llvm-project/llvm/lib/Target/ARM/ARMAsmPrinter.cpp

1953 lines
69 KiB
C++

//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format ARM assembly language.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "ARMAsmPrinter.h"
#include "ARM.h"
#include "ARMBuildAttrs.h"
#include "ARMConstantPoolValue.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMTargetMachine.h"
#include "ARMTargetObjectFile.h"
#include "InstPrinter/ARMInstPrinter.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMMCExpr.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/DebugInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Target/TargetMachine.h"
#include <cctype>
using namespace llvm;
namespace {
// Per section and per symbol attributes are not supported.
// To implement them we would need the ability to delay this emission
// until the assembly file is fully parsed/generated as only then do we
// know the symbol and section numbers.
class AttributeEmitter {
public:
virtual void MaybeSwitchVendor(StringRef Vendor) = 0;
virtual void EmitAttribute(unsigned Attribute, unsigned Value) = 0;
virtual void EmitTextAttribute(unsigned Attribute, StringRef String) = 0;
virtual void Finish() = 0;
virtual ~AttributeEmitter() {}
};
class AsmAttributeEmitter : public AttributeEmitter {
MCStreamer &Streamer;
public:
AsmAttributeEmitter(MCStreamer &Streamer_) : Streamer(Streamer_) {}
void MaybeSwitchVendor(StringRef Vendor) { }
void EmitAttribute(unsigned Attribute, unsigned Value) {
Streamer.EmitRawText("\t.eabi_attribute " +
Twine(Attribute) + ", " + Twine(Value));
}
void EmitTextAttribute(unsigned Attribute, StringRef String) {
switch (Attribute) {
default: llvm_unreachable("Unsupported Text attribute in ASM Mode");
case ARMBuildAttrs::CPU_name:
Streamer.EmitRawText(StringRef("\t.cpu ") + String.lower());
break;
/* GAS requires .fpu to be emitted regardless of EABI attribute */
case ARMBuildAttrs::Advanced_SIMD_arch:
case ARMBuildAttrs::VFP_arch:
Streamer.EmitRawText(StringRef("\t.fpu ") + String.lower());
break;
}
}
void Finish() { }
};
class ObjectAttributeEmitter : public AttributeEmitter {
// This structure holds all attributes, accounting for
// their string/numeric value, so we can later emmit them
// in declaration order, keeping all in the same vector
struct AttributeItemType {
enum {
HiddenAttribute = 0,
NumericAttribute,
TextAttribute
} Type;
unsigned Tag;
unsigned IntValue;
StringRef StringValue;
} AttributeItem;
MCObjectStreamer &Streamer;
StringRef CurrentVendor;
SmallVector<AttributeItemType, 64> Contents;
// Account for the ULEB/String size of each item,
// not just the number of items
size_t ContentsSize;
// FIXME: this should be in a more generic place, but
// getULEBSize() is in MCAsmInfo and will be moved to MCDwarf
size_t getULEBSize(int Value) {
size_t Size = 0;
do {
Value >>= 7;
Size += sizeof(int8_t); // Is this really necessary?
} while (Value);
return Size;
}
public:
ObjectAttributeEmitter(MCObjectStreamer &Streamer_) :
Streamer(Streamer_), CurrentVendor(""), ContentsSize(0) { }
void MaybeSwitchVendor(StringRef Vendor) {
assert(!Vendor.empty() && "Vendor cannot be empty.");
if (CurrentVendor.empty())
CurrentVendor = Vendor;
else if (CurrentVendor == Vendor)
return;
else
Finish();
CurrentVendor = Vendor;
assert(Contents.size() == 0);
}
void EmitAttribute(unsigned Attribute, unsigned Value) {
AttributeItemType attr = {
AttributeItemType::NumericAttribute,
Attribute,
Value,
StringRef("")
};
ContentsSize += getULEBSize(Attribute);
ContentsSize += getULEBSize(Value);
Contents.push_back(attr);
}
void EmitTextAttribute(unsigned Attribute, StringRef String) {
AttributeItemType attr = {
AttributeItemType::TextAttribute,
Attribute,
0,
String
};
ContentsSize += getULEBSize(Attribute);
// String + \0
ContentsSize += String.size()+1;
Contents.push_back(attr);
}
void Finish() {
// Vendor size + Vendor name + '\0'
const size_t VendorHeaderSize = 4 + CurrentVendor.size() + 1;
// Tag + Tag Size
const size_t TagHeaderSize = 1 + 4;
Streamer.EmitIntValue(VendorHeaderSize + TagHeaderSize + ContentsSize, 4);
Streamer.EmitBytes(CurrentVendor);
Streamer.EmitIntValue(0, 1); // '\0'
Streamer.EmitIntValue(ARMBuildAttrs::File, 1);
Streamer.EmitIntValue(TagHeaderSize + ContentsSize, 4);
// Size should have been accounted for already, now
// emit each field as its type (ULEB or String)
for (unsigned int i=0; i<Contents.size(); ++i) {
AttributeItemType item = Contents[i];
Streamer.EmitULEB128IntValue(item.Tag);
switch (item.Type) {
default: llvm_unreachable("Invalid attribute type");
case AttributeItemType::NumericAttribute:
Streamer.EmitULEB128IntValue(item.IntValue);
break;
case AttributeItemType::TextAttribute:
Streamer.EmitBytes(item.StringValue.upper());
Streamer.EmitIntValue(0, 1); // '\0'
break;
}
}
Contents.clear();
}
};
} // end of anonymous namespace
/// EmitDwarfRegOp - Emit dwarf register operation.
void ARMAsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc,
bool Indirect) const {
const TargetRegisterInfo *RI = TM.getRegisterInfo();
if (RI->getDwarfRegNum(MLoc.getReg(), false) != -1) {
AsmPrinter::EmitDwarfRegOp(MLoc, Indirect);
return;
}
assert(MLoc.isReg() && !Indirect &&
"This doesn't support offset/indirection - implement it if needed");
unsigned Reg = MLoc.getReg();
if (Reg >= ARM::S0 && Reg <= ARM::S31) {
assert(ARM::S0 + 31 == ARM::S31 && "Unexpected ARM S register numbering");
// S registers are described as bit-pieces of a register
// S[2x] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 0)
// S[2x+1] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 32)
unsigned SReg = Reg - ARM::S0;
bool odd = SReg & 0x1;
unsigned Rx = 256 + (SReg >> 1);
OutStreamer.AddComment("DW_OP_regx for S register");
EmitInt8(dwarf::DW_OP_regx);
OutStreamer.AddComment(Twine(SReg));
EmitULEB128(Rx);
if (odd) {
OutStreamer.AddComment("DW_OP_bit_piece 32 32");
EmitInt8(dwarf::DW_OP_bit_piece);
EmitULEB128(32);
EmitULEB128(32);
} else {
OutStreamer.AddComment("DW_OP_bit_piece 32 0");
EmitInt8(dwarf::DW_OP_bit_piece);
EmitULEB128(32);
EmitULEB128(0);
}
} else if (Reg >= ARM::Q0 && Reg <= ARM::Q15) {
assert(ARM::Q0 + 15 == ARM::Q15 && "Unexpected ARM Q register numbering");
// Q registers Q0-Q15 are described by composing two D registers together.
