llvm-project/mlir/lib/Dialect/SDBM/SDBM.cpp

552 lines
22 KiB
C++

//===- SDBM.cpp - MLIR SDBM implementation --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A striped difference-bound matrix (SDBM) is a set in Z^N (or R^N) defined
// as {(x_1, ... x_n) | f(x_1, ... x_n) >= 0} where f is an SDBM expression.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SDBM/SDBM.h"
#include "mlir/Dialect/SDBM/SDBMExpr.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
// Helper function for SDBM construction that collects information necessary to
// start building an SDBM in one sweep. In particular, it records the largest
// position of a dimension in `dim`, that of a symbol in `symbol` as well as
// collects all unique stripe expressions in `stripes`. Uses SetVector to
// ensure these expressions always have the same order.
static void collectSDBMBuildInfo(SDBMExpr expr, int &dim, int &symbol,
llvm::SmallSetVector<SDBMExpr, 8> &stripes) {
struct Visitor : public SDBMVisitor<Visitor> {
void visitDim(SDBMDimExpr dimExpr) {
int p = dimExpr.getPosition();
if (p > maxDimPosition)
maxDimPosition = p;
}
void visitSymbol(SDBMSymbolExpr symbExpr) {
int p = symbExpr.getPosition();
if (p > maxSymbPosition)
maxSymbPosition = p;
}
void visitStripe(SDBMStripeExpr stripeExpr) { stripes.insert(stripeExpr); }
Visitor(llvm::SmallSetVector<SDBMExpr, 8> &stripes) : stripes(stripes) {}
int maxDimPosition = -1;
int maxSymbPosition = -1;
llvm::SmallSetVector<SDBMExpr, 8> &stripes;
};
Visitor visitor(stripes);
visitor.walkPostorder(expr);
dim = std::max(dim, visitor.maxDimPosition);
symbol = std::max(symbol, visitor.maxSymbPosition);
}
namespace {
// Utility class for SDBMBuilder. Represents a value that can be inserted in
// the SDB matrix that corresponds to "v0 - v1 + C <= 0", where v0 and v1 is
// any combination of the positive and negative positions. Since multiple
// variables can be declared equal to the same stripe expression, the
// constraints on this expression must be reflected to all these variables. For
// example, if
// d0 = s0 # 42
// d1 = s0 # 42
// d2 = s1 # 2
// d3 = s1 # 2
// the constraint
// s0 # 42 - s1 # 2 <= C
// should be reflected in the DB matrix as
// d0 - d2 <= C
// d1 - d2 <= C
// d0 - d3 <= C
// d1 - d3 <= C
// since the DB matrix has no knowledge of the transitive equality between d0,
// d1 and s0 # 42 as well as between d2, d3 and s1 # 2. This knowledge can be
// obtained by computing a transitive closure, which is impossible until the
// DBM is actually built.
struct SDBMBuilderResult {
// Positions in the matrix of the variables taken with the "+" sign in the
// difference expression, 0 if it is a constant rather than a variable.
SmallVector<unsigned, 2> positivePos;
// Positions in the matrix of the variables taken with the "-" sign in the
// difference expression, 0 if it is a constant rather than a variable.
SmallVector<unsigned, 2> negativePos;
// Constant value in the difference expression.
int64_t value = 0;
};
// Visitor for building an SDBM from SDBM expressions. After traversing an SDBM
// expression, produces an update to the SDB matrix specifying the positions in
// the matrix and the negated value that should be stored. Both the positive
// and the negative positions may be lists of indices in cases where multiple
// variables are equal to the same stripe expression. In such cases, the update
// applies to the cross product of positions because elements involved in the
// update are (transitively) equal and should have the same constraints, but we
// may not have an explicit equality for them.
struct SDBMBuilder : public SDBMVisitor<SDBMBuilder, SDBMBuilderResult> {
public:
// A difference expression produces both the positive and the negative
// coordinate in the matrix, recursively traversing the LHS and the RHS. The
// value is the difference between values obtained from LHS and RHS.
SDBMBuilderResult visitDiff(SDBMDiffExpr diffExpr) {
auto lhs = visit(diffExpr.getLHS());
auto rhs = visit(diffExpr.getRHS());
assert(lhs.negativePos.size() == 1 && lhs.negativePos[0] == 0 &&
"unexpected negative expression in a difference expression");
assert(rhs.negativePos.size() == 1 && lhs.negativePos[0] == 0 &&
"unexpected negative expression in a difference expression");
SDBMBuilderResult result;
result.positivePos = lhs.positivePos;
result.negativePos = rhs.positivePos;
result.value = lhs.value - rhs.value;
return result;
}
// An input expression is always taken with the "+" sign and therefore
// produces a positive coordinate keeping the negative coordinate zero for an
// eventual constant.
