llvm-project/mlir/test/lib/TestDialect/TestOps.td

1066 lines
36 KiB
TableGen

//===-- TestOps.td - Test dialect operation definitions ----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef TEST_OPS
#define TEST_OPS
include "mlir/IR/OpBase.td"
include "mlir/IR/OpAsmInterface.td"
include "mlir/Analysis/CallInterfaces.td"
include "mlir/Analysis/InferTypeOpInterface.td"
def TEST_Dialect : Dialect {
let name = "test";
let cppNamespace = "";
}
class TEST_Op<string mnemonic, list<OpTrait> traits = []> :
Op<TEST_Dialect, mnemonic, traits>;
//===----------------------------------------------------------------------===//
// Test Types
//===----------------------------------------------------------------------===//
def ComplexF64 : Complex<F64>;
def ComplexOp : TEST_Op<"complex_f64"> {
let results = (outs ComplexF64);
}
def ComplexTensorOp : TEST_Op<"complex_f64_tensor"> {
let results = (outs TensorOf<[ComplexF64]>);
}
def AnyShaped: ShapedContainerType<[AnyType], IsShapedTypePred, "shaped">;
def TupleOp : TEST_Op<"tuple_32_bit"> {
let results = (outs TupleOf<[I32, F32]>);
}
def NestedTupleOp : TEST_Op<"nested_tuple_32_bit"> {
let results = (outs NestedTupleOf<[I32, F32]>);
}
def TakesStaticMemRefOp : TEST_Op<"takes_static_memref"> {
let arguments = (ins AnyStaticShapeMemRef:$x);
}
def RankLessThan2I8F32MemRefOp : TEST_Op<"rank_less_than_2_I8_F32_memref"> {
let results = (outs MemRefRankOf<[I8, F32], [0, 1]>);
}
def NDTensorOfOp : TEST_Op<"nd_tensor_of"> {
let arguments = (ins
0DTensorOf<[F32]>:$arg0,
1DTensorOf<[F32]>:$arg1,
2DTensorOf<[I16]>:$arg2,
3DTensorOf<[I16]>:$arg3,
4DTensorOf<[I16]>:$arg4
);
}
def RankedTensorOp : TEST_Op<"ranked_tensor_op"> {
let arguments = (ins AnyRankedTensor:$input);
}
def MultiTensorRankOf : TEST_Op<"multi_tensor_rank_of"> {
let arguments = (ins
TensorRankOf<[I8, I32, F32], [0, 1]>:$arg0
);
}
//===----------------------------------------------------------------------===//
// Test Symbols
//===----------------------------------------------------------------------===//
def SymbolOp : TEST_Op<"symbol", [Symbol]> {
let summary = "operation which defines a new symbol";
let arguments = (ins StrAttr:$sym_name,
OptionalAttr<StrAttr>:$sym_visibility);
}
def SymbolScopeOp : TEST_Op<"symbol_scope",
[SymbolTable, SingleBlockImplicitTerminator<"TerminatorOp">]> {
let summary = "operation which defines a new symbol table";
let regions = (region SizedRegion<1>:$region);
}
def SymbolTableRegionOp : TEST_Op<"symbol_table_region", [SymbolTable]> {
let summary = "operation which defines a new symbol table without a "
"restriction on a terminator";
let regions = (region SizedRegion<1>:$region);
}
//===----------------------------------------------------------------------===//
// Test Operands
//===----------------------------------------------------------------------===//
def MixedNormalVariadicOperandOp : TEST_Op<
"mixed_normal_variadic_operand", [SameVariadicOperandSize]> {
let arguments = (ins
Variadic<AnyTensor>:$input1,
AnyTensor:$input2,
Variadic<AnyTensor>:$input3
);
}
//===----------------------------------------------------------------------===//
// Test Results
//===----------------------------------------------------------------------===//
def MixedNormalVariadicResults : TEST_Op<
"mixed_normal_variadic_result", [SameVariadicResultSize]> {
let results = (outs
Variadic<AnyTensor>:$output1,
AnyTensor:$output2,
Variadic<AnyTensor>:$output3
);
}
//===----------------------------------------------------------------------===//
// Test Attributes