// Qx = DW_OP_regx(256+2x) DW_OP_piece(8) DW_OP_regx(256+2x+1)
// DW_OP_piece(8)
unsigned QReg = Reg - ARM::Q0;
unsigned D1 = 256 + 2 * QReg;
unsigned D2 = D1 + 1;
OutStreamer.AddComment("DW_OP_regx for Q register: D1");
EmitInt8(dwarf::DW_OP_regx);
EmitULEB128(D1);
OutStreamer.AddComment("DW_OP_piece 8");
EmitInt8(dwarf::DW_OP_piece);
EmitULEB128(8);
OutStreamer.AddComment("DW_OP_regx for Q register: D2");
EmitInt8(dwarf::DW_OP_regx);
EmitULEB128(D2);
OutStreamer.AddComment("DW_OP_piece 8");
EmitInt8(dwarf::DW_OP_piece);
EmitULEB128(8);
}
}
void ARMAsmPrinter::EmitFunctionBodyEnd() {
// Make sure to terminate any constant pools that were at the end
// of the function.
if (!InConstantPool)
return;
InConstantPool = false;
OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
}
void ARMAsmPrinter::EmitFunctionEntryLabel() {
if (AFI->isThumbFunction()) {
OutStreamer.EmitAssemblerFlag(MCAF_Code16);
OutStreamer.EmitThumbFunc(CurrentFnSym);
}
OutStreamer.EmitLabel(CurrentFnSym);
}
void ARMAsmPrinter::EmitXXStructor(const Constant *CV) {
uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
assert(Size && "C++ constructor pointer had zero size!");
const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
assert(GV && "C++ constructor pointer was not a GlobalValue!");
const MCExpr *E = MCSymbolRefExpr::Create(Mang->getSymbol(GV),
(Subtarget->isTargetDarwin()
? MCSymbolRefExpr::VK_None
: MCSymbolRefExpr::VK_ARM_TARGET1),
OutContext);
OutStreamer.EmitValue(E, Size);
}
/// runOnMachineFunction - This uses the EmitInstruction()
/// method to print assembly for each instruction.
///
bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
AFI = MF.getInfo<ARMFunctionInfo>();
MCP = MF.getConstantPool();
return AsmPrinter::runOnMachineFunction(MF);
}
void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O, const char *Modifier) {
const MachineOperand &MO = MI->getOperand(OpNum);
unsigned TF = MO.getTargetFlags();
switch (MO.getType()) {
default: llvm_unreachable("<unknown operand type>");
case MachineOperand::MO_Register: {
unsigned Reg = MO.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
assert(!MO.getSubReg() && "Subregs should be eliminated!");
if(ARM::GPRPairRegClass.contains(Reg)) {
const MachineFunction &MF = *MI->getParent()->getParent();
const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
Reg = TRI->getSubReg(Reg, ARM::gsub_0);
}
O << ARMInstPrinter::getRegisterName(Reg);
break;
}
case MachineOperand::MO_Immediate: {
int64_t Imm = MO.getImm();
O << '#';
if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
(TF == ARMII::MO_LO16))
O << ":lower16:";
else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
(TF == ARMII::MO_HI16))
O << ":upper16:";
O << Imm;
break;
}
case MachineOperand::MO_MachineBasicBlock:
O << *MO.getMBB()->getSymbol();
return;
case MachineOperand::MO_GlobalAddress: {
const GlobalValue *GV = MO.getGlobal();
if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
(TF & ARMII::MO_LO16))
O << ":lower16:";
else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
(TF & ARMII::MO_HI16))
O << ":upper16:";
O << *Mang->getSymbol(GV);
printOffset(MO.getOffset(), O);
if (TF == ARMII::MO_PLT)
O << "(PLT)";
break;
}
case MachineOperand::MO_ExternalSymbol: {
O << *GetExternalSymbolSymbol(MO.getSymbolName());
if (TF == ARMII::MO_PLT)
O << "(PLT)";
break;
}
case MachineOperand::MO_ConstantPoolIndex:
O << *GetCPISymbol(MO.getIndex());
break;
case MachineOperand::MO_JumpTableIndex:
O << *GetJTISymbol(MO.getIndex());
break;
}
}
//===--------------------------------------------------------------------===//
MCSymbol *ARMAsmPrinter::
GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << uid << '_' << uid2;
return OutContext.GetOrCreateSymbol(Name.str());
}
MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel() const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "SJLJEH"
<< getFunctionNumber();
return OutContext.GetOrCreateSymbol(Name.str());
}
bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
case 'a': // Print as a memory address.
if (MI->getOperand(OpNum).isReg()) {
O << "["
<< ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
<< "]";
return false;
}
// Fallthrough
case 'c': // Don't print "#" before an immediate operand.
if (!MI->getOperand(OpNum).isImm())
return true;
O << MI->getOperand(OpNum).getImm();
return false;
case 'P': // Print a VFP double precision register.
case 'q': // Print a NEON quad precision register.
printOperand(MI, OpNum, O);
return false;
case 'y': // Print a VFP single precision register as indexed double.
if (MI->getOperand(OpNum).isReg()) {
unsigned Reg = MI->getOperand(OpNum).getReg();
const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
// Find the 'd' register that has this 's' register as a sub-register,
// and determine the lane number.
for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
if (!ARM::DPRRegClass.contains(*SR))
continue;
bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
return false;
}
}
return true;
case 'B': // Bitwise inverse of integer or symbol without a preceding #.
if (!MI->getOperand(OpNum).isImm())
return true;
O << ~(MI->getOperand(OpNum).getImm());
return false;
case 'L': // The low 16 bits of an immediate constant.
if (!MI->getOperand(OpNum).isImm())
return true;
O << (MI->getOperand(OpNum).getImm() & 0xffff);
return false;
case 'M': { // A register range suitable for LDM/STM.
if (!MI->getOperand(OpNum).isReg())
return true;
const MachineOperand &MO = MI->getOperand(OpNum);
unsigned RegBegin = MO.getReg();
// This takes advantage of the 2 operand-ness of ldm/stm and that we've
// already got the operands in registers that are operands to the
// inline asm statement.
