llvm-project/clang-tools-extra/clangd/XRefs.cpp

2203 lines
83 KiB
C++

//===--- XRefs.cpp -----------------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "XRefs.h"
#include "AST.h"
#include "FindSymbols.h"
#include "FindTarget.h"
#include "HeuristicResolver.h"
#include "ParsedAST.h"
#include "Protocol.h"
#include "Quality.h"
#include "Selection.h"
#include "SourceCode.h"
#include "URI.h"
#include "index/Index.h"
#include "index/Merge.h"
#include "index/Relation.h"
#include "index/SymbolID.h"
#include "index/SymbolLocation.h"
#include "support/Logger.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Attrs.inc"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/Type.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Index/IndexDataConsumer.h"
#include "clang/Index/IndexSymbol.h"
#include "clang/Index/IndexingAction.h"
#include "clang/Index/IndexingOptions.h"
#include "clang/Index/USRGeneration.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
namespace clang {
namespace clangd {
namespace {
// Returns the single definition of the entity declared by D, if visible.
// In particular:
// - for non-redeclarable kinds (e.g. local vars), return D
// - for kinds that allow multiple definitions (e.g. namespaces), return nullptr
// Kinds of nodes that always return nullptr here will not have definitions
// reported by locateSymbolAt().
const NamedDecl *getDefinition(const NamedDecl *D) {
assert(D);
// Decl has one definition that we can find.
if (const auto *TD = dyn_cast<TagDecl>(D))
return TD->getDefinition();
if (const auto *VD = dyn_cast<VarDecl>(D))
return VD->getDefinition();
if (const auto *FD = dyn_cast<FunctionDecl>(D))
return FD->getDefinition();
if (const auto *CTD = dyn_cast<ClassTemplateDecl>(D))
if (const auto *RD = CTD->getTemplatedDecl())
return RD->getDefinition();
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
if (MD->isThisDeclarationADefinition())
return MD;
// Look for the method definition inside the implementation decl.
auto *DeclCtx = cast<Decl>(MD->getDeclContext());
if (DeclCtx->isInvalidDecl())
return nullptr;
if (const auto *CD = dyn_cast<ObjCContainerDecl>(DeclCtx))
if (const auto *Impl = getCorrespondingObjCImpl(CD))
return Impl->getMethod(MD->getSelector(), MD->isInstanceMethod());
}
if (const auto *CD = dyn_cast<ObjCContainerDecl>(D))
return getCorrespondingObjCImpl(CD);
// Only a single declaration is allowed.
if (isa<ValueDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
isa<TemplateTemplateParmDecl>(D)) // except cases above
return D;
// Multiple definitions are allowed.
return nullptr; // except cases above
}
void logIfOverflow(const SymbolLocation &Loc) {
if (Loc.Start.hasOverflow() || Loc.End.hasOverflow())
log("Possible overflow in symbol location: {0}", Loc);
}
// Convert a SymbolLocation to LSP's Location.
// TUPath is used to resolve the path of URI.
// FIXME: figure out a good home for it, and share the implementation with
// FindSymbols.
llvm::Optional<Location> toLSPLocation(const SymbolLocation &Loc,
llvm::StringRef TUPath) {
if (!Loc)
return None;
auto Uri = URI::parse(Loc.FileURI);
if (!Uri) {
elog("Could not parse URI {0}: {1}", Loc.FileURI, Uri.takeError());
return None;
}
auto U = URIForFile::fromURI(*Uri, TUPath);
if (!U) {
elog("Could not resolve URI {0}: {1}", Loc.FileURI, U.takeError());
return None;
}
Location LSPLoc;
LSPLoc.uri = std::move(*U);
LSPLoc.range.start.line = Loc.Start.line();
LSPLoc.range.start.character = Loc.Start.column();
LSPLoc.range.end.line = Loc.End.line();
LSPLoc.range.end.character = Loc.End.column();
logIfOverflow(Loc);
return LSPLoc;
}
SymbolLocation toIndexLocation(const Location &Loc, std::string &URIStorage) {
SymbolLocation SymLoc;
URIStorage = Loc.uri.uri();
SymLoc.FileURI = URIStorage.c_str();
SymLoc.Start.setLine(Loc.range.start.line);
SymLoc.Start.setColumn(Loc.range.start.character);
SymLoc.End.setLine(Loc.range.end.line);
SymLoc.End.setColumn(Loc.range.end.character);
return SymLoc;
}
// Returns the preferred location between an AST location and an index location.
SymbolLocation getPreferredLocation(const Location &ASTLoc,
const SymbolLocation &IdxLoc,
std::string &Scratch) {
// Also use a mock symbol for the index location so that other fields (e.g.
// definition) are not factored into the preference.
Symbol ASTSym, IdxSym;
ASTSym.ID = IdxSym.ID = SymbolID("mock_symbol_id");
ASTSym.CanonicalDeclaration = toIndexLocation(ASTLoc, Scratch);
IdxSym.CanonicalDeclaration = IdxLoc;
auto Merged = mergeSymbol(ASTSym, IdxSym);
return Merged.CanonicalDeclaration;
}
std::vector<std::pair<const NamedDecl *, DeclRelationSet>>
getDeclAtPositionWithRelations(ParsedAST &AST, SourceLocation Pos,
DeclRelationSet Relations,
ASTNodeKind *NodeKind = nullptr) {
unsigned Offset = AST.getSourceManager().getDecomposedSpellingLoc(Pos).second;
std::vector<std::pair<const NamedDecl *, DeclRelationSet>> Result;
auto ResultFromTree = [&](SelectionTree ST) {
if (const SelectionTree::Node *N = ST.commonAncestor()) {
if (NodeKind)
*NodeKind = N->ASTNode.getNodeKind();
// Attributes don't target decls, look at the
// thing it's attached to.
// We still report the original NodeKind!
// This makes the `override` hack work.
if (N->ASTNode.get<Attr>() && N->Parent)
N = N->Parent;
llvm::copy_if(allTargetDecls(N->ASTNode, AST.getHeuristicResolver()),
std::back_inserter(Result),
[&](auto &Entry) { return !(Entry.second & ~Relations); });
}
return !Result.empty();
};
SelectionTree::createEach(AST.getASTContext(), AST.getTokens(), Offset,
Offset, ResultFromTree);
return Result;
}
std::vector<const NamedDecl *>
getDeclAtPosition(ParsedAST &AST, SourceLocation Pos, DeclRelationSet Relations,
ASTNodeKind *NodeKind = nullptr) {
std::vector<const NamedDecl *> Result;
for (auto &Entry :
getDeclAtPositionWithRelations(AST, Pos, Relations, NodeKind))
Result.push_back(Entry.first);
return Result;
}
// Expects Loc to be a SpellingLocation, will bail out otherwise as it can't
// figure out a filename.
llvm::Optional<Location> makeLocation(const ASTContext &AST, SourceLocation Loc,
llvm::StringRef TUPath) {
const auto &SM = AST.getSourceManager();
const FileEntry *F = SM.getFileEntryForID(SM.getFileID(Loc));
if (!F)
return None;
auto FilePath = getCanonicalPath(F, SM);
if (!FilePath) {
log("failed to get path!");
return None;
}
Location L;
L.uri = URIForFile::canonicalize(*FilePath, TUPath);
// We call MeasureTokenLength here as TokenBuffer doesn't store spelled tokens
// outside the main file.
auto TokLen = Lexer::MeasureTokenLength(Loc, SM, AST.getLangOpts());
L.range = halfOpenToRange(
SM, CharSourceRange::getCharRange(Loc, Loc.getLocWithOffset(TokLen)));
return L;
}
// Treat #included files as symbols, to enable go-to-definition on them.
llvm::Optional<LocatedSymbol> locateFileReferent(const Position &Pos,
ParsedAST &AST,
llvm::StringRef MainFilePath) {
for (auto &Inc : AST.getIncludeStructure().MainFileIncludes) {
if (!Inc.Resolved.empty() && Inc.HashLine == Pos.line) {
LocatedSymbol File;
File.Name = std::string(llvm::sys::path::filename(Inc.Resolved));
File.PreferredDeclaration = {
URIForFile::canonicalize(Inc.Resolved, MainFilePath), Range{}};
File.Definition = File.PreferredDeclaration;
// We're not going to find any further symbols on #include lines.
return File;
}
}
return llvm::None;
}
// Macros are simple: there's no declaration/definition distinction.
// As a consequence, there's no need to look them up in the index either.
llvm::Optional<LocatedSymbol>
locateMacroReferent(const syntax::Token &TouchedIdentifier, ParsedAST &AST,
llvm::StringRef MainFilePath) {
if (auto M = locateMacroAt(TouchedIdentifier, AST.getPreprocessor())) {
if (auto Loc =
makeLocation(AST.getASTContext(), M->NameLoc, MainFilePath)) {
LocatedSymbol Macro;
Macro.Name = std::string(M->Name);
Macro.PreferredDeclaration = *Loc;
Macro.Definition = Loc;
Macro.ID = getSymbolID(M->Name, M->Info, AST.getSourceManager());
return Macro;
}
}
return llvm::None;
}
// A wrapper around `Decl::getCanonicalDecl` to support cases where Clang's
// definition of a canonical declaration doesn't match up to what a programmer
// would expect. For example, Objective-C classes can have three types of
// declarations:
//
// - forward declaration(s): @class MyClass;
// - true declaration (interface definition): @interface MyClass ... @end
// - true definition (implementation): @implementation MyClass ... @end
//
// Clang will consider the forward declaration to be the canonical declaration
// because it is first. We actually want the class definition if it is
// available since that is what a programmer would consider the primary
// declaration to be.
const NamedDecl *getPreferredDecl(const NamedDecl *D) {
// FIXME: Canonical declarations of some symbols might refer to built-in
// decls with possibly-invalid source locations (e.g. global new operator).
// In such cases we should pick up a redecl with valid source location
// instead of failing.
