forked from OSchip/llvm-project
421 lines
16 KiB
C++
421 lines
16 KiB
C++
//===-- OperatingSystemPython.cpp -----------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "lldb/Host/Config.h"
|
|
|
|
#if LLDB_ENABLE_PYTHON
|
|
|
|
#include "OperatingSystemPython.h"
|
|
|
|
#include "Plugins/Process/Utility/DynamicRegisterInfo.h"
|
|
#include "Plugins/Process/Utility/RegisterContextDummy.h"
|
|
#include "Plugins/Process/Utility/RegisterContextMemory.h"
|
|
#include "Plugins/Process/Utility/ThreadMemory.h"
|
|
#include "lldb/Core/Debugger.h"
|
|
#include "lldb/Core/Module.h"
|
|
#include "lldb/Core/PluginManager.h"
|
|
#include "lldb/Core/ValueObjectVariable.h"
|
|
#include "lldb/Interpreter/CommandInterpreter.h"
|
|
#include "lldb/Interpreter/ScriptInterpreter.h"
|
|
#include "lldb/Symbol/ObjectFile.h"
|
|
#include "lldb/Symbol/VariableList.h"
|
|
#include "lldb/Target/Process.h"
|
|
#include "lldb/Target/StopInfo.h"
|
|
#include "lldb/Target/Target.h"
|
|
#include "lldb/Target/Thread.h"
|
|
#include "lldb/Target/ThreadList.h"
|
|
#include "lldb/Utility/DataBufferHeap.h"
|
|
#include "lldb/Utility/RegisterValue.h"
|
|
#include "lldb/Utility/StreamString.h"
|
|
#include "lldb/Utility/StructuredData.h"
|
|
|
|
#include <memory>
|
|
|
|
using namespace lldb;
|
|
using namespace lldb_private;
|
|
|
|
void OperatingSystemPython::Initialize() {
|
|
PluginManager::RegisterPlugin(GetPluginNameStatic(),
|
|
GetPluginDescriptionStatic(), CreateInstance,
|
|
nullptr);
|
|
}
|
|
|
|
void OperatingSystemPython::Terminate() {
|
|
PluginManager::UnregisterPlugin(CreateInstance);
|
|
}
|
|
|
|
OperatingSystem *OperatingSystemPython::CreateInstance(Process *process,
|
|
bool force) {
|
|
// Python OperatingSystem plug-ins must be requested by name, so force must
|
|
// be true
|
|
FileSpec python_os_plugin_spec(process->GetPythonOSPluginPath());
|
|
if (python_os_plugin_spec &&
|
|
FileSystem::Instance().Exists(python_os_plugin_spec)) {
|
|
std::unique_ptr<OperatingSystemPython> os_up(
|
|
new OperatingSystemPython(process, python_os_plugin_spec));
|
|
if (os_up.get() && os_up->IsValid())
|
|
return os_up.release();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
ConstString OperatingSystemPython::GetPluginNameStatic() {
|
|
static ConstString g_name("python");
|
|
return g_name;
|
|
}
|
|
|
|
const char *OperatingSystemPython::GetPluginDescriptionStatic() {
|
|
return "Operating system plug-in that gathers OS information from a python "
|
|
"class that implements the necessary OperatingSystem functionality.";
|
|
}
|
|
|
|
OperatingSystemPython::OperatingSystemPython(lldb_private::Process *process,
|
|
const FileSpec &python_module_path)
|
|
: OperatingSystem(process), m_thread_list_valobj_sp(), m_register_info_up(),
|
|
m_interpreter(nullptr), m_python_object_sp() {
|
|
if (!process)
|
|
return;
|
|
TargetSP target_sp = process->CalculateTarget();
|
|
if (!target_sp)
|
|
return;
|
|
m_interpreter = target_sp->GetDebugger().GetScriptInterpreter();
|
|
if (m_interpreter) {
|
|
|
|
std::string os_plugin_class_name(
|
|
python_module_path.GetFilename().AsCString(""));
|
|
if (!os_plugin_class_name.empty()) {
|
|
const bool init_session = false;
|
|
char python_module_path_cstr[PATH_MAX];
|
|
python_module_path.GetPath(python_module_path_cstr,
|
|
sizeof(python_module_path_cstr));
|
|
Status error;
|
|
if (m_interpreter->LoadScriptingModule(python_module_path_cstr,
|
|
init_session, error)) {
|
|
// Strip the ".py" extension if there is one
|
|
size_t py_extension_pos = os_plugin_class_name.rfind(".py");
|
|
if (py_extension_pos != std::string::npos)
|
|
os_plugin_class_name.erase(py_extension_pos);
|
|
// Add ".OperatingSystemPlugIn" to the module name to get a string like
|
|
// "modulename.OperatingSystemPlugIn"
|
|
os_plugin_class_name += ".OperatingSystemPlugIn";
|
|
StructuredData::ObjectSP object_sp =
|
|
m_interpreter->OSPlugin_CreatePluginObject(
|
|
os_plugin_class_name.c_str(), process->CalculateProcess());
|
|
if (object_sp && object_sp->IsValid())
|
|
m_python_object_sp = object_sp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
OperatingSystemPython::~OperatingSystemPython() {}
|
|
|
|
DynamicRegisterInfo *OperatingSystemPython::GetDynamicRegisterInfo() {
|
|
if (m_register_info_up == nullptr) {