O << "{";
if (ARM::GPRPairRegClass.contains(RegBegin)) {
const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
O << ARMInstPrinter::getRegisterName(Reg0) << ", ";;
RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
}
O << ARMInstPrinter::getRegisterName(RegBegin);
// FIXME: The register allocator not only may not have given us the
// registers in sequence, but may not be in ascending registers. This
// will require changes in the register allocator that'll need to be
// propagated down here if the operands change.
unsigned RegOps = OpNum + 1;
while (MI->getOperand(RegOps).isReg()) {
O << ", "
<< ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
RegOps++;
}
O << "}";
return false;
}
case 'R': // The most significant register of a pair.
case 'Q': { // The least significant register of a pair.
if (OpNum == 0)
return true;
const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
if (!FlagsOP.isImm())
return true;
unsigned Flags = FlagsOP.getImm();
// This operand may not be the one that actually provides the register. If
// it's tied to a previous one then we should refer instead to that one
// for registers and their classes.
unsigned TiedIdx;
if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
unsigned OpFlags = MI->getOperand(OpNum).getImm();
OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
}
Flags = MI->getOperand(OpNum).getImm();
// Later code expects OpNum to be pointing at the register rather than
// the flags.
OpNum += 1;
}
unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
unsigned RC;
InlineAsm::hasRegClassConstraint(Flags, RC);
if (RC == ARM::GPRPairRegClassID) {
if (NumVals != 1)
return true;
const MachineOperand &MO = MI->getOperand(OpNum);
if (!MO.isReg())
return true;
const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
ARM::gsub_0 : ARM::gsub_1);
O << ARMInstPrinter::getRegisterName(Reg);
return false;
}
if (NumVals != 2)
return true;
unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
if (RegOp >= MI->getNumOperands())
return true;
const MachineOperand &MO = MI->getOperand(RegOp);
if (!MO.isReg())
return true;
unsigned Reg = MO.getReg();
O << ARMInstPrinter::getRegisterName(Reg);
return false;
}
case 'e': // The low doubleword register of a NEON quad register.
case 'f': { // The high doubleword register of a NEON quad register.
if (!MI->getOperand(OpNum).isReg())
return true;
unsigned Reg = MI->getOperand(OpNum).getReg();
if (!ARM::QPRRegClass.contains(Reg))
return true;
const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
ARM::dsub_0 : ARM::dsub_1);
O << ARMInstPrinter::getRegisterName(SubReg);
return false;
}
// This modifier is not yet supported.
case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
return true;
case 'H': { // The highest-numbered register of a pair.
const MachineOperand &MO = MI->getOperand(OpNum);
if (!MO.isReg())
return true;
const MachineFunction &MF = *MI->getParent()->getParent();
const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
unsigned Reg = MO.getReg();
if(!ARM::GPRPairRegClass.contains(Reg))
return false;
Reg = TRI->getSubReg(Reg, ARM::gsub_1);
O << ARMInstPrinter::getRegisterName(Reg);
return false;
}
}
}
printOperand(MI, OpNum, O);
return false;
}
bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNum, unsigned AsmVariant,
const char *ExtraCode,
raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
case 'A': // A memory operand for a VLD1/VST1 instruction.
default: return true; // Unknown modifier.
case 'm': // The base register of a memory operand.
if (!MI->getOperand(OpNum).isReg())
return true;
O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
return false;
}
}
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isReg() && "unexpected inline asm memory operand");
O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
return false;
}
void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
if (Subtarget->isTargetDarwin()) {
Reloc::Model RelocM = TM.getRelocationModel();
if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) {
// Declare all the text sections up front (before the DWARF sections
// emitted by AsmPrinter::doInitialization) so the assembler will keep
// them together at the beginning of the object file. This helps
// avoid out-of-range branches that are due a fundamental limitation of
// the way symbol offsets are encoded with the current Darwin ARM
// relocations.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(
getObjFileLowering());
// Collect the set of sections our functions will go into.
SetVector<const MCSection *, SmallVector<const MCSection *, 8>,
SmallPtrSet<const MCSection *, 8> > TextSections;
// Default text section comes first.
TextSections.insert(TLOFMacho.getTextSection());
// Now any user defined text sections from function attributes.
for (Module::iterator F = M.begin(), e = M.end(); F != e; ++F)
if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage())
TextSections.insert(TLOFMacho.SectionForGlobal(F, Mang, TM));
// Now the coalescable sections.
TextSections.insert(TLOFMacho.getTextCoalSection());
TextSections.insert(TLOFMacho.getConstTextCoalSection());
// Emit the sections in the .s file header to fix the order.
for (unsigned i = 0, e = TextSections.size(); i != e; ++i)
OutStreamer.SwitchSection(TextSections[i]);
if (RelocM == Reloc::DynamicNoPIC) {
const MCSection *sect =
OutContext.getMachOSection("__TEXT", "__symbol_stub4",
MCSectionMachO::S_SYMBOL_STUBS,
12, SectionKind::getText());
OutStreamer.SwitchSection(sect);
} else {
const MCSection *sect =
OutContext.getMachOSection("__TEXT", "__picsymbolstub4",
MCSectionMachO::S_SYMBOL_STUBS,
16, SectionKind::getText());
OutStreamer.SwitchSection(sect);
}
const MCSection *StaticInitSect =
OutContext.getMachOSection("__TEXT", "__StaticInit",
MCSectionMachO::S_REGULAR |
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
SectionKind::getText());
OutStreamer.SwitchSection(StaticInitSect);
}
}
// Use unified assembler syntax.
OutStreamer.EmitAssemblerFlag(MCAF_SyntaxUnified);
// Emit ARM Build Attributes
if (Subtarget->isTargetELF())
emitAttributes();
}
void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
if (Subtarget->isTargetDarwin()) {
// All darwin targets use mach-o.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
MachineModuleInfoMachO &MMIMacho =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
// Output non-lazy-pointers for external and common global variables.
MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
if (!Stubs.empty()) {
// Switch with ".non_lazy_symbol_pointer" directive.
OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
EmitAlignment(2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer.EmitLabel(Stubs[i].first);
// .indirect_symbol _foo
MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second;
OutStreamer.EmitSymbolAttribute(MCSym.getPointer(),MCSA_IndirectSymbol);
if (MCSym.getInt())
// External to current translation unit.
OutStreamer.EmitIntValue(0, 4/*size*/);
else
// Internal to current translation unit.
//
// When we place the LSDA into the TEXT section, the type info
// pointers need to be indirect and pc-rel. We accomplish this by
// using NLPs; however, sometimes the types are local to the file.
// We need to fill in the value for the NLP in those cases.
OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(),
OutContext),
4/*size*/);
}
Stubs.clear();
OutStreamer.AddBlankLine();
}
Stubs = MMIMacho.GetHiddenGVStubList();
if (!Stubs.empty()) {
OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
EmitAlignment(2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer.EmitLabel(Stubs[i].first);
// .long _foo
OutStreamer.EmitValue(MCSymbolRefExpr::
Create(Stubs[i].second.getPointer(),
OutContext),
4/*size*/);
}
Stubs.clear();
OutStreamer.AddBlankLine();
}
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
}
// FIXME: This should eventually end up somewhere else where more
// intelligent flag decisions can be made. For now we are just maintaining
// the status quo for ARM and setting EF_ARM_EABI_VER5 as the default.
if (MCELFStreamer *MES = dyn_cast<MCELFStreamer>(&OutStreamer))
MES->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
}
//===----------------------------------------------------------------------===//
// Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
// FIXME:
// The following seem like one-off assembler flags, but they actually need
// to appear in the .ARM.attributes section in ELF.
// Instead of subclassing the MCELFStreamer, we do the work here.
void ARMAsmPrinter::emitAttributes() {
emitARMAttributeSection();
/* GAS expect .fpu to be emitted, regardless of VFP build attribute */
bool emitFPU = false;
AttributeEmitter *AttrEmitter;
if (OutStreamer.hasRawTextSupport()) {
AttrEmitter = new AsmAttributeEmitter(OutStreamer);
emitFPU = true;
} else {
MCObjectStreamer &O = static_cast<MCObjectStreamer&>(OutStreamer);
AttrEmitter = new ObjectAttributeEmitter(O);
}
AttrEmitter->MaybeSwitchVendor("aeabi");
std::string CPUString = Subtarget->getCPUString();
if (CPUString == "cortex-a8" ||
Subtarget->isCortexA8()) {
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a8");
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v7);
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch_profile,
ARMBuildAttrs::ApplicationProfile);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
ARMBuildAttrs::Allowed);
AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
ARMBuildAttrs::AllowThumb32);
// Fixme: figure out when this is emitted.
//AttrEmitter->EmitAttribute(ARMBuildAttrs::WMMX_arch,
// ARMBuildAttrs::AllowWMMXv1);
//
/// ADD additional Else-cases here!
} else if (CPUString == "xscale") {
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v5TEJ);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
ARMBuildAttrs::Allowed);
AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
ARMBuildAttrs::Allowed);
} else if (Subtarget->hasV8Ops())
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v8);
else if (Subtarget->hasV7Ops()) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v7);
AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
ARMBuildAttrs::AllowThumb32);
} else if (Subtarget->hasV6T2Ops())
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v6T2);
else if (Subtarget->hasV6Ops())
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v6);
else if (Subtarget->hasV5TEOps())
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v5TE);
else if (Subtarget->hasV5TOps())
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v5T);
else if (Subtarget->hasV4TOps())
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v4T);
else
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v4);
if (Subtarget->hasNEON() && emitFPU) {
/* NEON is not exactly a VFP architecture, but GAS emit one of
* neon/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
if (Subtarget->hasVFP4())
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
"neon-vfpv4");
else
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::Advanced_SIMD_arch, "neon");
/* If emitted for NEON, omit from VFP below, since you can have both
* NEON and VFP in build attributes but only one .fpu */
emitFPU = false;
}
/* V8FP + .fpu */
if (Subtarget->hasV8FP()) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
ARMBuildAttrs::AllowV8FPA);
if (emitFPU)
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "v8fp");
/* VFPv4 + .fpu */
} else if (Subtarget->hasVFP4()) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
ARMBuildAttrs::AllowFPv4A);
if (emitFPU)
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv4");
/* VFPv3 + .fpu */
} else if (Subtarget->hasVFP3()) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
ARMBuildAttrs::AllowFPv3A);
if (emitFPU)
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv3");
/* VFPv2 + .fpu */
} else if (Subtarget->hasVFP2()) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
ARMBuildAttrs::AllowFPv2);
if (emitFPU)
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv2");
}
/* TODO: ARMBuildAttrs::Allowed is not completely accurate,
* since NEON can have 1 (allowed) or 2 (MAC operations) */
if (Subtarget->hasNEON()) {
if (Subtarget->hasV8Ops())
AttrEmitter->EmitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
ARMBuildAttrs::AllowedNeonV8);
else
AttrEmitter->EmitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
ARMBuildAttrs::Allowed);
}
// Signal various FP modes.
if (!TM.Options.UnsafeFPMath) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_denormal,
ARMBuildAttrs::Allowed);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
ARMBuildAttrs::Allowed);
}
if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_number_model,
ARMBuildAttrs::Allowed);
else
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_number_model,
ARMBuildAttrs::AllowIEE754);
// FIXME: add more flags to ARMBuildAttrs.h
// 8-bytes alignment stuff.
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_align8_needed, 1);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_align8_preserved, 1);
// Hard float. Use both S and D registers and conform to AAPCS-VFP.
if (Subtarget->isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_HardFP_use, 3);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_VFP_args, 1);
}
// FIXME: Should we signal R9 usage?
if (Subtarget->hasDivide())
AttrEmitter->EmitAttribute(ARMBuildAttrs::DIV_use, 1);
AttrEmitter->Finish();
delete AttrEmitter;
}
void ARMAsmPrinter::emitARMAttributeSection() {
// <format-version>
// [ <section-length> "vendor-name"
// [ <file-tag> <size> <attribute>*
// | <section-tag> <size> <section-number>* 0 <attribute>*
// | <symbol-tag> <size> <symbol-number>* 0 <attribute>*
// ]+
// ]*
if (OutStreamer.hasRawTextSupport())
return;
const ARMElfTargetObjectFile &TLOFELF =
static_cast<const ARMElfTargetObjectFile &>
(getObjFileLowering());
OutStreamer.SwitchSection(TLOFELF.getAttributesSection());
// Format version
OutStreamer.EmitIntValue(0x41, 1);
}
//===----------------------------------------------------------------------===//
static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
unsigned LabelId, MCContext &Ctx) {
MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix)
+ "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
return Label;
}
static MCSymbolRefExpr::VariantKind
getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
switch (Modifier) {
case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None;
case ARMCP::TLSGD: return MCSymbolRefExpr::VK_ARM_TLSGD;
case ARMCP::TPOFF: return MCSymbolRefExpr::VK_ARM_TPOFF;
case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_ARM_GOTTPOFF;
case ARMCP::GOT: return MCSymbolRefExpr::VK_ARM_GOT;
case ARMCP::GOTOFF: return MCSymbolRefExpr::VK_ARM_GOTOFF;
}
llvm_unreachable("Invalid ARMCPModifier!");
}
MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV) {
bool isIndirect = Subtarget->isTargetDarwin() &&
Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
if (!isIndirect)
return Mang->getSymbol(GV);
// FIXME: Remove this when Darwin transition to @GOT like syntax.