D = llvm::cast<NamedDecl>(D->getCanonicalDecl());
// Prefer Objective-C class/protocol definitions over the forward declaration.
if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D))
if (const auto *DefinitionID = ID->getDefinition())
return DefinitionID;
if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D))
if (const auto *DefinitionID = PD->getDefinition())
return DefinitionID;
return D;
}
std::vector<LocatedSymbol> findImplementors(llvm::DenseSet<SymbolID> IDs,
RelationKind Predicate,
const SymbolIndex *Index,
llvm::StringRef MainFilePath) {
if (IDs.empty() || !Index)
return {};
static constexpr trace::Metric FindImplementorsMetric(
"find_implementors", trace::Metric::Counter, "case");
switch (Predicate) {
case RelationKind::BaseOf:
FindImplementorsMetric.record(1, "find-base");
break;
case RelationKind::OverriddenBy:
FindImplementorsMetric.record(1, "find-override");
break;
}
RelationsRequest Req;
Req.Predicate = Predicate;
Req.Subjects = std::move(IDs);
std::vector<LocatedSymbol> Results;
Index->relations(Req, [&](const SymbolID &Subject, const Symbol &Object) {
auto DeclLoc =
indexToLSPLocation(Object.CanonicalDeclaration, MainFilePath);
if (!DeclLoc) {
elog("Find overrides: {0}", DeclLoc.takeError());
return;
}
Results.emplace_back();
Results.back().Name = Object.Name.str();
Results.back().PreferredDeclaration = *DeclLoc;
auto DefLoc = indexToLSPLocation(Object.Definition, MainFilePath);
if (!DefLoc) {
elog("Failed to convert location: {0}", DefLoc.takeError());
return;
}
Results.back().Definition = *DefLoc;
});
return Results;
}
// Decls are more complicated.
// The AST contains at least a declaration, maybe a definition.
// These are up-to-date, and so generally preferred over index results.
// We perform a single batch index lookup to find additional definitions.
std::vector<LocatedSymbol>
locateASTReferent(SourceLocation CurLoc, const syntax::Token *TouchedIdentifier,
ParsedAST &AST, llvm::StringRef MainFilePath,
const SymbolIndex *Index, ASTNodeKind &NodeKind) {
const SourceManager &SM = AST.getSourceManager();
// Results follow the order of Symbols.Decls.
std::vector<LocatedSymbol> Result;
// Keep track of SymbolID -> index mapping, to fill in index data later.
llvm::DenseMap<SymbolID, size_t> ResultIndex;
static constexpr trace::Metric LocateASTReferentMetric(
"locate_ast_referent", trace::Metric::Counter, "case");
auto AddResultDecl = [&](const NamedDecl *D) {
D = getPreferredDecl(D);
auto Loc =
makeLocation(AST.getASTContext(), nameLocation(*D, SM), MainFilePath);
if (!Loc)
return;
Result.emplace_back();
Result.back().Name = printName(AST.getASTContext(), *D);
Result.back().PreferredDeclaration = *Loc;
Result.back().ID = getSymbolID(D);
if (const NamedDecl *Def = getDefinition(D))
Result.back().Definition = makeLocation(
AST.getASTContext(), nameLocation(*Def, SM), MainFilePath);
// Record SymbolID for index lookup later.
if (auto ID = getSymbolID(D))
ResultIndex[ID] = Result.size() - 1;
};
// Emit all symbol locations (declaration or definition) from AST.
DeclRelationSet Relations =
DeclRelation::TemplatePattern | DeclRelation::Alias;
auto Candidates =
getDeclAtPositionWithRelations(AST, CurLoc, Relations, &NodeKind);
llvm::DenseSet<SymbolID> VirtualMethods;
for (const auto &E : Candidates) {
const NamedDecl *D = E.first;
if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(D)) {
// Special case: virtual void ^method() = 0: jump to all overrides.
// FIXME: extend it to ^virtual, unfortunately, virtual location is not
// saved in the AST.
if (CMD->isPure()) {
if (TouchedIdentifier && SM.getSpellingLoc(CMD->getLocation()) ==
TouchedIdentifier->location()) {
VirtualMethods.insert(getSymbolID(CMD));
LocateASTReferentMetric.record(1, "method-to-override");
}
}
// Special case: void foo() ^override: jump to the overridden method.
if (NodeKind.isSame(ASTNodeKind::getFromNodeKind<OverrideAttr>()) ||
NodeKind.isSame(ASTNodeKind::getFromNodeKind<FinalAttr>())) {
// We may be overridding multiple methods - offer them all.
for (const NamedDecl *ND : CMD->overridden_methods())
AddResultDecl(ND);
continue;
}
}
// Special case: the cursor is on an alias, prefer other results.
// This targets "using ns::^Foo", where the target is more interesting.
// This does not trigger on renaming aliases:
// `using Foo = ^Bar` already targets Bar via a TypeLoc
// `using ^Foo = Bar` has no other results, as Underlying is filtered.
if (E.second & DeclRelation::Alias && Candidates.size() > 1 &&
// beginLoc/endLoc are a token range, so rewind the identifier we're in.
SM.isPointWithin(TouchedIdentifier ? TouchedIdentifier->location()
: CurLoc,
D->getBeginLoc(), D->getEndLoc()))
continue;
// Special case: the point of declaration of a template specialization,
// it's more useful to navigate to the template declaration.
if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
if (TouchedIdentifier &&
D->getLocation() == TouchedIdentifier->location()) {
LocateASTReferentMetric.record(1, "template-specialization-to-primary");
AddResultDecl(CTSD->getSpecializedTemplate());
continue;
}
}
// Special case: if the class name is selected, also map Objective-C
// categories and category implementations back to their class interface.
//
// Since `TouchedIdentifier` might refer to the `ObjCCategoryImplDecl`
// instead of the `ObjCCategoryDecl` we intentionally check the contents
// of the locs when checking for class name equivalence.
if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D))
if (const auto *ID = CD->getClassInterface())
if (TouchedIdentifier &&
(CD->getLocation() == TouchedIdentifier->location() ||
ID->getName() == TouchedIdentifier->text(SM))) {
LocateASTReferentMetric.record(1, "objc-category-to-class");
AddResultDecl(ID);
}
LocateASTReferentMetric.record(1, "regular");
// Otherwise the target declaration is the right one.
AddResultDecl(D);
}
// Now query the index for all Symbol IDs we found in the AST.
if (Index && !ResultIndex.empty()) {
LookupRequest QueryRequest;
for (auto It : ResultIndex)
QueryRequest.IDs.insert(It.first);
std::string Scratch;
Index->lookup(QueryRequest, [&](const Symbol &Sym) {
auto &R = Result[ResultIndex.lookup(Sym.ID)];
if (R.Definition) { // from AST
// Special case: if the AST yielded a definition, then it may not be
// the right *declaration*. Prefer the one from the index.
if (auto Loc = toLSPLocation(Sym.CanonicalDeclaration, MainFilePath))
R.PreferredDeclaration = *Loc;
// We might still prefer the definition from the index, e.g. for
// generated symbols.
if (auto Loc = toLSPLocation(
getPreferredLocation(*R.Definition, Sym.Definition, Scratch),
MainFilePath))
R.Definition = *Loc;
} else {
R.Definition = toLSPLocation(Sym.Definition, MainFilePath);
// Use merge logic to choose AST or index declaration.
if (auto Loc = toLSPLocation(
getPreferredLocation(R.PreferredDeclaration,
Sym.CanonicalDeclaration, Scratch),
MainFilePath))
R.PreferredDeclaration = *Loc;
}
});
}
auto Overrides = findImplementors(VirtualMethods, RelationKind::OverriddenBy,
Index, MainFilePath);
Result.insert(Result.end(), Overrides.begin(), Overrides.end());
return Result;
}
std::vector<LocatedSymbol> locateSymbolForType(const ParsedAST &AST,
const QualType &Type) {
const auto &SM = AST.getSourceManager();
auto MainFilePath = AST.tuPath();
// FIXME: this sends unique_ptr<Foo> to unique_ptr<T>.
// Likely it would be better to send it to Foo (heuristically) or to both.
auto Decls = targetDecl(DynTypedNode::create(Type.getNonReferenceType()),
DeclRelation::TemplatePattern | DeclRelation::Alias,
AST.getHeuristicResolver());
if (Decls.empty())
return {};
std::vector<LocatedSymbol> Results;
const auto &ASTContext = AST.getASTContext();
for (const NamedDecl *D : Decls) {
D = getPreferredDecl(D);
auto Loc = makeLocation(ASTContext, nameLocation(*D, SM), MainFilePath);
if (!Loc)
continue;
Results.emplace_back();
Results.back().Name = printName(ASTContext, *D);
Results.back().PreferredDeclaration = *Loc;
Results.back().ID = getSymbolID(D);
if (const NamedDecl *Def = getDefinition(D))
Results.back().Definition =
makeLocation(ASTContext, nameLocation(*Def, SM), MainFilePath);
}
return Results;
}
bool tokenSpelledAt(SourceLocation SpellingLoc, const syntax::TokenBuffer &TB) {
auto ExpandedTokens = TB.expandedTokens(
TB.sourceManager().getMacroArgExpandedLocation(SpellingLoc));
return !ExpandedTokens.empty();
}
llvm::StringRef sourcePrefix(SourceLocation Loc, const SourceManager &SM) {
auto D = SM.getDecomposedLoc(Loc);
bool Invalid = false;
llvm::StringRef Buf = SM.getBufferData(D.first, &Invalid);
if (Invalid || D.second > Buf.size())
return "";
return Buf.substr(0, D.second);
}
bool isDependentName(ASTNodeKind NodeKind) {
return NodeKind.isSame(ASTNodeKind::getFromNodeKind<OverloadExpr>()) ||
NodeKind.isSame(
ASTNodeKind::getFromNodeKind<CXXDependentScopeMemberExpr>()) ||
NodeKind.isSame(
ASTNodeKind::getFromNodeKind<DependentScopeDeclRefExpr>());
}
} // namespace
std::vector<LocatedSymbol> locateSymbolTextually(const SpelledWord &Word,
ParsedAST &AST,
const SymbolIndex *Index,
llvm::StringRef MainFilePath,
ASTNodeKind NodeKind) {
// Don't use heuristics if this is a real identifier, or not an
// identifier.
// Exception: dependent names, because those may have useful textual
// matches that AST-based heuristics cannot find.
if ((Word.ExpandedToken && !isDependentName(NodeKind)) ||
!Word.LikelyIdentifier || !Index)
return {};
// We don't want to handle words in string literals. (It'd be nice to list
// *allowed* token kinds explicitly, but comment Tokens aren't retained).
if (Word.PartOfSpelledToken &&
isStringLiteral(Word.PartOfSpelledToken->kind()))
return {};
const auto &SM = AST.getSourceManager();
// Look up the selected word in the index.
FuzzyFindRequest Req;
Req.Query = Word.Text.str();
Req.ProximityPaths = {MainFilePath.str()};
// Find the namespaces to query by lexing the file.