//===----------------------------------------------------------------------===//
def NonNegIntAttrOp : TEST_Op<"non_negative_int_attr"> {
let arguments = (ins
NonNegativeI32Attr:$i32attr,
NonNegativeI64Attr:$i64attr
);
}
def PositiveIntAttrOp : TEST_Op<"positive_int_attr"> {
let arguments = (ins
PositiveI32Attr:$i32attr,
PositiveI64Attr:$i64attr
);
}
def TypeArrayAttrOp : TEST_Op<"type_array_attr"> {
let arguments = (ins TypeArrayAttr:$attr);
}
def TypeStringAttrWithTypeOp : TEST_Op<"string_attr_with_type"> {
let arguments = (ins StrAttr:$attr);
let printer = [{ p << getAttr("attr"); }];
let parser = [{
Attribute attr;
Type stringType = OpaqueType::get(Identifier::get("foo",
result.getContext()), "string",
result.getContext());
return parser.parseAttribute(attr, stringType, "attr", result.attributes);
}];
}
def StrCaseA: StrEnumAttrCase<"A">;
def StrCaseB: StrEnumAttrCase<"B">;
def SomeStrEnum: StrEnumAttr<
"SomeStrEnum", "", [StrCaseA, StrCaseB]>;
def StrEnumAttrOp : TEST_Op<"str_enum_attr"> {
let arguments = (ins SomeStrEnum:$attr);
let results = (outs I32:$val);
}
def I32Case5: I32EnumAttrCase<"case5", 5>;
def I32Case10: I32EnumAttrCase<"case10", 10>;
def SomeI32Enum: I32EnumAttr<
"SomeI32Enum", "", [I32Case5, I32Case10]>;
def I32EnumAttrOp : TEST_Op<"i32_enum_attr"> {
let arguments = (ins SomeI32Enum:$attr);
let results = (outs I32:$val);
}
def I64Case5: I64EnumAttrCase<"case5", 5>;
def I64Case10: I64EnumAttrCase<"case10", 10>;
def SomeI64Enum: I64EnumAttr<
"SomeI64Enum", "", [I64Case5, I64Case10]>;
def I64EnumAttrOp : TEST_Op<"i64_enum_attr"> {
let arguments = (ins SomeI64Enum:$attr);
let results = (outs I32:$val);
}
def FloatElementsAttrOp : TEST_Op<"float_elements_attr"> {
let arguments = (ins
RankedF32ElementsAttr<[2]>:$scalar_f32_attr,
RankedF64ElementsAttr<[4, 8]>:$tensor_f64_attr
);
}
// A pattern that updates dense<[3.0, 4.0]> to dense<[5.0, 6.0]>.
// This tests both matching and generating float elements attributes.
def UpdateFloatElementsAttr : Pat<
(FloatElementsAttrOp
ConstantAttr<RankedF32ElementsAttr<[2]>, "{3.0f, 4.0f}">:$f32attr,
$f64attr),
(FloatElementsAttrOp
ConstantAttr<RankedF32ElementsAttr<[2]>, "{5.0f, 6.0f}">:$f32attr,
$f64attr)>;
//===----------------------------------------------------------------------===//
// Test Attribute Constraints
//===----------------------------------------------------------------------===//
def SymbolRefOp : TEST_Op<"symbol_ref_attr"> {
let arguments = (ins
Confined<FlatSymbolRefAttr, [ReferToOp<"FuncOp">]>:$symbol
);
}
//===----------------------------------------------------------------------===//
// Test Regions
//===----------------------------------------------------------------------===//
def OneRegionOp : TEST_Op<"one_region_op", []> {
let regions = (region AnyRegion);
}
def TwoRegionOp : TEST_Op<"two_region_op", []> {
let regions = (region AnyRegion, AnyRegion);
}
def SizedRegionOp : TEST_Op<"sized_region_op", []> {
let regions = (region SizedRegion<2>:$my_region, SizedRegion<1>);
}
//===----------------------------------------------------------------------===//
// Test Call Interfaces
//===----------------------------------------------------------------------===//
def ConversionCallOp : TEST_Op<"conversion_call_op",
[CallOpInterface]> {
let arguments = (ins Variadic<AnyType>:$inputs, SymbolRefAttr:$callee);
let results = (outs Variadic<AnyType>);
let extraClassDeclaration = [{
/// Get the argument operands to the called function.
operand_range getArgOperands() { return inputs(); }
/// Return the callee of this operation.