MCSymbol *MCSym = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
MachineModuleInfoMachO &MMIMachO =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
MachineModuleInfoImpl::StubValueTy &StubSym =
GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym) :
MMIMachO.getGVStubEntry(MCSym);
if (StubSym.getPointer() == 0)
StubSym = MachineModuleInfoImpl::
StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage());
return MCSym;
}
void ARMAsmPrinter::
EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
int Size = TM.getDataLayout()->getTypeAllocSize(MCPV->getType());
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
MCSymbol *MCSym;
if (ACPV->isLSDA()) {
SmallString<128> Str;
raw_svector_ostream OS(Str);
OS << MAI->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber();
MCSym = OutContext.GetOrCreateSymbol(OS.str());
} else if (ACPV->isBlockAddress()) {
const BlockAddress *BA =
cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
MCSym = GetBlockAddressSymbol(BA);
} else if (ACPV->isGlobalValue()) {
const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
MCSym = GetARMGVSymbol(GV);
} else if (ACPV->isMachineBasicBlock()) {
const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
MCSym = MBB->getSymbol();
} else {
assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
MCSym = GetExternalSymbolSymbol(Sym);
}
// Create an MCSymbol for the reference.
const MCExpr *Expr =
MCSymbolRefExpr::Create(MCSym, getModifierVariantKind(ACPV->getModifier()),
OutContext);
if (ACPV->getPCAdjustment()) {
MCSymbol *PCLabel = getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(),
ACPV->getLabelId(),
OutContext);
const MCExpr *PCRelExpr = MCSymbolRefExpr::Create(PCLabel, OutContext);
PCRelExpr =
MCBinaryExpr::CreateAdd(PCRelExpr,
MCConstantExpr::Create(ACPV->getPCAdjustment(),
OutContext),
OutContext);
if (ACPV->mustAddCurrentAddress()) {
// We want "(<expr> - .)", but MC doesn't have a concept of the '.'
// label, so just emit a local label end reference that instead.
MCSymbol *DotSym = OutContext.CreateTempSymbol();
OutStreamer.EmitLabel(DotSym);
const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
PCRelExpr = MCBinaryExpr::CreateSub(PCRelExpr, DotExpr, OutContext);
}
Expr = MCBinaryExpr::CreateSub(Expr, PCRelExpr, OutContext);
}
OutStreamer.EmitValue(Expr, Size);
}
void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
int OpNum = 1;
if (Opcode == ARM::BR_JTadd)
OpNum = 2;
else if (Opcode == ARM::BR_JTm)
OpNum = 3;
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
// Emit a label for the jump table.
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
OutStreamer.EmitLabel(JTISymbol);
// Mark the jump table as data-in-code.
OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
// Emit each entry of the table.
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
// Construct an MCExpr for the entry. We want a value of the form:
// (BasicBlockAddr - TableBeginAddr)
//
// For example, a table with entries jumping to basic blocks BB0 and BB1
// would look like:
// LJTI_0_0:
// .word (LBB0 - LJTI_0_0)
// .word (LBB1 - LJTI_0_0)
const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
if (TM.getRelocationModel() == Reloc::PIC_)
Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol,
OutContext),
OutContext);
// If we're generating a table of Thumb addresses in static relocation
// model, we need to add one to keep interworking correctly.
else if (AFI->isThumbFunction())
Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(1,OutContext),
OutContext);
OutStreamer.EmitValue(Expr, 4);
}
// Mark the end of jump table data-in-code region.
OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
}
void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1;
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
OutStreamer.EmitLabel(JTISymbol);
// Emit each entry of the table.
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
unsigned OffsetWidth = 4;
if (MI->getOpcode() == ARM::t2TBB_JT) {
OffsetWidth = 1;
// Mark the jump table as data-in-code.
OutStreamer.EmitDataRegion(MCDR_DataRegionJT8);
} else if (MI->getOpcode() == ARM::t2TBH_JT) {
OffsetWidth = 2;
// Mark the jump table as data-in-code.
OutStreamer.EmitDataRegion(MCDR_DataRegionJT16);
}
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(),
OutContext);
// If this isn't a TBB or TBH, the entries are direct branch instructions.
if (OffsetWidth == 4) {
OutStreamer.EmitInstruction(MCInstBuilder(ARM::t2B)
.addExpr(MBBSymbolExpr)
.addImm(ARMCC::AL)
.addReg(0));
continue;
}
// Otherwise it's an offset from the dispatch instruction. Construct an
// MCExpr for the entry. We want a value of the form:
// (BasicBlockAddr - TableBeginAddr) / 2
//
// For example, a TBB table with entries jumping to basic blocks BB0 and BB1
// would look like:
// LJTI_0_0:
// .byte (LBB0 - LJTI_0_0) / 2
// .byte (LBB1 - LJTI_0_0) / 2
const MCExpr *Expr =
MCBinaryExpr::CreateSub(MBBSymbolExpr,
MCSymbolRefExpr::Create(JTISymbol, OutContext),
OutContext);
Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext),
OutContext);
OutStreamer.EmitValue(Expr, OffsetWidth);
}
// Mark the end of jump table data-in-code region. 32-bit offsets use
// actual branch instructions here, so we don't mark those as a data-region
// at all.
if (OffsetWidth != 4)
OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
}
void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
assert(MI->getFlag(MachineInstr::FrameSetup) &&
"Only instruction which are involved into frame setup code are allowed");
const MachineFunction &MF = *MI->getParent()->getParent();
const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
unsigned FramePtr = RegInfo->getFrameRegister(MF);
unsigned Opc = MI->getOpcode();
unsigned SrcReg, DstReg;
if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
// Two special cases:
// 1) tPUSH does not have src/dst regs.
// 2) for Thumb1 code we sometimes materialize the constant via constpool
// load. Yes, this is pretty fragile, but for now I don't see better
// way... :(
SrcReg = DstReg = ARM::SP;
} else {
SrcReg = MI->getOperand(1).getReg();
DstReg = MI->getOperand(0).getReg();
}
// Try to figure out the unwinding opcode out of src / dst regs.
if (MI->mayStore()) {
// Register saves.
assert(DstReg == ARM::SP &&
"Only stack pointer as a destination reg is supported");
SmallVector<unsigned, 4> RegList;
// Skip src & dst reg, and pred ops.
unsigned StartOp = 2 + 2;
// Use all the operands.
unsigned NumOffset = 0;
switch (Opc) {
default:
MI->dump();
llvm_unreachable("Unsupported opcode for unwinding information");
case ARM::tPUSH:
// Special case here: no src & dst reg, but two extra imp ops.
