
|
|
<< "USAGE: " << ProgName << " <command> -help\n\n"
|
|
<< "See each individual command --help for more details.\n"
|
|
<< "Available commands: merge, show, overlap\n";
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (argc < 2)
|
|
errs() << ProgName << ": No command specified!\n";
|
|
else
|
|
errs() << ProgName << ": Unknown command!\n";
|
|
|
|
errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n";
|
|
return 1;
|
|
}
|