Req.Scopes =
visibleNamespaces(sourcePrefix(Word.Location, SM), AST.getLangOpts());
// FIXME: For extra strictness, consider AnyScope=false.
Req.AnyScope = true;
// We limit the results to 3 further below. This limit is to avoid fetching
// too much data, while still likely having enough for 3 results to remain
// after additional filtering.
Req.Limit = 10;
bool TooMany = false;
using ScoredLocatedSymbol = std::pair<float, LocatedSymbol>;
std::vector<ScoredLocatedSymbol> ScoredResults;
Index->fuzzyFind(Req, [&](const Symbol &Sym) {
// Only consider exact name matches, including case.
// This is to avoid too many false positives.
// We could relax this in the future (e.g. to allow for typos) if we make
// the query more accurate by other means.
if (Sym.Name != Word.Text)
return;
// Exclude constructor results. They have the same name as the class,
// but we don't have enough context to prefer them over the class.
if (Sym.SymInfo.Kind == index::SymbolKind::Constructor)
return;
auto MaybeDeclLoc =
indexToLSPLocation(Sym.CanonicalDeclaration, MainFilePath);
if (!MaybeDeclLoc) {
log("locateSymbolNamedTextuallyAt: {0}", MaybeDeclLoc.takeError());
return;
}
LocatedSymbol Located;
Located.PreferredDeclaration = *MaybeDeclLoc;
Located.Name = (Sym.Name + Sym.TemplateSpecializationArgs).str();
Located.ID = Sym.ID;
if (Sym.Definition) {
auto MaybeDefLoc = indexToLSPLocation(Sym.Definition, MainFilePath);
if (!MaybeDefLoc) {
log("locateSymbolNamedTextuallyAt: {0}", MaybeDefLoc.takeError());
return;
}
Located.PreferredDeclaration = *MaybeDefLoc;
Located.Definition = *MaybeDefLoc;
}
if (ScoredResults.size() >= 5) {
// If we have more than 5 results, don't return anything,
// as confidence is too low.
// FIXME: Alternatively, try a stricter query?
TooMany = true;
return;
}
SymbolQualitySignals Quality;
Quality.merge(Sym);
SymbolRelevanceSignals Relevance;
Relevance.Name = Sym.Name;
Relevance.Query = SymbolRelevanceSignals::Generic;
Relevance.merge(Sym);
auto Score = evaluateSymbolAndRelevance(Quality.evaluateHeuristics(),
Relevance.evaluateHeuristics());
dlog("locateSymbolNamedTextuallyAt: {0}{1} = {2}\n{3}{4}\n", Sym.Scope,
Sym.Name, Score, Quality, Relevance);
ScoredResults.push_back({Score, std::move(Located)});
});
if (TooMany) {
vlog("Heuristic index lookup for {0} returned too many candidates, ignored",
Word.Text);
return {};
}
llvm::sort(ScoredResults,
[](const ScoredLocatedSymbol &A, const ScoredLocatedSymbol &B) {
return A.first > B.first;
});
std::vector<LocatedSymbol> Results;
for (auto &Res : std::move(ScoredResults))
Results.push_back(std::move(Res.second));
if (Results.empty())
vlog("No heuristic index definition for {0}", Word.Text);
else
log("Found definition heuristically in index for {0}", Word.Text);
return Results;
}
const syntax::Token *findNearbyIdentifier(const SpelledWord &Word,
const syntax::TokenBuffer &TB) {
// Don't use heuristics if this is a real identifier.
// Unlikely identifiers are OK if they were used as identifiers nearby.
if (Word.ExpandedToken)
return nullptr;
// We don't want to handle words in string literals. (It'd be nice to list
// *allowed* token kinds explicitly, but comment Tokens aren't retained).
if (Word.PartOfSpelledToken &&
isStringLiteral(Word.PartOfSpelledToken->kind()))
return {};
const SourceManager &SM = TB.sourceManager();
// We prefer the closest possible token, line-wise. Backwards is penalized.
// Ties are implicitly broken by traversal order (first-one-wins).
auto File = SM.getFileID(Word.Location);
unsigned WordLine = SM.getSpellingLineNumber(Word.Location);
auto Cost = [&](SourceLocation Loc) -> unsigned {
assert(SM.getFileID(Loc) == File && "spelled token in wrong file?");
unsigned Line = SM.getSpellingLineNumber(Loc);
return Line >= WordLine ? Line - WordLine : 2 * (WordLine - Line);
};
const syntax::Token *BestTok = nullptr;
unsigned BestCost = -1;
// Search bounds are based on word length:
// - forward: 2^N lines
// - backward: 2^(N-1) lines.
unsigned MaxDistance =
1U << std::min<unsigned>(Word.Text.size(),
std::numeric_limits<unsigned>::digits - 1);
// Line number for SM.translateLineCol() should be one-based, also
// SM.translateLineCol() can handle line number greater than
// number of lines in the file.
// - LineMin = max(1, WordLine + 1 - 2^(N-1))
// - LineMax = WordLine + 1 + 2^N
unsigned LineMin =
WordLine + 1 <= MaxDistance / 2 ? 1 : WordLine + 1 - MaxDistance / 2;
unsigned LineMax = WordLine + 1 + MaxDistance;
SourceLocation LocMin = SM.translateLineCol(File, LineMin, 1);
assert(LocMin.isValid());
SourceLocation LocMax = SM.translateLineCol(File, LineMax, 1);
assert(LocMax.isValid());
// Updates BestTok and BestCost if Tok is a good candidate.
// May return true if the cost is too high for this token.
auto Consider = [&](const syntax::Token &Tok) {
if (Tok.location() < LocMin || Tok.location() > LocMax)
return true; // we are too far from the word, break the outer loop.
if (!(Tok.kind() == tok::identifier && Tok.text(SM) == Word.Text))
return false;
// No point guessing the same location we started with.
if (Tok.location() == Word.Location)
return false;
// We've done cheap checks, compute cost so we can break the caller's loop.
unsigned TokCost = Cost(Tok.location());
if (TokCost >= BestCost)
return true; // causes the outer loop to break.
// Allow locations that might be part of the AST, and macros (even if empty)
// but not things like disabled preprocessor sections.
if (!(tokenSpelledAt(Tok.location(), TB) || TB.expansionStartingAt(&Tok)))
return false;
// We already verified this token is an improvement.
BestCost = TokCost;
BestTok = &Tok;
return false;
};
auto SpelledTokens = TB.spelledTokens(File);
// Find where the word occurred in the token stream, to search forward & back.
auto *I = llvm::partition_point(SpelledTokens, [&](const syntax::Token &T) {
assert(SM.getFileID(T.location()) == SM.getFileID(Word.Location));
return T.location() < Word.Location; // Comparison OK: same file.
});
// Search for matches after the cursor.
for (const syntax::Token &Tok : llvm::makeArrayRef(I, SpelledTokens.end()))
if (Consider(Tok))
break; // costs of later tokens are greater...
// Search for matches before the cursor.
for (const syntax::Token &Tok :
llvm::reverse(llvm::makeArrayRef(SpelledTokens.begin(), I)))
if (Consider(Tok))
break;
if (BestTok)
vlog(
"Word {0} under cursor {1} isn't a token (after PP), trying nearby {2}",
Word.Text, Word.Location.printToString(SM),
BestTok->location().printToString(SM));
return BestTok;
}
std::vector<LocatedSymbol> locateSymbolAt(ParsedAST &AST, Position Pos,
const SymbolIndex *Index) {
const auto &SM = AST.getSourceManager();
auto MainFilePath = AST.tuPath();
if (auto File = locateFileReferent(Pos, AST, MainFilePath))
return {std::move(*File)};
auto CurLoc = sourceLocationInMainFile(SM, Pos);
if (!CurLoc) {
elog("locateSymbolAt failed to convert position to source location: {0}",
CurLoc.takeError());
return {};
}
const syntax::Token *TouchedIdentifier = nullptr;
auto TokensTouchingCursor =
syntax::spelledTokensTouching(*CurLoc, AST.getTokens());
for (const syntax::Token &Tok : TokensTouchingCursor) {
if (Tok.kind() == tok::identifier) {
if (auto Macro = locateMacroReferent(Tok, AST, MainFilePath))
// Don't look at the AST or index if we have a macro result.
// (We'd just return declarations referenced from the macro's
// expansion.)
return {*std::move(Macro)};
TouchedIdentifier = &Tok;
break;
}
if (Tok.kind() == tok::kw_auto || Tok.kind() == tok::kw_decltype) {
// go-to-definition on auto should find the definition of the deduced
// type, if possible
if (auto Deduced = getDeducedType(AST.getASTContext(), Tok.location())) {
auto LocSym = locateSymbolForType(AST, *Deduced);
if (!LocSym.empty())
return LocSym;
}
}
}
ASTNodeKind NodeKind;
auto ASTResults = locateASTReferent(*CurLoc, TouchedIdentifier, AST,
MainFilePath, Index, NodeKind);
if (!ASTResults.empty())
return ASTResults;
// If the cursor can't be resolved directly, try fallback strategies.
auto Word =
SpelledWord::touching(*CurLoc, AST.getTokens(), AST.getLangOpts());
if (Word) {
// Is the same word nearby a real identifier that might refer to something?
if (const syntax::Token *NearbyIdent =
findNearbyIdentifier(*Word, AST.getTokens())) {
if (auto Macro = locateMacroReferent(*NearbyIdent, AST, MainFilePath)) {
log("Found macro definition heuristically using nearby identifier {0}",
Word->Text);
return {*std::move(Macro)};
}
ASTResults = locateASTReferent(NearbyIdent->location(), NearbyIdent, AST,
MainFilePath, Index, NodeKind);
if (!ASTResults.empty()) {
log("Found definition heuristically using nearby identifier {0}",
NearbyIdent->text(SM));
return ASTResults;
}
vlog("No definition found using nearby identifier {0} at {1}", Word->Text,
Word->Location.printToString(SM));
}
// No nearby word, or it didn't refer to anything either. Try the index.
auto TextualResults =
locateSymbolTextually(*Word, AST, Index, MainFilePath, NodeKind);
if (!TextualResults.empty())
return TextualResults;
}
return {};
}
std::vector<DocumentLink> getDocumentLinks(ParsedAST &AST) {
const auto &SM = AST.getSourceManager();
std::vector<DocumentLink> Result;
for (auto &Inc : AST.getIncludeStructure().MainFileIncludes) {
if (Inc.Resolved.empty())
continue;
auto HashLoc = SM.getComposedLoc(SM.getMainFileID(), Inc.HashOffset);
const auto *HashTok = AST.getTokens().spelledTokenAt(HashLoc);
assert(HashTok && "got inclusion at wrong offset");
const auto *IncludeTok = std::next(HashTok);
const auto *FileTok = std::next(IncludeTok);
// FileTok->range is not sufficient here, as raw lexing wouldn't yield
// correct tokens for angled filenames. Hence we explicitly use
// Inc.Written's length.
