llvm-project/llvm/lib/Target/ARM/ARMTargetMachine.cpp

288 lines
11 KiB
C++

//===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMTargetMachine.h"
#include "ARMFrameLowering.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;
static cl::opt<bool>
DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
cl::desc("Inhibit optimization of S->D register accesses on A15"),
cl::init(false));
static cl::opt<bool>
EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
cl::desc("Run SimplifyCFG after expanding atomic operations"
" to make use of cmpxchg flow-based information"),
cl::init(true));
extern "C" void LLVMInitializeARMTarget() {
// Register the target.
RegisterTargetMachine<ARMLETargetMachine> X(TheARMLETarget);
RegisterTargetMachine<ARMBETargetMachine> Y(TheARMBETarget);
RegisterTargetMachine<ThumbLETargetMachine> A(TheThumbLETarget);
RegisterTargetMachine<ThumbBETargetMachine> B(TheThumbBETarget);
}
/// TargetMachine ctor - Create an ARM architecture model.
///
ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL, bool isLittle)
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
Subtarget(TT, CPU, FS, *this, isLittle), isLittle(isLittle) {
// Default to triple-appropriate float ABI
if (Options.FloatABIType == FloatABI::Default)
this->Options.FloatABIType =
Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft;
}
const ARMSubtarget *
ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
AttributeSet FnAttrs = F.getAttributes();
Attribute CPUAttr =
FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu");
Attribute FSAttr =
FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features");
std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
? CPUAttr.getValueAsString().str()
: TargetCPU;
std::string FS = !FSAttr.hasAttribute(Attribute::None)
? FSAttr.getValueAsString().str()
: TargetFS;
// FIXME: This is related to the code below to reset the target options,
// we need to know whether or not the soft float flag is set on the
// function before we can generate a subtarget. We also need to use
// it as a key for the subtarget since that can be the only difference
// between two functions.
Attribute SFAttr =
FnAttrs.getAttribute(AttributeSet::FunctionIndex, "use-soft-float");
bool SoftFloat = !SFAttr.hasAttribute(Attribute::None)
? SFAttr.getValueAsString() == "true"
: Options.UseSoftFloat;
auto &I = SubtargetMap[CPU + FS + (SoftFloat ? "use-soft-float=true"
: "use-soft-float=false")];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle);
}
return I.get();
}
void ARMBaseTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
// Add first the target-independent BasicTTI pass, then our ARM pass. This
// allows the ARM pass to delegate to the target independent layer when
// appropriate.
PM.add(createBasicTargetTransformInfoPass(this));
PM.add(createARMTargetTransformInfoPass(this));
}
void ARMTargetMachine::anchor() { }
ARMTargetMachine::ARMTargetMachine(const Target &T, StringRef TT, StringRef CPU,
StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL, bool isLittle)
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) {
initAsmInfo();
if (!Subtarget.hasARMOps())
report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not "
"support ARM mode execution!");
}
void ARMLETargetMachine::anchor() { }
ARMLETargetMachine::ARMLETargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
void ARMBETargetMachine::anchor() { }
ARMBETargetMachine::ARMBETargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
void ThumbTargetMachine::anchor() { }
ThumbTargetMachine::ThumbTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL, bool isLittle)
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL,
isLittle) {
initAsmInfo();
}
void ThumbLETargetMachine::anchor() { }
ThumbLETargetMachine::ThumbLETargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
void ThumbBETargetMachine::anchor() { }
ThumbBETargetMachine::ThumbBETargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
namespace {
/// ARM Code Generator Pass Configuration Options.
class ARMPassConfig : public TargetPassConfig {
public:
ARMPassConfig(ARMBaseTargetMachine *TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
ARMBaseTargetMachine &getARMTargetMachine() const {
return getTM<ARMBaseTargetMachine>();
}
const ARMSubtarget &getARMSubtarget() const {
return *getARMTargetMachine().getSubtargetImpl();
}
void addIRPasses() override;
bool addPreISel() override;
bool addInstSelector() override;
bool addPreRegAlloc() override;
bool addPreSched2() override;
bool addPreEmitPass() override;
};
} // namespace
TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
return new ARMPassConfig(this, PM);
}
void ARMPassConfig::addIRPasses() {
if (TM->Options.ThreadModel == ThreadModel::Single)
addPass(createLowerAtomicPass());
else
addPass(createAtomicExpandPass(TM));
// Cmpxchg instructions are often used with a subsequent comparison to
// determine whether it succeeded. We can exploit existing control-flow in
// ldrex/strex loops to simplify this, but it needs tidying up.
const ARMSubtarget *Subtarget = &getARMSubtarget();
if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only())
if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
addPass(createCFGSimplificationPass());
TargetPassConfig::addIRPasses();
}
bool ARMPassConfig::addPreISel() {
if (TM->getOptLevel() != CodeGenOpt::None)
addPass(createGlobalMergePass(TM));
return false;
}
bool ARMPassConfig::addInstSelector() {
addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
const ARMSubtarget *Subtarget = &getARMSubtarget();
if (Subtarget->isTargetELF() && !Subtarget->isThumb1Only() &&
TM->Options.EnableFastISel)
addPass(createARMGlobalBaseRegPass());
return false;
}
bool ARMPassConfig::addPreRegAlloc() {
if (getOptLevel() != CodeGenOpt::None)
addPass(createARMLoadStoreOptimizationPass(true));
if (getOptLevel() != CodeGenOpt::None && getARMSubtarget().isCortexA9())
addPass(createMLxExpansionPass());
// Since the A15SDOptimizer pass can insert VDUP instructions, it can only be
// enabled when NEON is available.
if (getOptLevel() != CodeGenOpt::None && getARMSubtarget().isCortexA15() &&
getARMSubtarget().hasNEON() && !DisableA15SDOptimization) {
addPass(createA15SDOptimizerPass());
}
return true;
}
bool ARMPassConfig::addPreSched2() {
if (getOptLevel() != CodeGenOpt::None) {
addPass(createARMLoadStoreOptimizationPass());
printAndVerify("After ARM load / store optimizer");
if (getARMSubtarget().hasNEON())
addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass));
}
// Expand some pseudo instructions into multiple instructions to allow
// proper scheduling.
addPass(createARMExpandPseudoPass());
if (getOptLevel() != CodeGenOpt::None) {
if (!getARMSubtarget().isThumb1Only()) {
// in v8, IfConversion depends on Thumb instruction widths
if (getARMSubtarget().restrictIT() &&
!getARMSubtarget().prefers32BitThumb())
addPass(createThumb2SizeReductionPass());
addPass(&IfConverterID);
}
}
if (getARMSubtarget().isThumb2())
addPass(createThumb2ITBlockPass());
return true;
}
bool ARMPassConfig::addPreEmitPass() {
if (getARMSubtarget().isThumb2()) {
if (!getARMSubtarget().prefers32BitThumb())
addPass(createThumb2SizeReductionPass());
// Constant island pass work on unbundled instructions.
addPass(&UnpackMachineBundlesID);
}
addPass(createARMOptimizeBarriersPass());
addPass(createARMConstantIslandPass());
return true;
}