StartOp = 2; NumOffset = 2;
case ARM::STMDB_UPD:
case ARM::t2STMDB_UPD:
case ARM::VSTMDDB_UPD:
assert(SrcReg == ARM::SP &&
"Only stack pointer as a source reg is supported");
for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
i != NumOps; ++i) {
const MachineOperand &MO = MI->getOperand(i);
// Actually, there should never be any impdef stuff here. Skip it
// temporary to workaround PR11902.
if (MO.isImplicit())
continue;
RegList.push_back(MO.getReg());
}
break;
case ARM::STR_PRE_IMM:
case ARM::STR_PRE_REG:
case ARM::t2STR_PRE:
assert(MI->getOperand(2).getReg() == ARM::SP &&
"Only stack pointer as a source reg is supported");
RegList.push_back(SrcReg);
break;
}
OutStreamer.EmitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
} else {
// Changes of stack / frame pointer.
if (SrcReg == ARM::SP) {
int64_t Offset = 0;
switch (Opc) {
default:
MI->dump();
llvm_unreachable("Unsupported opcode for unwinding information");
case ARM::MOVr:
case ARM::tMOVr:
Offset = 0;
break;
case ARM::ADDri:
Offset = -MI->getOperand(2).getImm();
break;
case ARM::SUBri:
case ARM::t2SUBri:
Offset = MI->getOperand(2).getImm();
break;
case ARM::tSUBspi:
Offset = MI->getOperand(2).getImm()*4;
break;
case ARM::tADDspi:
case ARM::tADDrSPi:
Offset = -MI->getOperand(2).getImm()*4;
break;
case ARM::tLDRpci: {
// Grab the constpool index and check, whether it corresponds to
// original or cloned constpool entry.
unsigned CPI = MI->getOperand(1).getIndex();
const MachineConstantPool *MCP = MF.getConstantPool();
if (CPI >= MCP->getConstants().size())
CPI = AFI.getOriginalCPIdx(CPI);
assert(CPI != -1U && "Invalid constpool index");
// Derive the actual offset.
const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
// FIXME: Check for user, it should be "add" instruction!
Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
break;
}
}
if (DstReg == FramePtr && FramePtr != ARM::SP)
// Set-up of the frame pointer. Positive values correspond to "add"
// instruction.
OutStreamer.EmitSetFP(FramePtr, ARM::SP, -Offset);
else if (DstReg == ARM::SP) {
// Change of SP by an offset. Positive values correspond to "sub"
// instruction.
OutStreamer.EmitPad(Offset);
} else {
MI->dump();
llvm_unreachable("Unsupported opcode for unwinding information");
}
} else if (DstReg == ARM::SP) {
// FIXME: .movsp goes here
MI->dump();
llvm_unreachable("Unsupported opcode for unwinding information");
}
else {
MI->dump();
llvm_unreachable("Unsupported opcode for unwinding information");
}
}
}
extern cl::opt<bool> EnableARMEHABI;
// Simple pseudo-instructions have their lowering (with expansion to real
// instructions) auto-generated.
#include "ARMGenMCPseudoLowering.inc"
void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
// If we just ended a constant pool, mark it as such.
if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
InConstantPool = false;
}
// Emit unwinding stuff for frame-related instructions
if (EnableARMEHABI && MI->getFlag(MachineInstr::FrameSetup))
EmitUnwindingInstruction(MI);
// Do any auto-generated pseudo lowerings.
if (emitPseudoExpansionLowering(OutStreamer, MI))
return;
assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
"Pseudo flag setting opcode should be expanded early");
// Check for manual lowerings.
unsigned Opc = MI->getOpcode();
switch (Opc) {
case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
case ARM::LEApcrel:
case ARM::tLEApcrel:
case ARM::t2LEApcrel: {
// FIXME: Need to also handle globals and externals
MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
OutStreamer.EmitInstruction(MCInstBuilder(MI->getOpcode() ==
ARM::t2LEApcrel ? ARM::t2ADR
: (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
: ARM::ADR))
.addReg(MI->getOperand(0).getReg())
.addExpr(MCSymbolRefExpr::Create(CPISymbol, OutContext))
// Add predicate operands.
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg()));
return;
}
case ARM::LEApcrelJT:
case ARM::tLEApcrelJT:
case ARM::t2LEApcrelJT: {
MCSymbol *JTIPICSymbol =
GetARMJTIPICJumpTableLabel2(MI->getOperand(1).getIndex(),
MI->getOperand(2).getImm());
OutStreamer.EmitInstruction(MCInstBuilder(MI->getOpcode() ==
ARM::t2LEApcrelJT ? ARM::t2ADR
: (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
: ARM::ADR))
.addReg(MI->getOperand(0).getReg())
.addExpr(MCSymbolRefExpr::Create(JTIPICSymbol, OutContext))
// Add predicate operands.
.addImm(MI->getOperand(3).getImm())
.addReg(MI->getOperand(4).getReg()));
return;
}
// Darwin call instructions are just normal call instructions with different
// clobber semantics (they clobber R9).