CallInterfaceCallable getCallableForCallee() {
return getAttrOfType<SymbolRefAttr>("callee");
}
}];
}
def FunctionalRegionOp : TEST_Op<"functional_region_op",
[CallableOpInterface]> {
let regions = (region AnyRegion:$body);
let results = (outs FunctionType);
let extraClassDeclaration = [{
Region *getCallableRegion() { return &body(); }
ArrayRef<Type> getCallableResults() {
return getType().cast<FunctionType>().getResults();
}
}];
}
//===----------------------------------------------------------------------===//
// Test Traits
//===----------------------------------------------------------------------===//
def SameOperandElementTypeOp : TEST_Op<"same_operand_element_type",
[SameOperandsElementType]> {
let arguments = (ins AnyType, AnyType);
let results = (outs AnyType);
}
def SameOperandAndResultElementTypeOp : TEST_Op<"same_operand_and_result_element_type",
[SameOperandsAndResultElementType]> {
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>);
}
def SameOperandShapeOp : TEST_Op<"same_operand_shape", [SameOperandsShape]> {
let arguments = (ins Variadic<AnyShaped>);
}
def SameOperandAndResultShapeOp : TEST_Op<"same_operand_and_result_shape",
[SameOperandsAndResultShape]> {
let arguments = (ins Variadic<AnyShaped>);
let results = (outs Variadic<AnyShaped>);
}
def SameOperandAndResultTypeOp : TEST_Op<"same_operand_and_result_type",
[SameOperandsAndResultType]> {
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>);
}
def ArgAndResHaveFixedElementTypesOp :
TEST_Op<"arg_and_res_have_fixed_element_types",
[PredOpTrait<"fixed type combination",
And<[ElementTypeIsPred<"x", I32>,
ElementTypeIsPred<"y", F32>]>>,
ElementTypeIs<"res", I16>]> {
let arguments = (ins
AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def OperandsHaveSameElementType : TEST_Op<"operands_have_same_element_type", [
AllElementTypesMatch<["x", "y"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
}
def OperandZeroAndResultHaveSameElementType : TEST_Op<
"operand0_and_result_have_same_element_type",
[AllElementTypesMatch<["x", "res"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
let results = (outs AnyType:$res);
}
def OperandsHaveSameType :
TEST_Op<"operands_have_same_type", [AllTypesMatch<["x", "y"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
}
def OperandZeroAndResultHaveSameType :
TEST_Op<"operand0_and_result_have_same_type",
[AllTypesMatch<["x", "res"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
let results = (outs AnyType:$res);
}
def OperandsHaveSameRank :
TEST_Op<"operands_have_same_rank", [AllRanksMatch<["x", "y"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
}
def OperandZeroAndResultHaveSameRank :
TEST_Op<"operand0_and_result_have_same_rank",
[AllRanksMatch<["x", "res"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def OperandZeroAndResultHaveSameShape :
TEST_Op<"operand0_and_result_have_same_shape",
[AllShapesMatch<["x", "res"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def OperandZeroAndResultHaveSameElementCount :
TEST_Op<"operand0_and_result_have_same_element_count",
[AllElementCountsMatch<["x", "res"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def FourEqualsFive :
TEST_Op<"four_equals_five", [AllMatch<["5", "4"], "4 equals 5">]>;
def OperandRankEqualsResultSize :
TEST_Op<"operand_rank_equals_result_size",
[AllMatch<[Rank<"operand">.result, ElementCount<"result">.result],
"operand rank equals result size">]> {
let arguments = (ins AnyShaped:$operand);
let results = (outs AnyShaped:$result);
}
def IfFirstOperandIsNoneThenSoIsSecond :
TEST_Op<"if_first_operand_is_none_then_so_is_second", [PredOpTrait<
"has either both none type operands or first is not none",
Or<[
And<[TypeIsPred<"x", NoneType>, TypeIsPred<"y", NoneType>]>,
Neg<TypeIsPred<"x", NoneType>>]>>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
}
def BroadcastableOp : TEST_Op<"broadcastable", [ResultsBroadcastableShape]> {
let arguments = (ins Variadic<AnyTensor>);
let results = (outs AnyTensor);
}
// There the "HasParent" trait.
def ParentOp : TEST_Op<"parent">;
def ChildOp : TEST_Op<"child", [HasParent<"ParentOp">]>;
def TerminatorOp : TEST_Op<"finish", [Terminator]>;
def SingleBlockImplicitTerminatorOp : TEST_Op<"SingleBlockImplicitTerminator",
[SingleBlockImplicitTerminator<"TerminatorOp">]> {
let regions = (region SizedRegion<1>:$region);
}
def I32ElementsAttrOp : TEST_Op<"i32ElementsAttr"> {
let arguments = (ins I32ElementsAttr:$attr);
}
def OpWithInferTypeInterfaceOp : TEST_Op<"op_with_infer_type_if", [
DeclareOpInterfaceMethods<InferTypeOpInterface>]> {
let arguments = (ins AnyTensor, AnyTensor);
let results = (outs AnyTensor);
}
def InferTensorType : NativeOpTrait<"InferTensorType">;
def OpWithShapedTypeInferTypeInterfaceOp : TEST_Op<"op_with_shaped_type_infer_type_if",
[
// Op implements infer type op interface.
InferTypeOpInterface,
// The op will have methods implementing the ShapedType type infer interface.
DeclareOpInterfaceMethods<InferShapedTypeOpInterface>,
// The op produces tensors and will use the ShapedType type infer interface
// along with knowledge that it is producing Tensors to infer shape.
InferTensorType
]> {
let arguments = (ins AnyTensor, AnyTensor);
let results = (outs AnyTensor);
}
def IsNotScalar : Constraint<CPred<"$0.getType().getRank() != 0">>;
def UpdateAttr : Pat<(I32ElementsAttrOp $attr),
(I32ElementsAttrOp ConstantAttr<I32ElementsAttr, "0">),
[(IsNotScalar $attr)]>;
def TestBranchOp : TEST_Op<"br", [Terminator]> {
let arguments = (ins Variadic<AnyType>:$operands);
}
def AttrSizedOperandOp : TEST_Op<"attr_sized_operands",
[AttrSizedOperandSegments]> {
let arguments = (ins
Variadic<I32>:$a,
Variadic<I32>:$b,
I32:$c,
Variadic<I32>:$d,
I32ElementsAttr:$operand_segment_sizes
);
}
def AttrSizedResultOp : TEST_Op<"attr_sized_results",
[AttrSizedResultSegments]> {
let arguments = (ins
I32ElementsAttr:$result_segment_sizes
);
let results = (outs
Variadic<I32>:$a,
Variadic<I32>:$b,
I32:$c,
Variadic<I32>:$d
);
}
//===----------------------------------------------------------------------===//
// Test Patterns
//===----------------------------------------------------------------------===//
def OpA : TEST_Op<"op_a"> {
let arguments = (ins I32, I32Attr:$attr);
let results = (outs I32);
}
def OpB : TEST_Op<"op_b"> {
let arguments = (ins I32, I32Attr:$attr);
let results = (outs I32);
}
// Test named pattern.