auto FileRange =
syntax::FileRange(SM, FileTok->location(), Inc.Written.length())
.toCharRange(SM);
Result.push_back(
DocumentLink({halfOpenToRange(SM, FileRange),
URIForFile::canonicalize(Inc.Resolved, AST.tuPath())}));
}
return Result;
}
namespace {
/// Collects references to symbols within the main file.
class ReferenceFinder : public index::IndexDataConsumer {
public:
struct Reference {
syntax::Token SpelledTok;
index::SymbolRoleSet Role;
SymbolID Target;
Range range(const SourceManager &SM) const {
return halfOpenToRange(SM, SpelledTok.range(SM).toCharRange(SM));
}
};
ReferenceFinder(const ParsedAST &AST,
const llvm::ArrayRef<const NamedDecl *> Targets,
bool PerToken)
: PerToken(PerToken), AST(AST) {
for (const NamedDecl *ND : Targets) {
const Decl *CD = ND->getCanonicalDecl();
TargetDeclToID[CD] = getSymbolID(CD);
}
}
std::vector<Reference> take() && {
llvm::sort(References, [](const Reference &L, const Reference &R) {
auto LTok = L.SpelledTok.location();
auto RTok = R.SpelledTok.location();
return std::tie(LTok, L.Role) < std::tie(RTok, R.Role);
});
// We sometimes see duplicates when parts of the AST get traversed twice.
References.erase(std::unique(References.begin(), References.end(),
[](const Reference &L, const Reference &R) {
auto LTok = L.SpelledTok.location();
auto RTok = R.SpelledTok.location();
return std::tie(LTok, L.Role) ==
std::tie(RTok, R.Role);
}),
References.end());
return std::move(References);
}
bool
handleDeclOccurrence(const Decl *D, index::SymbolRoleSet Roles,
llvm::ArrayRef<index::SymbolRelation> Relations,
SourceLocation Loc,
index::IndexDataConsumer::ASTNodeInfo ASTNode) override {
auto DeclID = TargetDeclToID.find(D->getCanonicalDecl());
if (DeclID == TargetDeclToID.end())
return true;
const SourceManager &SM = AST.getSourceManager();
if (!isInsideMainFile(Loc, SM))
return true;
const auto &TB = AST.getTokens();
llvm::SmallVector<SourceLocation, 1> Locs;
if (PerToken) {
// Check whether this is one of the few constructs where the reference
// can be split over several tokens.
if (auto *OME = llvm::dyn_cast_or_null<ObjCMessageExpr>(ASTNode.OrigE)) {
OME->getSelectorLocs(Locs);
} else if (auto *OMD =
llvm::dyn_cast_or_null<ObjCMethodDecl>(ASTNode.OrigD)) {
OMD->getSelectorLocs(Locs);
}
// Sanity check: we expect the *first* token to match the reported loc.
// Otherwise, maybe it was e.g. some other kind of reference to a Decl.
if (!Locs.empty() && Locs.front() != Loc)
Locs.clear(); // First token doesn't match, assume our guess was wrong.
}
if (Locs.empty())
Locs.push_back(Loc);
for (SourceLocation L : Locs) {
L = SM.getFileLoc(L);
if (const auto *Tok = TB.spelledTokenAt(L))
References.push_back({*Tok, Roles, DeclID->getSecond()});
}
return true;
}
private:
bool PerToken; // If true, report 3 references for split ObjC selector names.
std::vector<Reference> References;
const ParsedAST &AST;
llvm::DenseMap<const Decl *, SymbolID> TargetDeclToID;
};
std::vector<ReferenceFinder::Reference>
findRefs(const llvm::ArrayRef<const NamedDecl *> TargetDecls, ParsedAST &AST,
bool PerToken) {
ReferenceFinder RefFinder(AST, TargetDecls, PerToken);
index::IndexingOptions IndexOpts;
IndexOpts.SystemSymbolFilter =
index::IndexingOptions::SystemSymbolFilterKind::All;
IndexOpts.IndexFunctionLocals = true;
IndexOpts.IndexParametersInDeclarations = true;
IndexOpts.IndexTemplateParameters = true;
indexTopLevelDecls(AST.getASTContext(), AST.getPreprocessor(),
AST.getLocalTopLevelDecls(), RefFinder, IndexOpts);
return std::move(RefFinder).take();
}
const Stmt *getFunctionBody(DynTypedNode N) {
if (const auto *FD = N.get<FunctionDecl>())
return FD->getBody();
if (const auto *FD = N.get<BlockDecl>())
return FD->getBody();
if (const auto *FD = N.get<LambdaExpr>())
return FD->getBody();
if (const auto *FD = N.get<ObjCMethodDecl>())
return FD->getBody();
return nullptr;
}
const Stmt *getLoopBody(DynTypedNode N) {
if (const auto *LS = N.get<ForStmt>())
return LS->getBody();
if (const auto *LS = N.get<CXXForRangeStmt>())
return LS->getBody();
if (const auto *LS = N.get<WhileStmt>())
return LS->getBody();
if (const auto *LS = N.get<DoStmt>())
return LS->getBody();
return nullptr;
}
// AST traversal to highlight control flow statements under some root.
// Once we hit further control flow we prune the tree (or at least restrict
// what we highlight) so we capture e.g. breaks from the outer loop only.
class FindControlFlow : public RecursiveASTVisitor<FindControlFlow> {
// Types of control-flow statements we might highlight.
enum Target {
Break = 1,
Continue = 2,
Return = 4,
Case = 8,
Throw = 16,
Goto = 32,
All = Break | Continue | Return | Case | Throw | Goto,
};
int Ignore = 0; // bitmask of Target - what are we *not* highlighting?
SourceRange Bounds; // Half-open, restricts reported targets.
std::vector<SourceLocation> &Result;
const SourceManager &SM;
// Masks out targets for a traversal into D.
// Traverses the subtree using Delegate() if any targets remain.
template <typename Func>
bool filterAndTraverse(DynTypedNode D, const Func &Delegate) {
auto RestoreIgnore = llvm::make_scope_exit(
[OldIgnore(Ignore), this] { Ignore = OldIgnore; });
if (getFunctionBody(D))
Ignore = All;
else if (getLoopBody(D))
Ignore |= Continue | Break;
else if (D.get<SwitchStmt>())
Ignore |= Break | Case;
// Prune tree if we're not looking for anything.
return (Ignore == All) ? true : Delegate();
}
void found(Target T, SourceLocation Loc) {
if (T & Ignore)
return;
if (SM.isBeforeInTranslationUnit(Loc, Bounds.getBegin()) ||
SM.isBeforeInTranslationUnit(Bounds.getEnd(), Loc))
return;
Result.push_back(Loc);
}
public:
FindControlFlow(SourceRange Bounds, std::vector<SourceLocation> &Result,
const SourceManager &SM)
: Bounds(Bounds), Result(Result), SM(SM) {}
// When traversing function or loops, limit targets to those that still
// refer to the original root.
bool TraverseDecl(Decl *D) {
return !D || filterAndTraverse(DynTypedNode::create(*D), [&] {
return RecursiveASTVisitor::TraverseDecl(D);
});
}
bool TraverseStmt(Stmt *S) {
return !S || filterAndTraverse(DynTypedNode::create(*S), [&] {
return RecursiveASTVisitor::TraverseStmt(S);
});
}
// Add leaves that we found and want.
bool VisitReturnStmt(ReturnStmt *R) {
found(Return, R->getReturnLoc());
return true;
}
bool VisitBreakStmt(BreakStmt *B) {
found(Break, B->getBreakLoc());
return true;
}
bool VisitContinueStmt(ContinueStmt *C) {
found(Continue, C->getContinueLoc());
return true;
}
bool VisitSwitchCase(SwitchCase *C) {
found(Case, C->getKeywordLoc());
return true;
}
bool VisitCXXThrowExpr(CXXThrowExpr *T) {
found(Throw, T->getThrowLoc());
return true;
}
bool VisitGotoStmt(GotoStmt *G) {
// Goto is interesting if its target is outside the root.
if (const auto *LD = G->getLabel()) {
if (SM.isBeforeInTranslationUnit(LD->getLocation(), Bounds.getBegin()) ||
SM.isBeforeInTranslationUnit(Bounds.getEnd(), LD->getLocation()))
found(Goto, G->getGotoLoc());
}
return true;
}
};
// Given a location within a switch statement, return the half-open range that
// covers the case it's contained in.
// We treat `case X: case Y: ...` as one case, and assume no other fallthrough.
SourceRange findCaseBounds(const SwitchStmt &Switch, SourceLocation Loc,
const SourceManager &SM) {
// Cases are not stored in order, sort them first.
// (In fact they seem to be stored in reverse order, don't rely on this)
std::vector<const SwitchCase *> Cases;
for (const SwitchCase *Case = Switch.getSwitchCaseList(); Case;
Case = Case->getNextSwitchCase())
Cases.push_back(Case);
llvm::sort(Cases, [&](const SwitchCase *L, const SwitchCase *R) {
return SM.isBeforeInTranslationUnit(L->getKeywordLoc(), R->getKeywordLoc());
});
// Find the first case after the target location, the end of our range.
auto CaseAfter = llvm::partition_point(Cases, [&](const SwitchCase *C) {
return !SM.isBeforeInTranslationUnit(Loc, C->getKeywordLoc());
});
SourceLocation End = CaseAfter == Cases.end() ? Switch.getEndLoc()
: (*CaseAfter)->getKeywordLoc();
// Our target can be before the first case - cases are optional!
if (CaseAfter == Cases.begin())
return SourceRange(Switch.getBeginLoc(), End);
// The start of our range is usually the previous case, but...
auto CaseBefore = std::prev(CaseAfter);
// ... rewind CaseBefore to the first in a `case A: case B: ...` sequence.
while (CaseBefore != Cases.begin() &&
(*std::prev(CaseBefore))->getSubStmt() == *CaseBefore)
--CaseBefore;
return SourceRange((*CaseBefore)->getKeywordLoc(), End);
}
// Returns the locations of control flow statements related to N. e.g.:
// for => branches: break/continue/return/throw
// break => controlling loop (forwhile/do), and its related control flow
// return => all returns/throws from the same function
// When an inner block is selected, we include branches bound to outer blocks
// as these are exits from the inner block. e.g. return in a for loop.
