llvm-project/llvm/test/Transforms/LICM/hoisting.ll

395 lines
11 KiB
LLVM

; RUN: opt < %s -aa-pipeline=basic-aa -passes='require<opt-remark-emit>,loop(licm)' -S | FileCheck %s
; RUN: opt < %s -licm -verify-memoryssa -S | FileCheck %s
@X = global i32 0 ; <i32*> [#uses=1]
declare void @foo()
declare i32 @llvm.bitreverse.i32(i32)
; This testcase tests for a problem where LICM hoists
; potentially trapping instructions when they are not guaranteed to execute.
define i32 @test1(i1 %c) {
; CHECK-LABEL: @test1(
%A = load i32, i32* @X ; <i32> [#uses=2]
br label %Loop
Loop: ; preds = %LoopTail, %0
call void @foo( )
br i1 %c, label %LoopTail, label %IfUnEqual
IfUnEqual: ; preds = %Loop
; CHECK: IfUnEqual:
; CHECK-NEXT: sdiv i32 4, %A
%B1 = sdiv i32 4, %A ; <i32> [#uses=1]
br label %LoopTail
LoopTail: ; preds = %IfUnEqual, %Loop
%B = phi i32 [ 0, %Loop ], [ %B1, %IfUnEqual ] ; <i32> [#uses=1]
br i1 %c, label %Loop, label %Out
Out: ; preds = %LoopTail
%C = sub i32 %A, %B ; <i32> [#uses=1]
ret i32 %C
}
declare void @foo2(i32) nounwind
;; It is ok and desirable to hoist this potentially trapping instruction.
define i32 @test2(i1 %c) {
; CHECK-LABEL: @test2(
; CHECK-NEXT: load i32, i32* @X
; CHECK-NEXT: %B = sdiv i32 4, %A
%A = load i32, i32* @X
br label %Loop
Loop:
;; Should have hoisted this div!
%B = sdiv i32 4, %A
br label %loop2
loop2:
call void @foo2( i32 %B )
br i1 %c, label %Loop, label %Out
Out:
%C = sub i32 %A, %B
ret i32 %C
}
; This loop invariant instruction should be constant folded, not hoisted.
define i32 @test3(i1 %c) {
; CHECK-LABEL: define i32 @test3(
; CHECK: call void @foo2(i32 6)
%A = load i32, i32* @X ; <i32> [#uses=2]
br label %Loop
Loop:
%B = add i32 4, 2 ; <i32> [#uses=2]
call void @foo2( i32 %B )
br i1 %c, label %Loop, label %Out
Out: ; preds = %Loop
%C = sub i32 %A, %B ; <i32> [#uses=1]
ret i32 %C
}
; CHECK-LABEL: @test4(
; CHECK: call
; CHECK: sdiv
; CHECK: ret
define i32 @test4(i32 %x, i32 %y) nounwind uwtable ssp {
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i.02 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
%n.01 = phi i32 [ 0, %entry ], [ %add, %for.body ]
call void @foo_may_call_exit(i32 0)
%div = sdiv i32 %x, %y
%add = add nsw i32 %n.01, %div
%inc = add nsw i32 %i.02, 1
%cmp = icmp slt i32 %inc, 10000
br i1 %cmp, label %for.body, label %for.end
for.end: ; preds = %for.body
%n.0.lcssa = phi i32 [ %add, %for.body ]
ret i32 %n.0.lcssa
}
declare void @foo_may_call_exit(i32)
; PR14854
; CHECK-LABEL: @test5(
; CHECK: extractvalue
; CHECK: br label %tailrecurse
; CHECK: tailrecurse:
; CHECK: ifend:
; CHECK: insertvalue
define { i32*, i32 } @test5(i32 %i, { i32*, i32 } %e) {
entry:
br label %tailrecurse
tailrecurse: ; preds = %then, %entry
%i.tr = phi i32 [ %i, %entry ], [ %cmp2, %then ]
%out = extractvalue { i32*, i32 } %e, 1
%d = insertvalue { i32*, i32 } %e, i32* null, 0
%cmp1 = icmp sgt i32 %out, %i.tr
br i1 %cmp1, label %then, label %ifend
then: ; preds = %tailrecurse
call void @foo()
%cmp2 = add i32 %i.tr, 1
br label %tailrecurse
ifend: ; preds = %tailrecurse
ret { i32*, i32 } %d
}
; CHECK: define void @test6(float %f)
; CHECK: fneg
; CHECK: br label %for.body
define void @test6(float %f) #2 {
entry:
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i32 [ 0, %entry ], [ %inc, %for.body ]
call void @foo_may_call_exit(i32 0)
%neg = fneg float %f
call void @use(float %neg)
%inc = add nsw i32 %i, 1
%cmp = icmp slt i32 %inc, 10000
br i1 %cmp, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
declare void @use(float)
; CHECK: define i32 @hoist_bitreverse(i32 %0)
; CHECK: bitreverse
; CHECK: br label %header
define i32 @hoist_bitreverse(i32 %0) {
br label %header
header:
%sum = phi i32 [ 0, %1 ], [ %5, %latch ]
%2 = phi i32 [ 0, %1 ], [ %6, %latch ]
%3 = icmp slt i32 %2, 1024
br i1 %3, label %body, label %return
body:
%4 = call i32 @llvm.bitreverse.i32(i32 %0)
%5 = add i32 %sum, %4
br label %latch
latch:
%6 = add nsw i32 %2, 1
br label %header
return:
ret i32 %sum
}
; Can neither sink nor hoist
define i32 @test_volatile(i1 %c) {
; CHECK-LABEL: @test_volatile(
; CHECK-LABEL: Loop:
; CHECK: load volatile i32, i32* @X
; CHECK-LABEL: Out:
br label %Loop
Loop:
%A = load volatile i32, i32* @X
br i1 %c, label %Loop, label %Out
Out:
ret i32 %A
}
declare {}* @llvm.invariant.start.p0i8(i64, i8* nocapture) nounwind readonly
declare void @llvm.invariant.end.p0i8({}*, i64, i8* nocapture) nounwind
declare void @escaping.invariant.start({}*) nounwind
; invariant.start dominates the load, and in this scope, the
; load is invariant. So, we can hoist the `addrld` load out of the loop.