def TestNamedPatternRule : Pat<(OpA $input, $attr), (OpB $input, $attr)>;
// Test with fused location.
def : Pat<(OpA (OpA $input, $attr), $bttr), (OpB $input, $bttr)>;
// Test added benefit.
def OpD : TEST_Op<"op_d">, Arguments<(ins I32)>, Results<(outs I32)>;
def OpE : TEST_Op<"op_e">, Arguments<(ins I32)>, Results<(outs I32)>;
def OpF : TEST_Op<"op_f">, Arguments<(ins I32)>, Results<(outs I32)>;
def OpG : TEST_Op<"op_g">, Arguments<(ins I32)>, Results<(outs I32)>;
// Verify that bumping benefit results in selecting different op.
def : Pat<(OpD $input), (OpE $input)>;
def : Pat<(OpD $input), (OpF $input), [], (addBenefit 10)>;
// Verify that patterns with more source nodes are selected before those with fewer.
def : Pat<(OpG $input), (OpB $input, ConstantAttr<I32Attr, "20">:$attr)>;
def : Pat<(OpG (OpG $input)), (OpB $input, ConstantAttr<I32Attr, "34">:$attr)>;
// Test patterns for zero-result op.
def OpH : TEST_Op<"op_h">, Arguments<(ins I32)>, Results<(outs)>;
def OpI : TEST_Op<"op_i">, Arguments<(ins I32)>, Results<(outs)>;
def : Pat<(OpH $input), (OpI $input)>;
// Test patterns for zero-input op.
def OpJ : TEST_Op<"op_j">, Arguments<(ins)>, Results<(outs I32)>;
def OpK : TEST_Op<"op_k">, Arguments<(ins)>, Results<(outs I32)>;
def : Pat<(OpJ), (OpK)>;
// Test `$_` for ignoring op argument match.
def TestIgnoreArgMatchSrcOp : TEST_Op<"ignore_arg_match_src"> {
let arguments = (ins
AnyType:$a, AnyType:$b, AnyType:$c,
AnyAttr:$d, AnyAttr:$e, AnyAttr:$f);
}
def TestIgnoreArgMatchDstOp : TEST_Op<"ignore_arg_match_dst"> {
let arguments = (ins AnyType:$b, AnyAttr:$f);
}
def : Pat<(TestIgnoreArgMatchSrcOp $_, $b, I32, I64Attr:$_, $_, $f),
(TestIgnoreArgMatchDstOp $b, $f)>;
def OpInterleavedOperandAttribute1 : TEST_Op<"interleaved_operand_attr1"> {
let arguments = (ins
I32:$input1,
I64Attr:$attr1,
I32:$input2,
I64Attr:$attr2
);
}
def OpInterleavedOperandAttribute2 : TEST_Op<"interleaved_operand_attr2"> {
let arguments = (ins
I32:$input1,
I64Attr:$attr1,
I32:$input2,
I64Attr:$attr2
);
}
def ManyArgsOp : TEST_Op<"many_arguments"> {
let arguments = (ins
I32:$input1, I32:$input2, I32:$input3, I32:$input4, I32:$input5,
I32:$input6, I32:$input7, I32:$input8, I32:$input9,
I64Attr:$attr1, I64Attr:$attr2, I64Attr:$attr3, I64Attr:$attr4,
I64Attr:$attr5, I64Attr:$attr6, I64Attr:$attr7, I64Attr:$attr8,
I64Attr:$attr9
);
}
// Test that DRR does not blow up when seeing lots of arguments.
def : Pat<(ManyArgsOp
$input1, $input2, $input3, $input4, $input5,
$input6, $input7, $input8, $input9,
ConstantAttr<I64Attr, "42">,
$attr2, $attr3, $attr4, $attr5, $attr6,
$attr7, $attr8, $attr9),
(ManyArgsOp
$input1, $input2, $input3, $input4, $input5,
$input6, $input7, $input8, $input9,
ConstantAttr<I64Attr, "24">,
$attr2, $attr3, $attr4, $attr5, $attr6,
$attr7, $attr8, $attr9)>;
// Test that we can capture and reference interleaved operands and attributes.
def : Pat<(OpInterleavedOperandAttribute1 $input1, $attr1, $input2, $attr2),
(OpInterleavedOperandAttribute2 $input1, $attr1, $input2, $attr2)>;
// Test NativeCodeCall.