// FIXME: We don't analyze catch blocks, throw is treated the same as return.
std::vector<SourceLocation> relatedControlFlow(const SelectionTree::Node &N) {
const SourceManager &SM =
N.getDeclContext().getParentASTContext().getSourceManager();
std::vector<SourceLocation> Result;
// First, check if we're at a node that can resolve to a root.
enum class Cur { None, Break, Continue, Return, Case, Throw } Cursor;
if (N.ASTNode.get<BreakStmt>()) {
Cursor = Cur::Break;
} else if (N.ASTNode.get<ContinueStmt>()) {
Cursor = Cur::Continue;
} else if (N.ASTNode.get<ReturnStmt>()) {
Cursor = Cur::Return;
} else if (N.ASTNode.get<CXXThrowExpr>()) {
Cursor = Cur::Throw;
} else if (N.ASTNode.get<SwitchCase>()) {
Cursor = Cur::Case;
} else if (const GotoStmt *GS = N.ASTNode.get<GotoStmt>()) {
// We don't know what root to associate with, but highlight the goto/label.
Result.push_back(GS->getGotoLoc());
if (const auto *LD = GS->getLabel())
Result.push_back(LD->getLocation());
Cursor = Cur::None;
} else {
Cursor = Cur::None;
}
const Stmt *Root = nullptr; // Loop or function body to traverse.
SourceRange Bounds;
// Look up the tree for a root (or just at this node if we didn't find a leaf)
for (const auto *P = &N; P; P = P->Parent) {
// return associates with enclosing function
if (const Stmt *FunctionBody = getFunctionBody(P->ASTNode)) {
if (Cursor == Cur::Return || Cursor == Cur::Throw) {
Root = FunctionBody;
}
break; // other leaves don't cross functions.
}
// break/continue associate with enclosing loop.
if (const Stmt *LoopBody = getLoopBody(P->ASTNode)) {
if (Cursor == Cur::None || Cursor == Cur::Break ||
Cursor == Cur::Continue) {
Root = LoopBody;
// Highlight the loop keyword itself.
// FIXME: for do-while, this only covers the `do`..
Result.push_back(P->ASTNode.getSourceRange().getBegin());
break;
}
}
// For switches, users think of case statements as control flow blocks.
// We highlight only occurrences surrounded by the same case.
// We don't detect fallthrough (other than 'case X, case Y').
if (const auto *SS = P->ASTNode.get<SwitchStmt>()) {
if (Cursor == Cur::Break || Cursor == Cur::Case) {
Result.push_back(SS->getSwitchLoc()); // Highlight the switch.
Root = SS->getBody();
// Limit to enclosing case, if there is one.
Bounds = findCaseBounds(*SS, N.ASTNode.getSourceRange().getBegin(), SM);
break;
}
}
// If we didn't start at some interesting node, we're done.
if (Cursor == Cur::None)
break;
}
if (Root) {
if (!Bounds.isValid())
Bounds = Root->getSourceRange();
FindControlFlow(Bounds, Result, SM).TraverseStmt(const_cast<Stmt *>(Root));
}
return Result;
}
DocumentHighlight toHighlight(const ReferenceFinder::Reference &Ref,
const SourceManager &SM) {
DocumentHighlight DH;
DH.range = Ref.range(SM);
if (Ref.Role & index::SymbolRoleSet(index::SymbolRole::Write))
DH.kind = DocumentHighlightKind::Write;
else if (Ref.Role & index::SymbolRoleSet(index::SymbolRole::Read))
DH.kind = DocumentHighlightKind::Read;
else
DH.kind = DocumentHighlightKind::Text;
return DH;
}
llvm::Optional<DocumentHighlight> toHighlight(SourceLocation Loc,
const syntax::TokenBuffer &TB) {
Loc = TB.sourceManager().getFileLoc(Loc);
if (const auto *Tok = TB.spelledTokenAt(Loc)) {
DocumentHighlight Result;
Result.range = halfOpenToRange(
TB.sourceManager(),
CharSourceRange::getCharRange(Tok->location(), Tok->endLocation()));
return Result;
}
return llvm::None;
}
} // namespace
std::vector<DocumentHighlight> findDocumentHighlights(ParsedAST &AST,
Position Pos) {
const SourceManager &SM = AST.getSourceManager();
// FIXME: show references to macro within file?
auto CurLoc = sourceLocationInMainFile(SM, Pos);
if (!CurLoc) {
llvm::consumeError(CurLoc.takeError());
return {};
}
std::vector<DocumentHighlight> Result;
auto TryTree = [&](SelectionTree ST) {
if (const SelectionTree::Node *N = ST.commonAncestor()) {
DeclRelationSet Relations =
DeclRelation::TemplatePattern | DeclRelation::Alias;
auto TargetDecls =
targetDecl(N->ASTNode, Relations, AST.getHeuristicResolver());
if (!TargetDecls.empty()) {
// FIXME: we may get multiple DocumentHighlights with the same location
// and different kinds, deduplicate them.
for (const auto &Ref : findRefs(TargetDecls, AST, /*PerToken=*/true))
Result.push_back(toHighlight(Ref, SM));
return true;
}
auto ControlFlow = relatedControlFlow(*N);
if (!ControlFlow.empty()) {
for (SourceLocation Loc : ControlFlow)
if (auto Highlight = toHighlight(Loc, AST.getTokens()))
Result.push_back(std::move(*Highlight));
return true;
}
}
return false;
};
unsigned Offset =
AST.getSourceManager().getDecomposedSpellingLoc(*CurLoc).second;
SelectionTree::createEach(AST.getASTContext(), AST.getTokens(), Offset,
Offset, TryTree);
return Result;
}
std::vector<LocatedSymbol> findImplementations(ParsedAST &AST, Position Pos,
const SymbolIndex *Index) {
// We rely on index to find the implementations in subclasses.
// FIXME: Index can be stale, so we may loose some latest results from the
// main file.
if (!Index)
return {};
const SourceManager &SM = AST.getSourceManager();
auto CurLoc = sourceLocationInMainFile(SM, Pos);
if (!CurLoc) {
elog("Failed to convert position to source location: {0}",
CurLoc.takeError());
return {};
}
DeclRelationSet Relations =
DeclRelation::TemplatePattern | DeclRelation::Alias;
llvm::DenseSet<SymbolID> IDs;
RelationKind QueryKind = RelationKind::OverriddenBy;
for (const NamedDecl *ND : getDeclAtPosition(AST, *CurLoc, Relations)) {
if (const auto *CXXMD = llvm::dyn_cast<CXXMethodDecl>(ND)) {
if (CXXMD->isVirtual()) {
IDs.insert(getSymbolID(ND));
QueryKind = RelationKind::OverriddenBy;
}
} else if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
IDs.insert(getSymbolID(RD));
QueryKind = RelationKind::BaseOf;
}
}
return findImplementors(std::move(IDs), QueryKind, Index, AST.tuPath());
}
namespace {
// Recursively finds all the overridden methods of `CMD` in complete type
// hierarchy.
void getOverriddenMethods(const CXXMethodDecl *CMD,
llvm::DenseSet<SymbolID> &OverriddenMethods) {
if (!CMD)
return;
for (const CXXMethodDecl *Base : CMD->overridden_methods()) {
if (auto ID = getSymbolID(Base))
OverriddenMethods.insert(ID);
getOverriddenMethods(Base, OverriddenMethods);
}
}
} // namespace
ReferencesResult findReferences(ParsedAST &AST, Position Pos, uint32_t Limit,
const SymbolIndex *Index) {
ReferencesResult Results;
const SourceManager &SM = AST.getSourceManager();
auto MainFilePath = AST.tuPath();
auto URIMainFile = URIForFile::canonicalize(MainFilePath, MainFilePath);
auto CurLoc = sourceLocationInMainFile(SM, Pos);
if (!CurLoc) {
llvm::consumeError(CurLoc.takeError());
return {};
}
llvm::DenseSet<SymbolID> IDsToQuery, OverriddenMethods;
const auto *IdentifierAtCursor =
syntax::spelledIdentifierTouching(*CurLoc, AST.getTokens());
llvm::Optional<DefinedMacro> Macro;
if (IdentifierAtCursor)
Macro = locateMacroAt(*IdentifierAtCursor, AST.getPreprocessor());
if (Macro) {
// Handle references to macro.
if (auto MacroSID = getSymbolID(Macro->Name, Macro->Info, SM)) {
// Collect macro references from main file.
const auto &IDToRefs = AST.getMacros().MacroRefs;
auto Refs = IDToRefs.find(MacroSID);
if (Refs != IDToRefs.end()) {
for (const auto &Ref : Refs->second) {
ReferencesResult::Reference Result;
Result.Loc.range = Ref.Rng;
Result.Loc.uri = URIMainFile;
if (Ref.IsDefinition) {
Result.Attributes |= ReferencesResult::Declaration;
Result.Attributes |= ReferencesResult::Definition;
}
Results.References.push_back(std::move(Result));
}
}
IDsToQuery.insert(MacroSID);
}
} else {
// Handle references to Decls.
DeclRelationSet Relations =
DeclRelation::TemplatePattern | DeclRelation::Alias;
std::vector<const NamedDecl *> Decls =
getDeclAtPosition(AST, *CurLoc, Relations);
llvm::SmallVector<const NamedDecl *> TargetsInMainFile;
for (const NamedDecl *D : Decls) {
auto ID = getSymbolID(D);
if (!ID)
continue;
TargetsInMainFile.push_back(D);
// Not all symbols can be referenced from outside (e.g. function-locals).
// TODO: we could skip TU-scoped symbols here (e.g. static functions) if
// we know this file isn't a header. The details might be tricky.
if (D->getParentFunctionOrMethod())
continue;
IDsToQuery.insert(ID);
}
RelationsRequest OverriddenBy;
if (Index) {
OverriddenBy.Predicate = RelationKind::OverriddenBy;
for (const NamedDecl *ND : Decls) {
// Special case: For virtual methods, report decl/def of overrides and
// references to all overridden methods in complete type hierarchy.
if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(ND)) {
if (CMD->isVirtual()) {
if (auto ID = getSymbolID(CMD))
OverriddenBy.Subjects.insert(ID);
getOverriddenMethods(CMD, OverriddenMethods);
}
}
}
}
// We traverse the AST to find references in the main file.
auto MainFileRefs = findRefs(TargetsInMainFile, AST, /*PerToken=*/false);
// We may get multiple refs with the same location and different Roles, as
// cross-reference is only interested in locations, we deduplicate them
// by the location to avoid emitting duplicated locations.