define i32 @test_fence(i8* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence
; CHECK-LABEL: entry
; CHECK: invariant.start
; CHECK: %addrld = load atomic i32, i32* %addr.i unordered, align 8
; CHECK: br label %loop
entry:
%gep = getelementptr inbounds i8, i8* %addr, i64 8
%addr.i = bitcast i8* %gep to i32 *
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; Same as test above, but the load is no longer invariant (presence of
; invariant.end). We cannot hoist the addrld out of loop.
define i32 @test_fence1(i8* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence1
; CHECK-LABEL: entry
; CHECK: invariant.start
; CHECK-NEXT: invariant.end
; CHECK-NEXT: br label %loop
entry:
%gep = getelementptr inbounds i8, i8* %addr, i64 8
%addr.i = bitcast i8* %gep to i32 *
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
call void @llvm.invariant.end.p0i8({}* %invst, i64 4, i8* %gep)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; same as test above, but instead of invariant.end, we have the result of
; invariant.start escaping through a call. We cannot hoist the load.
define i32 @test_fence2(i8* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence2
; CHECK-LABEL: entry
; CHECK-NOT: load
; CHECK: br label %loop
entry:
%gep = getelementptr inbounds i8, i8* %addr, i64 8
%addr.i = bitcast i8* %gep to i32 *
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
call void @escaping.invariant.start({}* %invst)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; FIXME: invariant.start dominates the load, and in this scope, the
; load is invariant. So, we can hoist the `addrld` load out of the loop.
; Consider the loadoperand addr.i bitcasted before being passed to
; invariant.start
define i32 @test_fence3(i32* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence3
; CHECK-LABEL: entry
; CHECK: invariant.start
; CHECK-NOT: %addrld = load atomic i32, i32* %addr.i unordered, align 8
; CHECK: br label %loop
entry:
%addr.i = getelementptr inbounds i32, i32* %addr, i64 8
%gep = bitcast i32* %addr.i to i8 *
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; We should not hoist the addrld out of the loop.
define i32 @test_fence4(i32* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence4
; CHECK-LABEL: entry
; CHECK-NOT: %addrld = load atomic i32, i32* %addr.i unordered, align 8
; CHECK: br label %loop
entry:
%addr.i = getelementptr inbounds i32, i32* %addr, i64 8
%gep = bitcast i32* %addr.i to i8 *
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep)
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}
; We can't hoist the invariant load out of the loop because
; the marker is given a variable size (-1).
define i32 @test_fence5(i8* %addr, i32 %n, i8* %volatile) {
; CHECK-LABEL: @test_fence5
; CHECK-LABEL: entry
; CHECK: invariant.start
; CHECK-NOT: %addrld = load atomic i32, i32* %addr.i unordered, align 8
; CHECK: br label %loop
entry:
%gep = getelementptr inbounds i8, i8* %addr, i64 8
%addr.i = bitcast i8* %gep to i32 *
store atomic i32 5, i32 * %addr.i unordered, align 8
fence release
%invst = call {}* @llvm.invariant.start.p0i8(i64 -1, i8* %gep)
br label %loop
loop:
%indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ]
%sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ]
%volload = load atomic i8, i8* %volatile unordered, align 8
fence acquire
%volchk = icmp eq i8 %volload, 0
%addrld = load atomic i32, i32* %addr.i unordered, align 8
%sel = select i1 %volchk, i32 0, i32 %addrld
%sum.next = add i32 %sel, %sum
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %n
br i1 %cond, label %loop, label %loopexit
loopexit:
ret i32 %sum
}