def OpNativeCodeCall1 : TEST_Op<"native_code_call1"> {
let arguments = (ins
I32:$input1, I32:$input2,
BoolAttr:$choice,
I64Attr:$attr1, I64Attr:$attr2
);
let results = (outs I32);
}
def OpNativeCodeCall2 : TEST_Op<"native_code_call2"> {
let arguments = (ins I32:$input, I64ArrayAttr:$attr);
let results = (outs I32);
}
// Native code call to invoke a C++ function
def CreateOperand: NativeCodeCall<"chooseOperand($0, $1, $2)">;
// Native code call to invoke a C++ expression
def CreateArrayAttr: NativeCodeCall<"$_builder.getArrayAttr({$0, $1})">;
// Test that we can use NativeCodeCall to create operand and attribute.
// This pattern chooses between $input1 and $input2 according to $choice and
// it combines $attr1 and $attr2 into an array attribute.
def : Pat<(OpNativeCodeCall1 $input1, $input2,
ConstBoolAttrTrue:$choice, $attr1, $attr2),
(OpNativeCodeCall2 (CreateOperand $input1, $input2, $choice),
(CreateArrayAttr $attr1, $attr2))>;
// Note: the following is just for testing purpose.
// Should use the replaceWithValue directive instead.
def UseOpResult: NativeCodeCall<"$0">;
// Test that we can use NativeCodeCall to create result.
def : Pat<(OpNativeCodeCall1 $input1, $input2,
ConstBoolAttrFalse, $attr1, $attr2),
(UseOpResult $input2)>;
def OpNativeCodeCall3 : TEST_Op<"native_code_call3"> {
let arguments = (ins I32:$input);
let results = (outs I32);
}
// Test that NativeCodeCall is not ignored if it is not used to directly
// replace the matched root op.
def : Pattern<(OpNativeCodeCall3 $input),
[(NativeCodeCall<"createOpI($_builder, $0)"> $input), (OpK)]>;
// Test AllAttrConstraintsOf.
def OpAllAttrConstraint1 : TEST_Op<"all_attr_constraint_of1"> {
let arguments = (ins I64ArrayAttr:$attr);
let results = (outs I32);
}
def OpAllAttrConstraint2 : TEST_Op<"all_attr_constraint_of2"> {
let arguments = (ins I64ArrayAttr:$attr);
let results = (outs I32);
}
def Constraint0 : AttrConstraint<
CPred<"$_self.cast<ArrayAttr>().getValue()[0]."
"cast<IntegerAttr>().getInt() == 0">,
"[0] == 0">;
def Constraint1 : AttrConstraint<
CPred<"$_self.cast<ArrayAttr>().getValue()[1]."
"cast<IntegerAttr>().getInt() == 1">,
"[1] == 1">;
def : Pat<(OpAllAttrConstraint1
AllAttrConstraintsOf<[Constraint0, Constraint1]>:$attr),
(OpAllAttrConstraint2 $attr)>;
// Op for testing RewritePattern removing op with inner ops.
def TestOpWithRegionPattern : TEST_Op<"op_with_region_pattern"> {
let regions = (region SizedRegion<1>:$region);
let hasCanonicalizer = 1;
}
// Op for testing trivial removal via folding of op with inner ops and no uses.
def TestOpWithRegionFoldNoSideEffect : TEST_Op<
"op_with_region_fold_no_side_effect", [NoSideEffect]> {
let regions = (region SizedRegion<1>:$region);
}
// Op for testing folding of outer op with inner ops.
def TestOpWithRegionFold : TEST_Op<"op_with_region_fold"> {
let arguments = (ins I32:$operand);
let results = (outs I32);
let regions = (region SizedRegion<1>:$region);
let hasFolder = 1;
}
def TestOpWithVariadicResultsAndFolder: TEST_Op<"op_with_variadic_results_and_folder"> {
let arguments = (ins Variadic<I32>:$operands);
let results = (outs Variadic<I32>);
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//
// Test Patterns (Symbol Binding)
// Test symbol binding.
def OpSymbolBindingA : TEST_Op<"symbol_binding_a", []> {
let arguments = (ins I32:$operand, I64Attr:$attr);
let results = (outs I32);
}
def OpSymbolBindingB : TEST_Op<"symbol_binding_b", []> {
let arguments = (ins I32:$operand);
let results = (outs I32);
let builders = [
OpBuilder<
"Builder *builder, OperationState &state, Value operand",
[{
state.types.assign({builder->getIntegerType(32)});
state.addOperands({operand});
}]>
];
}
def OpSymbolBindingC : TEST_Op<"symbol_binding_c", []> {
let arguments = (ins I32:$operand);
let results = (outs I32);
let builders = OpSymbolBindingB.builders;
}
def OpSymbolBindingD : TEST_Op<"symbol_binding_d", []> {
let arguments = (ins I32:$input1, I32:$input2, I64Attr:$attr);
let results = (outs I32);
}
def HasOneUse: Constraint<CPred<"$0.hasOneUse()">, "has one use">;
def : Pattern<
// Bind to source pattern op operand/attribute/result
(OpSymbolBindingA:$res_a $operand, $attr), [
// Bind to auxiliary op result
(OpSymbolBindingC:$res_c (OpSymbolBindingB:$res_b $operand)),
// Use bound symbols in resultant ops
(OpSymbolBindingD $res_b, $res_c, $attr)],
// Use bound symbols in additional constraints
[(HasOneUse $res_a)]>;
def OpSymbolBindingNoResult : TEST_Op<"symbol_binding_no_result", []> {
let arguments = (ins I32:$operand);
}
// Test that we can bind to an op without results and reference it later.