SDBMBuilderResult visitInput(SDBMInputExpr expr) {
SDBMBuilderResult r;
r.positivePos.push_back(linearPosition(expr));
r.negativePos.push_back(0);
return r;
}
// A stripe expression is always equal to one or more variables, which may be
// temporaries, and appears with a "+" sign in the SDBM expression tree. Take
// the positions of the corresponding variables as positive coordinates.
SDBMBuilderResult visitStripe(SDBMStripeExpr expr) {
SDBMBuilderResult r;
assert(pointExprToStripe.count(expr));
r.positivePos = pointExprToStripe[expr];
r.negativePos.push_back(0);
return r;
}
// A constant expression has both coordinates at zero.
SDBMBuilderResult visitConstant(SDBMConstantExpr expr) {
SDBMBuilderResult r;
r.positivePos.push_back(0);
r.negativePos.push_back(0);
r.value = expr.getValue();
return r;
}
// A negation expression swaps the positive and the negative coordinates
// and also negates the constant value.
SDBMBuilderResult visitNeg(SDBMNegExpr expr) {
SDBMBuilderResult result = visit(expr.getVar());
std::swap(result.positivePos, result.negativePos);
result.value = -result.value;
return result;
}
// The RHS of a sum expression must be a constant and therefore must have both
// positive and negative coordinates at zero. Take the sum of the values
// between LHS and RHS and keep LHS coordinates.
SDBMBuilderResult visitSum(SDBMSumExpr expr) {
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
for (auto pos : rhs.negativePos) {
(void)pos;
assert(pos == 0 && "unexpected variable on the RHS of SDBM sum");
}
for (auto pos : rhs.positivePos) {
(void)pos;
assert(pos == 0 && "unexpected variable on the RHS of SDBM sum");
}
lhs.value += rhs.value;
return lhs;
}
SDBMBuilder(DenseMap<SDBMExpr, SmallVector<unsigned, 2>> &pointExprToStripe,
function_ref<unsigned(SDBMInputExpr)> callback)
: pointExprToStripe(pointExprToStripe), linearPosition(callback) {}
DenseMap<SDBMExpr, SmallVector<unsigned, 2>> &pointExprToStripe;
function_ref<unsigned(SDBMInputExpr)> linearPosition;
};
} // namespace
SDBM SDBM::get(ArrayRef<SDBMExpr> inequalities, ArrayRef<SDBMExpr> equalities) {
SDBM result;
// TODO: consider detecting equalities in the list of inequalities.
// This is potentially expensive and requires to
// - create a list of negated inequalities (may allocate under lock);
// - perform a pairwise comparison of direct and negated inequalities;
// - copy the lists of equalities and inequalities, and move entries between
// them;
// only for the purpose of sparing a temporary variable in cases where an
// implicit equality between a variable and a stripe expression is present in
// the input.
// Do the first sweep over (in)equalities to collect the information necessary
// to allocate the SDB matrix (number of dimensions, symbol and temporary
// variables required for stripe expressions).
llvm::SmallSetVector<SDBMExpr, 8> stripes;
int maxDim = -1;
int maxSymbol = -1;
for (auto expr : inequalities)
collectSDBMBuildInfo(expr, maxDim, maxSymbol, stripes);
for (auto expr : equalities)
collectSDBMBuildInfo(expr, maxDim, maxSymbol, stripes);
// Indexing of dimensions starts with 0, obtain the number of dimensions by
// incrementing the maximal position of the dimension seen in expressions.
result.numDims = maxDim + 1;
result.numSymbols = maxSymbol + 1;
result.numTemporaries = 0;
// Helper function that returns the position of the variable represented by
// an SDBM input expression.
auto linearPosition = [result](SDBMInputExpr expr) {
if (expr.isa<SDBMDimExpr>())
return result.getDimPosition(expr.getPosition());
return result.getSymbolPosition(expr.getPosition());
};
// Check if some stripe expressions are equal to another variable. In
// particular, look for the equalities of the form
// d0 - stripe-expression = 0, or
// stripe-expression - d0 = 0.
// There may be multiple variables that are equal to the same stripe
// expression. Keep track of those in pointExprToStripe.