MainFileRefs.erase(std::unique(MainFileRefs.begin(), MainFileRefs.end(),
[](const ReferenceFinder::Reference &L,
const ReferenceFinder::Reference &R) {
return L.SpelledTok.location() ==
R.SpelledTok.location();
}),
MainFileRefs.end());
for (const auto &Ref : MainFileRefs) {
ReferencesResult::Reference Result;
Result.Loc.range = Ref.range(SM);
Result.Loc.uri = URIMainFile;
if (Ref.Role & static_cast<unsigned>(index::SymbolRole::Declaration))
Result.Attributes |= ReferencesResult::Declaration;
// clang-index doesn't report definitions as declarations, but they are.
if (Ref.Role & static_cast<unsigned>(index::SymbolRole::Definition))
Result.Attributes |=
ReferencesResult::Definition | ReferencesResult::Declaration;
Results.References.push_back(std::move(Result));
}
// Add decl/def of overridding methods.
if (Index && !OverriddenBy.Subjects.empty()) {
Index->relations(OverriddenBy, [&](const SymbolID &Subject,
const Symbol &Object) {
if (Limit && Results.References.size() >= Limit) {
Results.HasMore = true;
return;
}
const auto LSPLocDecl =
toLSPLocation(Object.CanonicalDeclaration, MainFilePath);
const auto LSPLocDef = toLSPLocation(Object.Definition, MainFilePath);
if (LSPLocDecl && LSPLocDecl != LSPLocDef) {
ReferencesResult::Reference Result;
Result.Loc = std::move(*LSPLocDecl);
Result.Attributes =
ReferencesResult::Declaration | ReferencesResult::Override;
Results.References.push_back(std::move(Result));
}
if (LSPLocDef) {
ReferencesResult::Reference Result;
Result.Loc = std::move(*LSPLocDef);
Result.Attributes = ReferencesResult::Declaration |
ReferencesResult::Definition |
ReferencesResult::Override;
Results.References.push_back(std::move(Result));
}
});
}
}
// Now query the index for references from other files.
auto QueryIndex = [&](llvm::DenseSet<SymbolID> IDs, bool AllowAttributes,
bool AllowMainFileSymbols) {
if (IDs.empty() || !Index || Results.HasMore)
return;
RefsRequest Req;
Req.IDs = std::move(IDs);
if (Limit) {
if (Limit < Results.References.size()) {
// We've already filled our quota, still check the index to correctly
// return the `HasMore` info.
Req.Limit = 0;
} else {
// Query index only for the remaining size.
Req.Limit = Limit - Results.References.size();
}
}
Results.HasMore |= Index->refs(Req, [&](const Ref &R) {
auto LSPLoc = toLSPLocation(R.Location, MainFilePath);
// Avoid indexed results for the main file - the AST is authoritative.
if (!LSPLoc ||
(!AllowMainFileSymbols && LSPLoc->uri.file() == MainFilePath))
return;
ReferencesResult::Reference Result;
Result.Loc = std::move(*LSPLoc);
if (AllowAttributes) {
if ((R.Kind & RefKind::Declaration) == RefKind::Declaration)
Result.Attributes |= ReferencesResult::Declaration;
// FIXME: our index should definitely store def | decl separately!
if ((R.Kind & RefKind::Definition) == RefKind::Definition)
Result.Attributes |=
ReferencesResult::Declaration | ReferencesResult::Definition;
}
Results.References.push_back(std::move(Result));
});
};
QueryIndex(std::move(IDsToQuery), /*AllowAttributes=*/true,
/*AllowMainFileSymbols=*/false);
// For a virtual method: Occurrences of BaseMethod should be treated as refs
// and not as decl/def. Allow symbols from main file since AST does not report
// these.
QueryIndex(std::move(OverriddenMethods), /*AllowAttributes=*/false,
/*AllowMainFileSymbols=*/true);
return Results;
}
std::vector<SymbolDetails> getSymbolInfo(ParsedAST &AST, Position Pos) {
const SourceManager &SM = AST.getSourceManager();
auto CurLoc = sourceLocationInMainFile(SM, Pos);
if (!CurLoc) {
llvm::consumeError(CurLoc.takeError());
return {};
}
auto MainFilePath = AST.tuPath();
std::vector<SymbolDetails> Results;
// We also want the targets of using-decls, so we include
// DeclRelation::Underlying.
DeclRelationSet Relations = DeclRelation::TemplatePattern |
DeclRelation::Alias | DeclRelation::Underlying;
for (const NamedDecl *D : getDeclAtPosition(AST, *CurLoc, Relations)) {
D = getPreferredDecl(D);
SymbolDetails NewSymbol;
std::string QName = printQualifiedName(*D);
auto SplitQName = splitQualifiedName(QName);
NewSymbol.containerName = std::string(SplitQName.first);
NewSymbol.name = std::string(SplitQName.second);
if (NewSymbol.containerName.empty()) {
if (const auto *ParentND =
dyn_cast_or_null<NamedDecl>(D->getDeclContext()))
NewSymbol.containerName = printQualifiedName(*ParentND);
}
llvm::SmallString<32> USR;
if (!index::generateUSRForDecl(D, USR)) {
NewSymbol.USR = std::string(USR.str());
NewSymbol.ID = SymbolID(NewSymbol.USR);
}
if (const NamedDecl *Def = getDefinition(D))
NewSymbol.definitionRange = makeLocation(
AST.getASTContext(), nameLocation(*Def, SM), MainFilePath);
NewSymbol.declarationRange =
makeLocation(AST.getASTContext(), nameLocation(*D, SM), MainFilePath);
Results.push_back(std::move(NewSymbol));
}
const auto *IdentifierAtCursor =
syntax::spelledIdentifierTouching(*CurLoc, AST.getTokens());
if (!IdentifierAtCursor)
return Results;
if (auto M = locateMacroAt(*IdentifierAtCursor, AST.getPreprocessor())) {
SymbolDetails NewMacro;
NewMacro.name = std::string(M->Name);
llvm::SmallString<32> USR;
if (!index::generateUSRForMacro(NewMacro.name, M->Info->getDefinitionLoc(),
SM, USR)) {
NewMacro.USR = std::string(USR.str());
NewMacro.ID = SymbolID(NewMacro.USR);
}
Results.push_back(std::move(NewMacro));
}
return Results;
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const LocatedSymbol &S) {
OS << S.Name << ": " << S.PreferredDeclaration;
if (S.Definition)
OS << " def=" << *S.Definition;
return OS;
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
const ReferencesResult::Reference &R) {
OS << R.Loc;
if (R.Attributes & ReferencesResult::Declaration)
OS << " [decl]";
if (R.Attributes & ReferencesResult::Definition)
OS << " [def]";
if (R.Attributes & ReferencesResult::Override)
OS << " [override]";
return OS;
}
template <typename HierarchyItem>
static llvm::Optional<HierarchyItem>
declToHierarchyItem(const NamedDecl &ND, llvm::StringRef TUPath) {
ASTContext &Ctx = ND.getASTContext();
auto &SM = Ctx.getSourceManager();
SourceLocation NameLoc = nameLocation(ND, Ctx.getSourceManager());
SourceLocation BeginLoc = SM.getSpellingLoc(SM.getFileLoc(ND.getBeginLoc()));
SourceLocation EndLoc = SM.getSpellingLoc(SM.getFileLoc(ND.getEndLoc()));
const auto DeclRange =
toHalfOpenFileRange(SM, Ctx.getLangOpts(), {BeginLoc, EndLoc});
if (!DeclRange)
return llvm::None;
auto FilePath =
getCanonicalPath(SM.getFileEntryForID(SM.getFileID(NameLoc)), SM);
if (!FilePath)
return llvm::None; // Not useful without a uri.
Position NameBegin = sourceLocToPosition(SM, NameLoc);
Position NameEnd = sourceLocToPosition(
SM, Lexer::getLocForEndOfToken(NameLoc, 0, SM, Ctx.getLangOpts()));
index::SymbolInfo SymInfo = index::getSymbolInfo(&ND);
// FIXME: This is not classifying constructors, destructors and operators
// correctly.
SymbolKind SK = indexSymbolKindToSymbolKind(SymInfo.Kind);
HierarchyItem HI;
HI.name = printName(Ctx, ND);
HI.kind = SK;
HI.range = Range{sourceLocToPosition(SM, DeclRange->getBegin()),
sourceLocToPosition(SM, DeclRange->getEnd())};
HI.selectionRange = Range{NameBegin, NameEnd};
if (!HI.range.contains(HI.selectionRange)) {
// 'selectionRange' must be contained in 'range', so in cases where clang
// reports unrelated ranges we need to reconcile somehow.
HI.range = HI.selectionRange;
}
HI.uri = URIForFile::canonicalize(*FilePath, TUPath);
return HI;
}
static llvm::Optional<TypeHierarchyItem>
declToTypeHierarchyItem(const NamedDecl &ND, llvm::StringRef TUPath) {
auto Result = declToHierarchyItem<TypeHierarchyItem>(ND, TUPath);
if (Result) {
Result->deprecated = ND.isDeprecated();
// Compute the SymbolID and store it in the 'data' field.
// This allows typeHierarchy/resolve to be used to
// resolve children of items returned in a previous request
// for parents.
Result->data.symbolID = getSymbolID(&ND);
}
return Result;
}
static llvm::Optional<CallHierarchyItem>
declToCallHierarchyItem(const NamedDecl &ND, llvm::StringRef TUPath) {
auto Result = declToHierarchyItem<CallHierarchyItem>(ND, TUPath);
if (!Result)
return Result;
if (ND.isDeprecated())
Result->tags.push_back(SymbolTag::Deprecated);
if (auto ID = getSymbolID(&ND))
Result->data = ID.str();
return Result;
}
template <typename HierarchyItem>
static llvm::Optional<HierarchyItem> symbolToHierarchyItem(const Symbol &S,
PathRef TUPath) {
auto Loc = symbolToLocation(S, TUPath);
if (!Loc) {
elog("Failed to convert symbol to hierarchy item: {0}", Loc.takeError());
return llvm::None;
}
HierarchyItem HI;
HI.name = std::string(S.Name);
HI.kind = indexSymbolKindToSymbolKind(S.SymInfo.Kind);
HI.selectionRange = Loc->range;
// FIXME: Populate 'range' correctly
// (https://github.com/clangd/clangd/issues/59).