def : Pat<(OpSymbolBindingNoResult:$op $operand),
(NativeCodeCall<"handleNoResultOp($_builder, $0)"> $op)>;
//===----------------------------------------------------------------------===//
// Test Patterns (Attributes)
// Test matching against op attributes.
def OpAttrMatch1 : TEST_Op<"match_op_attribute1"> {
let arguments = (ins
I32Attr:$required_attr,
OptionalAttr<I32Attr>:$optional_attr,
DefaultValuedAttr<I32Attr, "42">:$default_valued_attr,
I32Attr:$more_attr
);
let results = (outs I32);
}
def OpAttrMatch2 : TEST_Op<"match_op_attribute2"> {
let arguments = OpAttrMatch1.arguments;
let results = (outs I32);
}
def MoreConstraint : AttrConstraint<
CPred<"$_self.cast<IntegerAttr>().getInt() == 4">, "more constraint">;
def : Pat<(OpAttrMatch1 $required, $optional, $default_valued,
MoreConstraint:$more),
(OpAttrMatch2 $required, $optional, $default_valued, $more)>;
// Test unit attrs.
def OpAttrMatch3 : TEST_Op<"match_op_attribute3"> {
let arguments = (ins UnitAttr:$attr);
let results = (outs I32);
}
def OpAttrMatch4 : TEST_Op<"match_op_attribute4"> {
let arguments = (ins UnitAttr:$attr1, UnitAttr:$attr2);
let results = (outs I32);
}
def : Pat<(OpAttrMatch3 $attr), (OpAttrMatch4 ConstUnitAttr, $attr)>;
// Test with constant attr.
def OpC : TEST_Op<"op_c">, Arguments<(ins I32)>, Results<(outs I32)>;
def : Pat<(OpC $input), (OpB $input, ConstantAttr<I32Attr, "17">:$attr)>;
// Test string enum attribute in rewrites.
def : Pat<(StrEnumAttrOp StrCaseA), (StrEnumAttrOp StrCaseB)>;
// Test integer enum attribute in rewrites.
def : Pat<(I32EnumAttrOp I32Case5), (I32EnumAttrOp I32Case10)>;
def : Pat<(I64EnumAttrOp I64Case5), (I64EnumAttrOp I64Case10)>;
//===----------------------------------------------------------------------===//
// Test Patterns (Multi-result Ops)
def MultiResultOpKind1: I64EnumAttrCase<"kind1", 1>;
def MultiResultOpKind2: I64EnumAttrCase<"kind2", 2>;
def MultiResultOpKind3: I64EnumAttrCase<"kind3", 3>;
def MultiResultOpKind4: I64EnumAttrCase<"kind4", 4>;
def MultiResultOpKind5: I64EnumAttrCase<"kind5", 5>;
def MultiResultOpKind6: I64EnumAttrCase<"kind6", 6>;
def MultiResultOpEnum: I64EnumAttr<
"MultiResultOpEnum", "Multi-result op kinds", [
MultiResultOpKind1, MultiResultOpKind2, MultiResultOpKind3,
MultiResultOpKind4, MultiResultOpKind5, MultiResultOpKind6
]>;
def ThreeResultOp : TEST_Op<"three_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1, F32:$result2, F32:$result3);
}
def AnotherThreeResultOp : TEST_Op<"another_three_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1, F32:$result2, F32:$result3);
}
def TwoResultOp : TEST_Op<"two_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1, F32:$result2);
let builders = [
OpBuilder<
"Builder *builder, OperationState &state, IntegerAttr kind",
[{
auto i32 = builder->getIntegerType(32);
auto f32 = builder->getF32Type();
state.types.assign({i32, f32});
state.addAttribute("kind", kind);
}]>
];
}
def AnotherTwoResultOp : TEST_Op<"another_two_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs F32:$result1, F32:$result2);
}
def OneResultOp1 : TEST_Op<"one_result1"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs F32:$result1);
}
def OneResultOp2 : TEST_Op<"one_result2"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1);
}
def OneResultOp3 : TEST_Op<"one_result3"> {
let arguments = (ins F32);
let results = (outs I32:$result1);
}
// Test using multi-result op as a whole
def : Pat<(ThreeResultOp MultiResultOpKind1),
(AnotherThreeResultOp MultiResultOpKind1)>;
// Test using multi-result op as a whole for partial replacement
def : Pattern<(ThreeResultOp MultiResultOpKind2),
[(TwoResultOp MultiResultOpKind2),
(OneResultOp1 MultiResultOpKind2)]>;
def : Pattern<(ThreeResultOp MultiResultOpKind3),
[(OneResultOp2 MultiResultOpKind3),
(AnotherTwoResultOp MultiResultOpKind3)]>;
// Test using results separately in a multi-result op
def : Pattern<(ThreeResultOp MultiResultOpKind4),
[(TwoResultOp:$res1__0 MultiResultOpKind4),
(OneResultOp1 MultiResultOpKind4),
(TwoResultOp:$res2__1 MultiResultOpKind4)]>;
// Test referencing a single value in the value pack
// This rule only matches TwoResultOp if its second result has no use.