case ARM::BX_CALL: {
OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVr)
.addReg(ARM::LR)
.addReg(ARM::PC)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0)
// Add 's' bit operand (always reg0 for this)
.addReg(0));
OutStreamer.EmitInstruction(MCInstBuilder(ARM::BX)
.addReg(MI->getOperand(0).getReg()));
return;
}
case ARM::tBX_CALL: {
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVr)
.addReg(ARM::LR)
.addReg(ARM::PC)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tBX)
.addReg(MI->getOperand(0).getReg())
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::BMOVPCRX_CALL: {
OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVr)
.addReg(ARM::LR)
.addReg(ARM::PC)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0)
// Add 's' bit operand (always reg0 for this)
.addReg(0));
OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVr)
.addReg(ARM::PC)
.addReg(MI->getOperand(0).getReg())
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0)
// Add 's' bit operand (always reg0 for this)
.addReg(0));
return;
}
case ARM::BMOVPCB_CALL: {
OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVr)
.addReg(ARM::LR)
.addReg(ARM::PC)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0)
// Add 's' bit operand (always reg0 for this)
.addReg(0));
const GlobalValue *GV = MI->getOperand(0).getGlobal();
MCSymbol *GVSym = Mang->getSymbol(GV);
const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
OutStreamer.EmitInstruction(MCInstBuilder(ARM::Bcc)
.addExpr(GVSymExpr)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::MOVi16_ga_pcrel:
case ARM::t2MOVi16_ga_pcrel: {
MCInst TmpInst;
TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
unsigned TF = MI->getOperand(1).getTargetFlags();
bool isPIC = TF == ARMII::MO_LO16_NONLAZY_PIC;
const GlobalValue *GV = MI->getOperand(1).getGlobal();
MCSymbol *GVSym = GetARMGVSymbol(GV);
const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
if (isPIC) {
MCSymbol *LabelSym = getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(),
MI->getOperand(2).getImm(), OutContext);
const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
const MCExpr *PCRelExpr =
ARMMCExpr::CreateLower16(MCBinaryExpr::CreateSub(GVSymExpr,
MCBinaryExpr::CreateAdd(LabelSymExpr,
MCConstantExpr::Create(PCAdj, OutContext),
OutContext), OutContext), OutContext);
TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
} else {
const MCExpr *RefExpr= ARMMCExpr::CreateLower16(GVSymExpr, OutContext);
TmpInst.addOperand(MCOperand::CreateExpr(RefExpr));
}
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
return;
}
case ARM::MOVTi16_ga_pcrel:
case ARM::t2MOVTi16_ga_pcrel: {
MCInst TmpInst;
TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
? ARM::MOVTi16 : ARM::t2MOVTi16);
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
unsigned TF = MI->getOperand(2).getTargetFlags();
bool isPIC = TF == ARMII::MO_HI16_NONLAZY_PIC;
const GlobalValue *GV = MI->getOperand(2).getGlobal();
MCSymbol *GVSym = GetARMGVSymbol(GV);
const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
if (isPIC) {
MCSymbol *LabelSym = getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(),
MI->getOperand(3).getImm(), OutContext);
const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
const MCExpr *PCRelExpr =
ARMMCExpr::CreateUpper16(MCBinaryExpr::CreateSub(GVSymExpr,
MCBinaryExpr::CreateAdd(LabelSymExpr,
MCConstantExpr::Create(PCAdj, OutContext),
OutContext), OutContext), OutContext);
TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
} else {
const MCExpr *RefExpr= ARMMCExpr::CreateUpper16(GVSymExpr, OutContext);
TmpInst.addOperand(MCOperand::CreateExpr(RefExpr));
}
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
return;
}
case ARM::tPICADD: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// add r0, pc
// This adds the address of LPC0 to r0.
// Emit the label.
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(), MI->getOperand(2).getImm(),
OutContext));
// Form and emit the add.
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tADDhirr)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(0).getReg())
.addReg(ARM::PC)
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::PICADD: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// add r0, pc, r0
// This adds the address of LPC0 to r0.
// Emit the label.
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(), MI->getOperand(2).getImm(),
OutContext));
// Form and emit the add.
OutStreamer.EmitInstruction(MCInstBuilder(ARM::ADDrr)
.addReg(MI->getOperand(0).getReg())
.addReg(ARM::PC)
.addReg(MI->getOperand(1).getReg())
// Add predicate operands.
.addImm(MI->getOperand(3).getImm())
.addReg(MI->getOperand(4).getReg())
// Add 's' bit operand (always reg0 for this)
.addReg(0));
return;
}
case ARM::PICSTR:
case ARM::PICSTRB:
case ARM::PICSTRH:
case ARM::PICLDR:
case ARM::PICLDRB:
case ARM::PICLDRH:
case ARM::PICLDRSB:
case ARM::PICLDRSH: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// OP r0, [pc, r0]
// The LCP0 label is referenced by a constant pool entry in order to get
// a PC-relative address at the ldr instruction.
// Emit the label.
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(), MI->getOperand(2).getImm(),
OutContext));
// Form and emit the load
unsigned Opcode;
switch (MI->getOpcode()) {
default:
llvm_unreachable("Unexpected opcode!");
case ARM::PICSTR: Opcode = ARM::STRrs; break;
case ARM::PICSTRB: Opcode = ARM::STRBrs; break;
case ARM::PICSTRH: Opcode = ARM::STRH; break;
case ARM::PICLDR: Opcode = ARM::LDRrs; break;
case ARM::PICLDRB: Opcode = ARM::LDRBrs; break;
case ARM::PICLDRH: Opcode = ARM::LDRH; break;
case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
}
OutStreamer.EmitInstruction(MCInstBuilder(Opcode)
.addReg(MI->getOperand(0).getReg())
.addReg(ARM::PC)
.addReg(MI->getOperand(1).getReg())
.addImm(0)
// Add predicate operands.
.addImm(MI->getOperand(3).getImm())
.addReg(MI->getOperand(4).getReg()));
return;
}
case ARM::CONSTPOOL_ENTRY: {
/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
/// in the function. The first operand is the ID# for this instruction, the
/// second is the index into the MachineConstantPool that this is, the third
/// is the size in bytes of this constant pool entry.
/// The required alignment is specified on the basic block holding this MI.
unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
// If this is the first entry of the pool, mark it.
if (!InConstantPool) {
OutStreamer.EmitDataRegion(MCDR_DataRegion);
InConstantPool = true;
}
OutStreamer.EmitLabel(GetCPISymbol(LabelId));
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
if (MCPE.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
else
EmitGlobalConstant(MCPE.Val.ConstVal);
return;
}
case ARM::t2BR_JT: {
// Lower and emit the instruction itself, then the jump table following it.
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVr)
.addReg(ARM::PC)
.addReg(MI->getOperand(0).getReg())
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
// Output the data for the jump table itself
EmitJump2Table(MI);
return;
}
case ARM::t2TBB_JT: {
// Lower and emit the instruction itself, then the jump table following it.
OutStreamer.EmitInstruction(MCInstBuilder(ARM::t2TBB)
.addReg(ARM::PC)
.addReg(MI->getOperand(0).getReg())
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
// Output the data for the jump table itself
EmitJump2Table(MI);
// Make sure the next instruction is 2-byte aligned.
EmitAlignment(1);
return;
}
case ARM::t2TBH_JT: {
// Lower and emit the instruction itself, then the jump table following it.
OutStreamer.EmitInstruction(MCInstBuilder(ARM::t2TBH)
.addReg(ARM::PC)
.addReg(MI->getOperand(0).getReg())
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0));
// Output the data for the jump table itself
EmitJump2Table(MI);
return;
}
case ARM::tBR_JTr:
case ARM::BR_JTr: {
// Lower and emit the instruction itself, then the jump table following it.
// mov pc, target
MCInst TmpInst;
unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
ARM::MOVr : ARM::tMOVr;
TmpInst.setOpcode(Opc);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
if (Opc == ARM::MOVr)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
// Make sure the Thumb jump table is 4-byte aligned.
if (Opc == ARM::tMOVr)
EmitAlignment(2);
// Output the data for the jump table itself
EmitJumpTable(MI);
return;
}
case ARM::BR_JTm: {
// Lower and emit the instruction itself, then the jump table following it.