// There may also be multiple stripe expressions equal to the same variable.
// Introduce a temporary variable for each of those.
DenseMap<SDBMExpr, SmallVector<unsigned, 2>> pointExprToStripe;
unsigned numTemporaries = 0;
auto updateStripePointMaps = [&numTemporaries, &result, &pointExprToStripe,
linearPosition](SDBMInputExpr input,
SDBMExpr expr) {
unsigned position = linearPosition(input);
if (result.stripeToPoint.count(position) &&
result.stripeToPoint[position] != expr) {
position = result.getNumVariables() + numTemporaries++;
}
pointExprToStripe[expr].push_back(position);
result.stripeToPoint.insert(std::make_pair(position, expr));
};
for (auto eq : equalities) {
auto diffExpr = eq.dyn_cast<SDBMDiffExpr>();
if (!diffExpr)
continue;
auto lhs = diffExpr.getLHS();
auto rhs = diffExpr.getRHS();
auto lhsInput = lhs.dyn_cast<SDBMInputExpr>();
auto rhsInput = rhs.dyn_cast<SDBMInputExpr>();
if (lhsInput && stripes.count(rhs))
updateStripePointMaps(lhsInput, rhs);
if (rhsInput && stripes.count(lhs))
updateStripePointMaps(rhsInput, lhs);
}
// Assign the remaining stripe expressions to temporary variables. These
// expressions are the ones that could not be associated with an existing
// variable in the previous step.
for (auto expr : stripes) {
if (pointExprToStripe.count(expr))
continue;
unsigned position = result.getNumVariables() + numTemporaries++;
pointExprToStripe[expr].push_back(position);
result.stripeToPoint.insert(std::make_pair(position, expr));
}
// Create the DBM matrix, initialized to infinity values for the least tight
// possible bound (x - y <= infinity is always true).
result.numTemporaries = numTemporaries;
result.matrix.resize(result.getNumVariables() * result.getNumVariables(),
IntInfty::infinity());
SDBMBuilder builder(pointExprToStripe, linearPosition);
// Only keep the tightest constraint. Since we transform everything into
// less-than-or-equals-to inequalities, keep the smallest constant. For
// example, if we have d0 - d1 <= 42 and d0 - d1 <= 2, we keep the latter.
// Note that the input expressions are in the shape of d0 - d1 + -42 <= 0
// so we negate the value before storing it.
// In case where the positive and the negative positions are equal, the
// corresponding expression has the form d0 - d0 + -42 <= 0. If the constant
// value is positive, the set defined by SDBM is trivially empty. We store
// this value anyway and continue processing to maintain the correspondence
// between the matrix form and the list-of-SDBMExpr form.
// TODO: we may want to reconsider this once we have canonicalization
// or simplification in place
auto updateMatrix = [](SDBM &sdbm, const SDBMBuilderResult &r) {
for (auto positivePos : r.positivePos) {
for (auto negativePos : r.negativePos) {
auto &m = sdbm.at(negativePos, positivePos);
m = m < -r.value ? m : -r.value;
}
}
};
// Do the second sweep on (in)equalities, updating the SDB matrix to reflect
// the constraints.
for (auto ineq : inequalities)
updateMatrix(result, builder.visit(ineq));
// An equality f(x) = 0 is represented as a pair of inequalities {f(x) >= 0;
// f(x) <= 0} or, alternatively, {-f(x) <= 0 and f(x) <= 0}.
for (auto eq : equalities) {
updateMatrix(result, builder.visit(eq));
updateMatrix(result, builder.visit(-eq));
}
// Add the inequalities induced by stripe equalities.
// t = x # C => t <= x <= t + C - 1
// which is equivalent to
// {t - x <= 0;
// x - t - (C - 1) <= 0}.
for (const auto &pair : result.stripeToPoint) {
auto stripe = pair.second.cast<SDBMStripeExpr>();
SDBMBuilderResult update = builder.visit(stripe.getLHS());
assert(update.negativePos.size() == 1 && update.negativePos[0] == 0 &&
"unexpected negated variable in stripe expression");
assert(update.value == 0 &&
"unexpected non-zero value in stripe expression");
update.negativePos.clear();
update.negativePos.push_back(pair.first);
update.value = -(stripe.getStripeFactor().getValue() - 1);
updateMatrix(result, update);
std::swap(update.negativePos, update.positivePos);
update.value = 0;
updateMatrix(result, update);
}
return result;
}
// Given a row and a column position in the square DBM, insert one equality
// or up to two inequalities that correspond the entries (col, row) and (row,
// col) in the DBM. `rowExpr` and `colExpr` contain the expressions such that
// colExpr - rowExpr <= V where V is the value at (row, col) in the DBM.