def : Pattern<(TwoResultOp:$res MultiResultOpKind5),
[(OneResultOp2 MultiResultOpKind5),
(OneResultOp1 MultiResultOpKind5)],
[(HasNoUseOf:$res__1)]>;
// Test using auxiliary ops for replacing multi-result op
def : Pattern<
(ThreeResultOp MultiResultOpKind6), [
// Auxiliary op generated to help building the final result but not
// directly used to replace the source op's results.
(TwoResultOp:$interm MultiResultOpKind6),
(OneResultOp3 $interm__1),
(AnotherTwoResultOp MultiResultOpKind6)
]>;
//===----------------------------------------------------------------------===//
// Test Patterns (Variadic Ops)
def OneVResOneVOperandOp1 : TEST_Op<"one_variadic_out_one_variadic_in1"> {
let arguments = (ins Variadic<I32>);
let results = (outs Variadic<I32>);
}
def OneVResOneVOperandOp2 : TEST_Op<"one_variadic_out_one_variadic_in2"> {
let arguments = (ins Variadic<I32>);
let results = (outs Variadic<I32>);
}
// Rewrite an op with one variadic operand and one variadic result to
// another similar op.
def : Pat<(OneVResOneVOperandOp1 $inputs), (OneVResOneVOperandOp2 $inputs)>;
def MixedVOperandOp1 : TEST_Op<"mixed_variadic_in1",
[SameVariadicOperandSize]> {
let arguments = (ins
Variadic<I32>:$input1,
F32:$input2,
Variadic<I32>:$input3
);
}
def MixedVOperandOp2 : TEST_Op<"mixed_variadic_in2",
[SameVariadicOperandSize]> {
let arguments = (ins
Variadic<I32>:$input1,
F32:$input2,
Variadic<I32>:$input3
);
}
// Rewrite an op with both variadic operands and normal operands.
def : Pat<(MixedVOperandOp1 $input1, $input2, $input3),
(MixedVOperandOp2 $input1, $input2, $input3)>;
def MixedVResultOp1 : TEST_Op<"mixed_variadic_out1", [SameVariadicResultSize]> {
let results = (outs
Variadic<I32>:$output1,
F32:$output2,
Variadic<I32>:$output3
);
}
def MixedVResultOp2 : TEST_Op<"mixed_variadic_out2", [SameVariadicResultSize]> {
let results = (outs
Variadic<I32>:$output1,
F32:$output2,
Variadic<I32>:$output3
);
}
// Rewrite an op with both variadic results and normal results.
// Note that because we are generating the op with a top-level result pattern,
// we are able to deduce the correct result types for the generated op using
// the information from the matched root op.
def : Pat<(MixedVResultOp1), (MixedVResultOp2)>;
def OneI32ResultOp : TEST_Op<"one_i32_out"> {
let results = (outs I32);
}
def MixedVOperandOp3 : TEST_Op<"mixed_variadic_in3",
[SameVariadicOperandSize]> {
let arguments = (ins
I32:$input1,
Variadic<I32>:$input2,
Variadic<I32>:$input3,
I32Attr:$count
);
let results = (outs I32);
}
def MixedVResultOp3 : TEST_Op<"mixed_variadic_out3",
[SameVariadicResultSize]> {
let arguments = (ins I32Attr:$count);
let results = (outs
I32:$output1,
Variadic<I32>:$output2,
Variadic<I32>:$output3
);
// We will use this op in a nested result pattern, where we cannot deduce the
// result type. So need to provide a builder not requiring result types.
let builders = [
OpBuilder<
"Builder *builder, OperationState &state, IntegerAttr count",
[{
auto i32Type = builder->getIntegerType(32);
state.addTypes(i32Type); // $output1
SmallVector<Type, 4> types(count.getInt(), i32Type);
state.addTypes(types); // $output2
state.addTypes(types); // $output3
state.addAttribute("count", count);
}]>
];
}
// Generates an op with variadic results using nested pattern.