// ldr pc, target
MCInst TmpInst;
if (MI->getOperand(1).getReg() == 0) {
// literal offset
TmpInst.setOpcode(ARM::LDRi12);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
} else {
TmpInst.setOpcode(ARM::LDRrs);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
TmpInst.addOperand(MCOperand::CreateImm(0));
}
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
// Output the data for the jump table itself
EmitJumpTable(MI);
return;
}
case ARM::BR_JTadd: {
// Lower and emit the instruction itself, then the jump table following it.
// add pc, target, idx
OutStreamer.EmitInstruction(MCInstBuilder(ARM::ADDrr)
.addReg(ARM::PC)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
// Add predicate operands.
.addImm(ARMCC::AL)
.addReg(0)
// Add 's' bit operand (always reg0 for this)
.addReg(0));
// Output the data for the jump table itself
EmitJumpTable(MI);
return;
}
case ARM::TRAP: {
// Non-Darwin binutils don't yet support the "trap" mnemonic.
// FIXME: Remove this special case when they do.
if (!Subtarget->isTargetDarwin()) {
//.long 0xe7ffdefe @ trap
uint32_t Val = 0xe7ffdefeUL;
OutStreamer.AddComment("trap");
OutStreamer.EmitIntValue(Val, 4);
return;
}
break;
}
case ARM::TRAPNaCl: {
//.long 0xe7fedef0 @ trap
uint32_t Val = 0xe7fedef0UL;
OutStreamer.AddComment("trap");
OutStreamer.EmitIntValue(Val, 4);
return;
}
case ARM::tTRAP: {
// Non-Darwin binutils don't yet support the "trap" mnemonic.
// FIXME: Remove this special case when they do.
if (!Subtarget->isTargetDarwin()) {
//.short 57086 @ trap
uint16_t Val = 0xdefe;
OutStreamer.AddComment("trap");
OutStreamer.EmitIntValue(Val, 2);
return;
}
break;
}
case ARM::t2Int_eh_sjlj_setjmp:
case ARM::t2Int_eh_sjlj_setjmp_nofp:
case ARM::tInt_eh_sjlj_setjmp: {
// Two incoming args: GPR:$src, GPR:$val
// mov $val, pc
// adds $val, #7
// str $val, [$src, #4]
// movs r0, #0
// b 1f
// movs r0, #1
// 1:
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ValReg = MI->getOperand(1).getReg();
MCSymbol *Label = GetARMSJLJEHLabel();
OutStreamer.AddComment("eh_setjmp begin");
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVr)
.addReg(ValReg)
.addReg(ARM::PC)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tADDi3)
.addReg(ValReg)
// 's' bit operand
.addReg(ARM::CPSR)
.addReg(ValReg)
.addImm(7)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tSTRi)
.addReg(ValReg)
.addReg(SrcReg)
// The offset immediate is #4. The operand value is scaled by 4 for the
// tSTR instruction.
.addImm(1)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVi8)
.addReg(ARM::R0)
.addReg(ARM::CPSR)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext);
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tB)
.addExpr(SymbolExpr)
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer.AddComment("eh_setjmp end");
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVi8)
.addReg(ARM::R0)
.addReg(ARM::CPSR)
.addImm(1)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer.EmitLabel(Label);
return;
}
case ARM::Int_eh_sjlj_setjmp_nofp:
case ARM::Int_eh_sjlj_setjmp: {
// Two incoming args: GPR:$src, GPR:$val
// add $val, pc, #8
// str $val, [$src, #+4]
// mov r0, #0
// add pc, pc, #0
// mov r0, #1
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ValReg = MI->getOperand(1).getReg();
OutStreamer.AddComment("eh_setjmp begin");
OutStreamer.EmitInstruction(MCInstBuilder(ARM::ADDri)
.addReg(ValReg)
.addReg(ARM::PC)
.addImm(8)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0)
// 's' bit operand (always reg0 for this).
.addReg(0));
OutStreamer.EmitInstruction(MCInstBuilder(ARM::STRi12)
.addReg(ValReg)
.addReg(SrcReg)
.addImm(4)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVi)
.addReg(ARM::R0)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0)
// 's' bit operand (always reg0 for this).
.addReg(0));
OutStreamer.EmitInstruction(MCInstBuilder(ARM::ADDri)
.addReg(ARM::PC)
.addReg(ARM::PC)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0)
// 's' bit operand (always reg0 for this).
.addReg(0));
OutStreamer.AddComment("eh_setjmp end");
OutStreamer.EmitInstruction(MCInstBuilder(ARM::MOVi)
.addReg(ARM::R0)
.addImm(1)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0)
// 's' bit operand (always reg0 for this).
.addReg(0));
return;
}
case ARM::Int_eh_sjlj_longjmp: {
// ldr sp, [$src, #8]
// ldr $scratch, [$src, #4]
// ldr r7, [$src]
// bx $scratch
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ScratchReg = MI->getOperand(1).getReg();
OutStreamer.EmitInstruction(MCInstBuilder(ARM::LDRi12)
.addReg(ARM::SP)
.addReg(SrcReg)
.addImm(8)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer.EmitInstruction(MCInstBuilder(ARM::LDRi12)
.addReg(ScratchReg)
.addReg(SrcReg)
.addImm(4)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer.EmitInstruction(MCInstBuilder(ARM::LDRi12)
.addReg(ARM::R7)
.addReg(SrcReg)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer.EmitInstruction(MCInstBuilder(ARM::BX)
.addReg(ScratchReg)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
case ARM::tInt_eh_sjlj_longjmp: {
// ldr $scratch, [$src, #8]
// mov sp, $scratch
// ldr $scratch, [$src, #4]
// ldr r7, [$src]
// bx $scratch
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ScratchReg = MI->getOperand(1).getReg();
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tLDRi)
.addReg(ScratchReg)
.addReg(SrcReg)
// The offset immediate is #8. The operand value is scaled by 4 for the
// tLDR instruction.
.addImm(2)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tMOVr)
.addReg(ARM::SP)
.addReg(ScratchReg)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tLDRi)
.addReg(ScratchReg)
.addReg(SrcReg)
.addImm(1)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tLDRi)
.addReg(ARM::R7)
.addReg(SrcReg)
.addImm(0)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
OutStreamer.EmitInstruction(MCInstBuilder(ARM::tBX)
.addReg(ScratchReg)
// Predicate.
.addImm(ARMCC::AL)
.addReg(0));
return;
}
}
MCInst TmpInst;
LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
OutStreamer.EmitInstruction(TmpInst);
}
//===----------------------------------------------------------------------===//
// Target Registry Stuff
//===----------------------------------------------------------------------===//
// Force static initialization.
extern "C" void LLVMInitializeARMAsmPrinter() {
RegisterAsmPrinter<ARMAsmPrinter> X(TheARMTarget);
RegisterAsmPrinter<ARMAsmPrinter> Y(TheThumbTarget);
}