HI.range = HI.selectionRange;
HI.uri = Loc->uri;
return HI;
}
static llvm::Optional<TypeHierarchyItem>
symbolToTypeHierarchyItem(const Symbol &S, PathRef TUPath) {
auto Result = symbolToHierarchyItem<TypeHierarchyItem>(S, TUPath);
if (Result) {
Result->deprecated = (S.Flags & Symbol::Deprecated);
Result->data.symbolID = S.ID;
}
return Result;
}
static llvm::Optional<CallHierarchyItem>
symbolToCallHierarchyItem(const Symbol &S, PathRef TUPath) {
auto Result = symbolToHierarchyItem<CallHierarchyItem>(S, TUPath);
if (!Result)
return Result;
Result->data = S.ID.str();
if (S.Flags & Symbol::Deprecated)
Result->tags.push_back(SymbolTag::Deprecated);
return Result;
}
static void fillSubTypes(const SymbolID &ID,
std::vector<TypeHierarchyItem> &SubTypes,
const SymbolIndex *Index, int Levels, PathRef TUPath) {
RelationsRequest Req;
Req.Subjects.insert(ID);
Req.Predicate = RelationKind::BaseOf;
Index->relations(Req, [&](const SymbolID &Subject, const Symbol &Object) {
if (Optional<TypeHierarchyItem> ChildSym =
symbolToTypeHierarchyItem(Object, TUPath)) {
if (Levels > 1) {
ChildSym->children.emplace();
fillSubTypes(Object.ID, *ChildSym->children, Index, Levels - 1, TUPath);
}
SubTypes.emplace_back(std::move(*ChildSym));
}
});
}
using RecursionProtectionSet = llvm::SmallSet<const CXXRecordDecl *, 4>;
// Extracts parents from AST and populates the type hierarchy item.
static void fillSuperTypes(const CXXRecordDecl &CXXRD, llvm::StringRef TUPath,
TypeHierarchyItem &Item,
RecursionProtectionSet &RPSet) {
Item.parents.emplace();
Item.data.parents.emplace();
// typeParents() will replace dependent template specializations
// with their class template, so to avoid infinite recursion for
// certain types of hierarchies, keep the templates encountered
// along the parent chain in a set, and stop the recursion if one
// starts to repeat.
auto *Pattern = CXXRD.getDescribedTemplate() ? &CXXRD : nullptr;
if (Pattern) {
if (!RPSet.insert(Pattern).second) {
return;
}
}
for (const CXXRecordDecl *ParentDecl : typeParents(&CXXRD)) {
if (Optional<TypeHierarchyItem> ParentSym =
declToTypeHierarchyItem(*ParentDecl, TUPath)) {
fillSuperTypes(*ParentDecl, TUPath, *ParentSym, RPSet);
Item.data.parents->emplace_back(ParentSym->data);
Item.parents->emplace_back(std::move(*ParentSym));
}
}
if (Pattern) {
RPSet.erase(Pattern);
}
}
std::vector<const CXXRecordDecl *> findRecordTypeAt(ParsedAST &AST,
Position Pos) {
auto RecordFromNode = [&AST](const SelectionTree::Node *N) {
std::vector<const CXXRecordDecl *> Records;
if (!N)
return Records;
// Note: explicitReferenceTargets() will search for both template
// instantiations and template patterns, and prefer the former if available
// (generally, one will be available for non-dependent specializations of a
// class template).
auto Decls = explicitReferenceTargets(N->ASTNode, DeclRelation::Underlying,
AST.getHeuristicResolver());
for (const NamedDecl *D : Decls) {
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
// If this is a variable, use the type of the variable.
Records.push_back(VD->getType().getTypePtr()->getAsCXXRecordDecl());
continue;
}
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
// If this is a method, use the type of the class.
Records.push_back(Method->getParent());
continue;
}
// We don't handle FieldDecl because it's not clear what behaviour
// the user would expect: the enclosing class type (as with a
// method), or the field's type (as with a variable).
if (auto *RD = dyn_cast<CXXRecordDecl>(D))
Records.push_back(RD);
}
return Records;
};
const SourceManager &SM = AST.getSourceManager();
std::vector<const CXXRecordDecl *> Result;
auto Offset = positionToOffset(SM.getBufferData(SM.getMainFileID()), Pos);
if (!Offset) {
llvm::consumeError(Offset.takeError());
return Result;
}
SelectionTree::createEach(AST.getASTContext(), AST.getTokens(), *Offset,
*Offset, [&](SelectionTree ST) {
Result = RecordFromNode(ST.commonAncestor());
return !Result.empty();
});
return Result;
}
// Return the type most associated with an AST node.
// This isn't precisely defined: we want "go to type" to do something useful.
static QualType typeForNode(const SelectionTree::Node *N) {
// If we're looking at a namespace qualifier, walk up to what it's qualifying.
// (If we're pointing at a *class* inside a NNS, N will be a TypeLoc).
while (N && N->ASTNode.get<NestedNameSpecifierLoc>())
N = N->Parent;
if (!N)
return QualType();
// If we're pointing at a type => return it.
if (const TypeLoc *TL = N->ASTNode.get<TypeLoc>()) {
if (llvm::isa<DeducedType>(TL->getTypePtr()))
if (auto Deduced = getDeducedType(
N->getDeclContext().getParentASTContext(), TL->getBeginLoc()))
return *Deduced;
// Exception: an alias => underlying type.
if (llvm::isa<TypedefType>(TL->getTypePtr()))
return TL->getTypePtr()->getLocallyUnqualifiedSingleStepDesugaredType();
return TL->getType();
}
// Constructor initializers => the type of thing being initialized.
if (const auto *CCI = N->ASTNode.get<CXXCtorInitializer>()) {
if (const FieldDecl *FD = CCI->getAnyMember())
return FD->getType();
if (const Type *Base = CCI->getBaseClass())
return QualType(Base, 0);
}
// Base specifier => the base type.
if (const auto *CBS = N->ASTNode.get<CXXBaseSpecifier>())
return CBS->getType();
if (const Decl *D = N->ASTNode.get<Decl>()) {
struct Visitor : ConstDeclVisitor<Visitor, QualType> {
QualType VisitValueDecl(const ValueDecl *D) { return D->getType(); }
// Declaration of a type => that type.
QualType VisitTypeDecl(const TypeDecl *D) {
return QualType(D->getTypeForDecl(), 0);
}
// Exception: alias declaration => the underlying type, not the alias.
QualType VisitTypedefNameDecl(const TypedefNameDecl *D) {
return D->getUnderlyingType();
}
// Look inside templates.
QualType VisitTemplateDecl(const TemplateDecl *D) {
return Visit(D->getTemplatedDecl());
}
} V;
return V.Visit(D);
}
if (const Stmt *S = N->ASTNode.get<Stmt>()) {
struct Visitor : ConstStmtVisitor<Visitor, QualType> {
// Null-safe version of visit simplifies recursive calls below.
QualType type(const Stmt *S) { return S ? Visit(S) : QualType(); }
// In general, expressions => type of expression.
QualType VisitExpr(const Expr *S) {
return S->IgnoreImplicitAsWritten()->getType();
}
// Exceptions for void expressions that operate on a type in some way.
QualType VisitCXXDeleteExpr(const CXXDeleteExpr *S) {
return S->getDestroyedType();
}
QualType VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *S) {
return S->getDestroyedType();
}
QualType VisitCXXThrowExpr(const CXXThrowExpr *S) {
return S->getSubExpr()->getType();
}
QualType VisitCoyieldExpr(const CoyieldExpr *S) {
return type(S->getOperand());
}
// Treat a designated initializer like a reference to the field.
QualType VisitDesignatedInitExpr(const DesignatedInitExpr *S) {
// In .foo.bar we want to jump to bar's type, so find *last* field.
for (auto &D : llvm::reverse(S->designators()))
if (D.isFieldDesignator())
if (const auto *FD = D.getField())
return FD->getType();
return QualType();
}
// Control flow statements that operate on data: use the data type.
QualType VisitSwitchStmt(const SwitchStmt *S) {
return type(S->getCond());
}
QualType VisitWhileStmt(const WhileStmt *S) { return type(S->getCond()); }
QualType VisitDoStmt(const DoStmt *S) { return type(S->getCond()); }
QualType VisitIfStmt(const IfStmt *S) { return type(S->getCond()); }
QualType VisitCaseStmt(const CaseStmt *S) { return type(S->getLHS()); }
QualType VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
return S->getLoopVariable()->getType();
}
QualType VisitReturnStmt(const ReturnStmt *S) {
return type(S->getRetValue());
}
QualType VisitCoreturnStmt(const CoreturnStmt *S) {
return type(S->getOperand());
}
QualType VisitCXXCatchStmt(const CXXCatchStmt *S) {
return S->getCaughtType();
}
QualType VisitObjCAtThrowStmt(const ObjCAtThrowStmt *S) {
return type(S->getThrowExpr());
}
QualType VisitObjCAtCatchStmt(const ObjCAtCatchStmt *S) {
return S->getCatchParamDecl() ? S->getCatchParamDecl()->getType()
: QualType();
}
} V;
return V.Visit(S);
}
return QualType();
}
// Given a type targeted by the cursor, return one or more types that are more interesting
// to target.
static void unwrapFindType(
QualType T, const HeuristicResolver* H, llvm::SmallVector<QualType>& Out) {
if (T.isNull())
return;
// If there's a specific type alias, point at that rather than unwrapping.
if (const auto* TDT = T->getAs<TypedefType>())
return Out.push_back(QualType(TDT, 0));
// Pointers etc => pointee type.
if (const auto *PT = T->getAs<PointerType>())
return unwrapFindType(PT->getPointeeType(), H, Out);
if (const auto *RT = T->getAs<ReferenceType>())
return unwrapFindType(RT->getPointeeType(), H, Out);
if (const auto *AT = T->getAsArrayTypeUnsafe())
return unwrapFindType(AT->getElementType(), H, Out);
// Function type => return type.
if (auto *FT = T->getAs<FunctionType>())
return unwrapFindType(FT->getReturnType(), H, Out);
if (auto *CRD = T->getAsCXXRecordDecl()) {
if (CRD->isLambda())
return unwrapFindType(CRD->getLambdaCallOperator()->getReturnType(), H, Out);
// FIXME: more cases we'd prefer the return type of the call operator?