def : Pat<(OneI32ResultOp),
(MixedVOperandOp3
(MixedVResultOp3:$results__0 ConstantAttr<I32Attr, "2">),
(replaceWithValue $results__1),
(replaceWithValue $results__2),
ConstantAttr<I32Attr, "2">)>;
//===----------------------------------------------------------------------===//
// Test Legalization
//===----------------------------------------------------------------------===//
def Test_LegalizerEnum_Success : StrEnumAttrCase<"Success">;
def Test_LegalizerEnum_Failure : StrEnumAttrCase<"Failure">;
def Test_LegalizerEnum : StrEnumAttr<"Success", "Failure",
[Test_LegalizerEnum_Success, Test_LegalizerEnum_Failure]>;
def ILLegalOpA : TEST_Op<"illegal_op_a">, Results<(outs I32)>;
def ILLegalOpB : TEST_Op<"illegal_op_b">, Results<(outs I32)>;
def ILLegalOpC : TEST_Op<"illegal_op_c">, Results<(outs I32)>;
def ILLegalOpD : TEST_Op<"illegal_op_d">, Results<(outs I32)>;
def ILLegalOpE : TEST_Op<"illegal_op_e">, Results<(outs I32)>;
def ILLegalOpF : TEST_Op<"illegal_op_f">, Results<(outs I32)>;
def LegalOpA : TEST_Op<"legal_op_a">,
Arguments<(ins Test_LegalizerEnum:$status)>, Results<(outs I32)>;
def LegalOpB : TEST_Op<"legal_op_b">, Results<(outs I32)>;
// Check that smaller pattern depths are chosen, i.e. prioritize more direct
// mappings.
def : Pat<(ILLegalOpA), (LegalOpA Test_LegalizerEnum_Success)>;
def : Pat<(ILLegalOpA), (ILLegalOpB)>;
def : Pat<(ILLegalOpB), (LegalOpA Test_LegalizerEnum_Failure)>;
// Check that the higher benefit pattern is taken for multiple legalizations
// with the same depth.
def : Pat<(ILLegalOpC), (ILLegalOpD)>;
def : Pat<(ILLegalOpD), (LegalOpA Test_LegalizerEnum_Failure)>;
def : Pat<(ILLegalOpC), (ILLegalOpE), [], (addBenefit 10)>;
def : Pat<(ILLegalOpE), (LegalOpA Test_LegalizerEnum_Success)>;
// Check that patterns use the most up-to-date value when being replaced.
def TestRewriteOp : TEST_Op<"rewrite">,
Arguments<(ins AnyType)>, Results<(outs AnyType)>;
def : Pat<(TestRewriteOp $input), (replaceWithValue $input)>;
//===----------------------------------------------------------------------===//
// Test Type Legalization
//===----------------------------------------------------------------------===//
def TestRegionBuilderOp : TEST_Op<"region_builder">;
def TestReturnOp : TEST_Op<"return", [Terminator]>,
Arguments<(ins Variadic<AnyType>)>;
def TestCastOp : TEST_Op<"cast">,
Arguments<(ins Variadic<AnyType>)>, Results<(outs AnyType)>;
def TestInvalidOp : TEST_Op<"invalid", [Terminator]>,
Arguments<(ins Variadic<AnyType>)>;
def TestTypeProducerOp : TEST_Op<"type_producer">,
Results<(outs AnyType)>;
def TestTypeConsumerOp : TEST_Op<"type_consumer">,
Arguments<(ins AnyType)>;
def TestValidOp : TEST_Op<"valid", [Terminator]>,
Arguments<(ins Variadic<AnyType>)>;
//===----------------------------------------------------------------------===//
// Test parser.
//===----------------------------------------------------------------------===//
def WrappedKeywordOp : TEST_Op<"wrapped_keyword"> {
let arguments = (ins StrAttr:$keyword);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
//===----------------------------------------------------------------------===//
// Test region argument list parsing.
def IsolatedRegionOp : TEST_Op<"isolated_region", [IsolatedFromAbove]> {
let summary = "isolated region operation";
let description = [{
Test op with an isolated region, to test passthrough region arguments. Each
argument is of index type.
}];
let arguments = (ins Index);
let regions = (region SizedRegion<1>:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
def WrappingRegionOp : TEST_Op<"wrapping_region",
[SingleBlockImplicitTerminator<"TestReturnOp">]> {
let summary = "wrapping region operation";
let description = [{
Test op wrapping another op in a region, to test calling
parseGenericOperation from the custom parser.
}];
let results = (outs Variadic<AnyType>);
let regions = (region SizedRegion<1>:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
def PolyForOp : TEST_Op<"polyfor">
{
let summary = "polyfor operation";
let description = [{
Test op with multiple region arguments, each argument of index type.
}];
let regions = (region SizedRegion<1>:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
}
//===----------------------------------------------------------------------===//
// Test OpAsmInterface.
def AsmInterfaceOp : TEST_Op<"asm_interface_op"> {
let results = (outs AnyType:$first, Variadic<AnyType>:$middle_results,
AnyType);
}
def AsmDialectInterfaceOp : TEST_Op<"asm_dialect_interface_op"> {
let results = (outs AnyType);
}
#endif // TEST_OPS