// If one of the expressions is derived from another using a stripe operation,
// check if the inequalities induced by the stripe operation subsume the
// inequalities defined in the DBM and if so, elide these inequalities.
void SDBM::convertDBMElement(unsigned row, unsigned col, SDBMTermExpr rowExpr,
SDBMTermExpr colExpr,
SmallVectorImpl<SDBMExpr> &inequalities,
SmallVectorImpl<SDBMExpr> &equalities) {
using ops_assertions::operator+;
using ops_assertions::operator-;
auto diffIJValue = at(col, row);
auto diffJIValue = at(row, col);
// If symmetric entries are opposite, the corresponding expressions are equal.
if (diffIJValue.isFinite() &&
diffIJValue.getValue() == -diffJIValue.getValue()) {
equalities.push_back(rowExpr - colExpr - diffIJValue.getValue());
return;
}
// Given an inequality x0 - x1 <= A, check if x0 is a stripe variable derived
// from x1: x0 = x1 # B. If so, it would imply the constraints
// x0 <= x1 <= x0 + (B - 1) <=> x0 - x1 <= 0 and x1 - x0 <= (B - 1).
// Therefore, if A >= 0, this inequality is subsumed by that implied
// by the stripe equality and thus can be elided.
// Similarly, check if x1 is a stripe variable derived from x0: x1 = x0 # C.
// If so, it would imply the constraints x1 <= x0 <= x1 + (C - 1) <=>
// <=> x1 - x0 <= 0 and x0 - x1 <= (C - 1). Therefore, if A >= (C - 1), this
// inequality can be elided.
//
// Note: x0 and x1 may be a stripe expressions themselves, we rely on stripe
// expressions being stored without temporaries on the RHS and being passed
// into this function as is.
auto canElide = [this](unsigned x0, unsigned x1, SDBMExpr x0Expr,
SDBMExpr x1Expr, int64_t value) {
if (stripeToPoint.count(x0)) {
auto stripe = stripeToPoint[x0].cast<SDBMStripeExpr>();
SDBMDirectExpr var = stripe.getLHS();
if (x1Expr == var && value >= 0)
return true;
}
if (stripeToPoint.count(x1)) {
auto stripe = stripeToPoint[x1].cast<SDBMStripeExpr>();
SDBMDirectExpr var = stripe.getLHS();
if (x0Expr == var && value >= stripe.getStripeFactor().getValue() - 1)
return true;
}
return false;
};
// Check row - col.
if (diffIJValue.isFinite() &&
!canElide(row, col, rowExpr, colExpr, diffIJValue.getValue())) {
inequalities.push_back(rowExpr - colExpr - diffIJValue.getValue());
}
// Check col - row.
if (diffJIValue.isFinite() &&
!canElide(col, row, colExpr, rowExpr, diffJIValue.getValue())) {
inequalities.push_back(colExpr - rowExpr - diffJIValue.getValue());
}
}
// The values on the main diagonal correspond to the upper bound on the
// difference between a variable and itself: d0 - d0 <= C, or alternatively
// to -C <= 0. Only construct the inequalities when C is negative, which
// are trivially false but necessary for the returned system of inequalities
// to indicate that the set it defines is empty.
void SDBM::convertDBMDiagonalElement(unsigned pos, SDBMTermExpr expr,
SmallVectorImpl<SDBMExpr> &inequalities) {
auto selfDifference = at(pos, pos);
if (selfDifference.isFinite() && selfDifference < 0) {
auto selfDifferenceValueExpr =
SDBMConstantExpr::get(expr.getDialect(), -selfDifference.getValue());
inequalities.push_back(selfDifferenceValueExpr);
}
}
void SDBM::getSDBMExpressions(SDBMDialect *dialect,
SmallVectorImpl<SDBMExpr> &inequalities,
SmallVectorImpl<SDBMExpr> &equalities) {
using ops_assertions::operator-;
using ops_assertions::operator+;
// Helper function that creates an SDBMInputExpr given the linearized position
// of variable in the DBM.