// std::function etc?
}
// For smart pointer types, add the underlying type
if (H)
if (const auto* PointeeType = H->getPointeeType(T.getNonReferenceType().getTypePtr())) {
unwrapFindType(QualType(PointeeType, 0), H, Out);
return Out.push_back(T);
}
return Out.push_back(T);
}
// Convenience overload, to allow calling this without the out-parameter
static llvm::SmallVector<QualType> unwrapFindType(
QualType T, const HeuristicResolver* H) {
llvm::SmallVector<QualType> Result;
unwrapFindType(T, H, Result);
return Result;
}
std::vector<LocatedSymbol> findType(ParsedAST &AST, Position Pos) {
const SourceManager &SM = AST.getSourceManager();
auto Offset = positionToOffset(SM.getBufferData(SM.getMainFileID()), Pos);
std::vector<LocatedSymbol> Result;
if (!Offset) {
elog("failed to convert position {0} for findTypes: {1}", Pos,
Offset.takeError());
return Result;
}
// The general scheme is: position -> AST node -> type -> declaration.
auto SymbolsFromNode =
[&AST](const SelectionTree::Node *N) -> std::vector<LocatedSymbol> {
std::vector<LocatedSymbol> LocatedSymbols;
// NOTE: unwrapFindType might return duplicates for something like
// unique_ptr<unique_ptr<T>>. Let's *not* remove them, because it gives you some
// information about the type you may have not known before
// (since unique_ptr<unique_ptr<T>> != unique_ptr<T>).
for (const QualType& Type : unwrapFindType(typeForNode(N), AST.getHeuristicResolver()))
llvm::copy(locateSymbolForType(AST, Type), std::back_inserter(LocatedSymbols));
return LocatedSymbols;
};
SelectionTree::createEach(AST.getASTContext(), AST.getTokens(), *Offset,
*Offset, [&](SelectionTree ST) {
Result = SymbolsFromNode(ST.commonAncestor());
return !Result.empty();
});
return Result;
}
std::vector<const CXXRecordDecl *> typeParents(const CXXRecordDecl *CXXRD) {
std::vector<const CXXRecordDecl *> Result;
// If this is an invalid instantiation, instantiation of the bases
// may not have succeeded, so fall back to the template pattern.
if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CXXRD)) {
if (CTSD->isInvalidDecl())
CXXRD = CTSD->getSpecializedTemplate()->getTemplatedDecl();
}
// Can't query bases without a definition.
if (!CXXRD->hasDefinition())
return Result;
for (auto Base : CXXRD->bases()) {
const CXXRecordDecl *ParentDecl = nullptr;
const Type *Type = Base.getType().getTypePtr();
if (const RecordType *RT = Type->getAs<RecordType>()) {
ParentDecl = RT->getAsCXXRecordDecl();
}
if (!ParentDecl) {
// Handle a dependent base such as "Base<T>" by using the primary
// template.
if (const TemplateSpecializationType *TS =
Type->getAs<TemplateSpecializationType>()) {
TemplateName TN = TS->getTemplateName();
if (TemplateDecl *TD = TN.getAsTemplateDecl()) {
ParentDecl = dyn_cast<CXXRecordDecl>(TD->getTemplatedDecl());
}
}
}
if (ParentDecl)
Result.push_back(ParentDecl);
}
return Result;
}
std::vector<TypeHierarchyItem>
getTypeHierarchy(ParsedAST &AST, Position Pos, int ResolveLevels,
TypeHierarchyDirection Direction, const SymbolIndex *Index,
PathRef TUPath) {
std::vector<TypeHierarchyItem> Results;
for (const auto *CXXRD : findRecordTypeAt(AST, Pos)) {
bool WantChildren = Direction == TypeHierarchyDirection::Children ||
Direction == TypeHierarchyDirection::Both;
// If we're looking for children, we're doing the lookup in the index.
// The index does not store relationships between implicit
// specializations, so if we have one, use the template pattern instead.
// Note that this needs to be done before the declToTypeHierarchyItem(),
// otherwise the type hierarchy item would misleadingly contain the
// specialization parameters, while the children would involve classes
// that derive from other specializations of the template.
if (WantChildren) {
if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CXXRD))
CXXRD = CTSD->getTemplateInstantiationPattern();
}
Optional<TypeHierarchyItem> Result =
declToTypeHierarchyItem(*CXXRD, AST.tuPath());
if (!Result)
continue;
RecursionProtectionSet RPSet;
fillSuperTypes(*CXXRD, AST.tuPath(), *Result, RPSet);
if (WantChildren && ResolveLevels > 0) {
Result->children.emplace();
if (Index) {
if (auto ID = getSymbolID(CXXRD))
fillSubTypes(ID, *Result->children, Index, ResolveLevels, TUPath);
}
}
Results.emplace_back(std::move(*Result));
}
return Results;
}
llvm::Optional<std::vector<TypeHierarchyItem>>
superTypes(const TypeHierarchyItem &Item, const SymbolIndex *Index) {
std::vector<TypeHierarchyItem> Results;
if (!Item.data.parents)
return llvm::None;
if (Item.data.parents->empty())
return Results;
LookupRequest Req;
llvm::DenseMap<SymbolID, const TypeHierarchyItem::ResolveParams *> IDToData;
for (const auto &Parent : *Item.data.parents) {
Req.IDs.insert(Parent.symbolID);
IDToData[Parent.symbolID] = &Parent;
}
Index->lookup(Req, [&Item, &Results, &IDToData](const Symbol &S) {
if (auto THI = symbolToTypeHierarchyItem(S, Item.uri.file())) {
THI->data = *IDToData.lookup(S.ID);
Results.emplace_back(std::move(*THI));
}
});
return Results;
}
std::vector<TypeHierarchyItem> subTypes(const TypeHierarchyItem &Item,
const SymbolIndex *Index) {
std::vector<TypeHierarchyItem> Results;
fillSubTypes(Item.data.symbolID, Results, Index, 1, Item.uri.file());
for (auto &ChildSym : Results)
ChildSym.data.parents = {Item.data};
return Results;
}
void resolveTypeHierarchy(TypeHierarchyItem &Item, int ResolveLevels,
TypeHierarchyDirection Direction,
const SymbolIndex *Index) {
// We only support typeHierarchy/resolve for children, because for parents
// we ignore ResolveLevels and return all levels of parents eagerly.
if (!Index || Direction == TypeHierarchyDirection::Parents ||
ResolveLevels == 0)
return;
Item.children.emplace();
fillSubTypes(Item.data.symbolID, *Item.children, Index, ResolveLevels,
Item.uri.file());
}
std::vector<CallHierarchyItem>
prepareCallHierarchy(ParsedAST &AST, Position Pos, PathRef TUPath) {
std::vector<CallHierarchyItem> Result;
const auto &SM = AST.getSourceManager();
auto Loc = sourceLocationInMainFile(SM, Pos);
if (!Loc) {
elog("prepareCallHierarchy failed to convert position to source location: "
"{0}",
Loc.takeError());
return Result;
}
for (const NamedDecl *Decl : getDeclAtPosition(AST, *Loc, {})) {
if (!(isa<DeclContext>(Decl) &&
cast<DeclContext>(Decl)->isFunctionOrMethod()) &&
Decl->getKind() != Decl::Kind::FunctionTemplate)
continue;
if (auto CHI = declToCallHierarchyItem(*Decl, AST.tuPath()))
Result.emplace_back(std::move(*CHI));
}
return Result;
}
std::vector<CallHierarchyIncomingCall>
incomingCalls(const CallHierarchyItem &Item, const SymbolIndex *Index) {
std::vector<CallHierarchyIncomingCall> Results;
if (!Index || Item.data.empty())
return Results;
auto ID = SymbolID::fromStr(Item.data);
if (!ID) {
elog("incomingCalls failed to find symbol: {0}", ID.takeError());
return Results;
}
// In this function, we find incoming calls based on the index only.
// In principle, the AST could have more up-to-date information about
// occurrences within the current file. However, going from a SymbolID
// to an AST node isn't cheap, particularly when the declaration isn't
// in the main file.
// FIXME: Consider also using AST information when feasible.
RefsRequest Request;
Request.IDs.insert(*ID);
Request.WantContainer = true;
// We could restrict more specifically to calls by introducing a new RefKind,
// but non-call references (such as address-of-function) can still be
// interesting as they can indicate indirect calls.
Request.Filter = RefKind::Reference;
// Initially store the ranges in a map keyed by SymbolID of the caller.
// This allows us to group different calls with the same caller
// into the same CallHierarchyIncomingCall.
llvm::DenseMap<SymbolID, std::vector<Range>> CallsIn;
// We can populate the ranges based on a refs request only. As we do so, we
// also accumulate the container IDs into a lookup request.
LookupRequest ContainerLookup;
Index->refs(Request, [&](const Ref &R) {
auto Loc = indexToLSPLocation(R.Location, Item.uri.file());
if (!Loc) {
elog("incomingCalls failed to convert location: {0}", Loc.takeError());
return;
}
auto It = CallsIn.try_emplace(R.Container, std::vector<Range>{}).first;
It->second.push_back(Loc->range);
ContainerLookup.IDs.insert(R.Container);
});
// Perform the lookup request and combine its results with CallsIn to
// get complete CallHierarchyIncomingCall objects.
Index->lookup(ContainerLookup, [&](const Symbol &Caller) {
auto It = CallsIn.find(Caller.ID);
assert(It != CallsIn.end());
if (auto CHI = symbolToCallHierarchyItem(Caller, Item.uri.file()))
Results.push_back(
CallHierarchyIncomingCall{std::move(*CHI), std::move(It->second)});
});
// Sort results by name of container.
llvm::sort(Results, [](const CallHierarchyIncomingCall &A,
const CallHierarchyIncomingCall &B) {
return A.from.name < B.from.name;
});
return Results;
}
llvm::DenseSet<const Decl *> getNonLocalDeclRefs(ParsedAST &AST,
const FunctionDecl *FD) {
if (!FD->hasBody())
return {};
llvm::DenseSet<const Decl *> DeclRefs;
findExplicitReferences(
FD,
[&](ReferenceLoc Ref) {
for (const Decl *D : Ref.Targets) {
if (!index::isFunctionLocalSymbol(D) && !D->isTemplateParameter() &&
!Ref.IsDecl)
DeclRefs.insert(D);
}
},
AST.getHeuristicResolver());
return DeclRefs;
}
} // namespace clangd
} // namespace clang