auto getInput = [dialect, this](unsigned matrixPos) -> SDBMInputExpr {
if (matrixPos < numDims)
return SDBMDimExpr::get(dialect, matrixPos);
return SDBMSymbolExpr::get(dialect, matrixPos - numDims);
};
// The top-left value corresponds to inequality 0 <= C. If C is negative, the
// set defined by SDBM is trivially empty and we add the constraint -C <= 0 to
// the list of inequalities. Otherwise, the constraint is trivially true and
// we ignore it.
auto difference = at(0, 0);
if (difference.isFinite() && difference < 0) {
inequalities.push_back(
SDBMConstantExpr::get(dialect, -difference.getValue()));
}
// Traverse the segment of the matrix that involves non-temporary variables.
unsigned numTrueVariables = numDims + numSymbols;
for (unsigned i = 0; i < numTrueVariables; ++i) {
// The first row and column represent numerical upper and lower bound on
// each variable. Transform them into inequalities if they are finite.
auto upperBound = at(0, 1 + i);
auto lowerBound = at(1 + i, 0);
auto inputExpr = getInput(i);
if (upperBound.isFinite() &&
upperBound.getValue() == -lowerBound.getValue()) {
equalities.push_back(inputExpr - upperBound.getValue());
} else if (upperBound.isFinite()) {
inequalities.push_back(inputExpr - upperBound.getValue());
} else if (lowerBound.isFinite()) {
inequalities.push_back(-inputExpr - lowerBound.getValue());
}
// Introduce trivially false inequalities if required by diagonal elements.
convertDBMDiagonalElement(1 + i, inputExpr, inequalities);
// Introduce equalities or inequalities between non-temporary variables.
for (unsigned j = 0; j < i; ++j) {
convertDBMElement(1 + i, 1 + j, getInput(i), getInput(j), inequalities,
equalities);
}
}
// Add equalities for stripe expressions that define non-temporary
// variables. Temporary variables will be substituted into their uses and
// should not appear in the resulting equalities.
for (const auto &stripePair : stripeToPoint) {
unsigned position = stripePair.first;
if (position < 1 + numTrueVariables) {
equalities.push_back(getInput(position - 1) - stripePair.second);
}
}
// Add equalities / inequalities involving temporaries by replacing the
// temporaries with stripe expressions that define them.
for (unsigned i = 1 + numTrueVariables, e = getNumVariables(); i < e; ++i) {
// Mixed constraints involving one temporary (j) and one non-temporary (i)
// variable.
for (unsigned j = 0; j < numTrueVariables; ++j) {
convertDBMElement(i, 1 + j, stripeToPoint[i].cast<SDBMStripeExpr>(),
getInput(j), inequalities, equalities);
}
// Constraints involving only temporary variables.
for (unsigned j = 1 + numTrueVariables; j < i; ++j) {
convertDBMElement(i, j, stripeToPoint[i].cast<SDBMStripeExpr>(),
stripeToPoint[j].cast<SDBMStripeExpr>(), inequalities,
equalities);
}
// Introduce trivially false inequalities if required by diagonal elements.
convertDBMDiagonalElement(i, stripeToPoint[i].cast<SDBMStripeExpr>(),
inequalities);
}
}
void SDBM::print(raw_ostream &os) {
unsigned numVariables = getNumVariables();
// Helper function that prints the name of the variable given its linearized
// position in the DBM.
auto getVarName = [this](unsigned matrixPos) -> std::string {
if (matrixPos == 0)
return "cst";
matrixPos -= 1;
if (matrixPos < numDims)
return std::string(llvm::formatv("d{0}", matrixPos));
matrixPos -= numDims;
if (matrixPos < numSymbols)
return std::string(llvm::formatv("s{0}", matrixPos));
matrixPos -= numSymbols;
return std::string(llvm::formatv("t{0}", matrixPos));
};
// Header row.
os << " cst";
for (unsigned i = 1; i < numVariables; ++i) {
os << llvm::formatv(" {0,4}", getVarName(i));
}
os << '\n';
// Data rows.
for (unsigned i = 0; i < numVariables; ++i) {
os << llvm::formatv("{0,-4}", getVarName(i));
for (unsigned j = 0; j < numVariables; ++j) {
IntInfty value = operator()(i, j);
if (!value.isFinite())
os << " inf";
else
os << llvm::formatv(" {0,4}", value.getValue());
}
os << '\n';
}
// Explanation of temporaries.
for (const auto &pair : stripeToPoint) {
os << getVarName(pair.first) << " = ";
pair.second.print(os);
os << '\n';
}
}
void SDBM::dump() { print(llvm::errs()); }