|
|
if (!m_interpreter || !m_python_object_sp)
|
|
return nullptr;
|
|
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OS));
|
|
|
|
LLDB_LOGF(log,
|
|
"OperatingSystemPython::GetDynamicRegisterInfo() fetching "
|
|
"thread register definitions from python for pid %" PRIu64,
|
|
m_process->GetID());
|
|
|
|
StructuredData::DictionarySP dictionary =
|
|
m_interpreter->OSPlugin_RegisterInfo(m_python_object_sp);
|
|
if (!dictionary)
|
|
return nullptr;
|
|
|
|
m_register_info_up.reset(new DynamicRegisterInfo(
|
|
*dictionary, m_process->GetTarget().GetArchitecture()));
|
|
assert(m_register_info_up->GetNumRegisters() > 0);
|
|
assert(m_register_info_up->GetNumRegisterSets() > 0);
|
|
}
|
|
return m_register_info_up.get();
|
|
}
|
|
|
|
// PluginInterface protocol
|
|
ConstString OperatingSystemPython::GetPluginName() {
|
|
return GetPluginNameStatic();
|
|
}
|
|
|
|
uint32_t OperatingSystemPython::GetPluginVersion() { return 1; }
|
|
|
|
bool OperatingSystemPython::UpdateThreadList(ThreadList &old_thread_list,
|
|
ThreadList &core_thread_list,
|
|
ThreadList &new_thread_list) {
|
|
if (!m_interpreter || !m_python_object_sp)
|
|
return false;
|
|
|
|
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OS));
|
|
|
|
// First thing we have to do is to try to get the API lock, and the
|
|
// interpreter lock. We're going to change the thread content of the process,
|
|
// and we're going to use python, which requires the API lock to do it. We
|
|
// need the interpreter lock to make sure thread_info_dict stays alive.
|
|
//
|
|
// If someone already has the API lock, that is ok, we just want to avoid
|
|
// external code from making new API calls while this call is happening.
|
|
//
|
|
// This is a recursive lock so we can grant it to any Python code called on
|
|
// the stack below us.
|
|
Target &target = m_process->GetTarget();
|
|
std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(),
|
|
std::defer_lock);
|
|
(void)api_lock.try_lock(); // See above.
|
|
auto interpreter_lock = m_interpreter->AcquireInterpreterLock();
|
|
|
|
LLDB_LOGF(log,
|
|
"OperatingSystemPython::UpdateThreadList() fetching thread "
|
|
"data from python for pid %" PRIu64,
|
|
m_process->GetID());
|
|
|
|
// The threads that are in "core_thread_list" upon entry are the threads from
|
|
// the lldb_private::Process subclass, no memory threads will be in this
|
|
// list.
|
|
StructuredData::ArraySP threads_list =
|
|
m_interpreter->OSPlugin_ThreadsInfo(m_python_object_sp);
|
|
|
|
const uint32_t num_cores = core_thread_list.GetSize(false);
|
|
|
|
// Make a map so we can keep track of which cores were used from the
|
|
// core_thread list. Any real threads/cores that weren't used should later be
|
|
// put back into the "new_thread_list".
|
|
std::vector<bool> core_used_map(num_cores, false);
|
|
if (threads_list) {
|
|
if (log) {
|
|
StreamString strm;
|
|
threads_list->Dump(strm);
|
|
LLDB_LOGF(log, "threads_list = %s", strm.GetData());
|
|
}
|
|
|
|
const uint32_t num_threads = threads_list->GetSize();
|
|
for (uint32_t i = 0; i < num_threads; ++i) {
|
|
StructuredData::ObjectSP thread_dict_obj =
|
|
threads_list->GetItemAtIndex(i);
|
|
if (auto thread_dict = thread_dict_obj->GetAsDictionary()) {
|
|
ThreadSP thread_sp(CreateThreadFromThreadInfo(
|
|
*thread_dict, core_thread_list, old_thread_list, core_used_map,
|
|
nullptr));
|
|
if (thread_sp)
|
|
new_thread_list.AddThread(thread_sp);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Any real core threads that didn't end up backing a memory thread should
|
|
// still be in the main thread list, and they should be inserted at the
|
|
// beginning of the list
|
|
uint32_t insert_idx = 0;
|
|
for (uint32_t core_idx = 0; core_idx < num_cores; ++core_idx) {
|
|
if (!core_used_map[core_idx]) {
|
|
new_thread_list.InsertThread(
|
|
core_thread_list.GetThreadAtIndex(core_idx, false), insert_idx);
|
|
++insert_idx;
|
|
}
|
|
}
|
|
|
|
return new_thread_list.GetSize(false) > 0;
|
|
}
|
|
|
|
ThreadSP OperatingSystemPython::CreateThreadFromThreadInfo(
|
|
StructuredData::Dictionary &thread_dict, ThreadList &core_thread_list,
|
|
ThreadList &old_thread_list, std::vector<bool> &core_used_map,
|
|
bool *did_create_ptr) {
|
|
ThreadSP thread_sp;
|
|
tid_t tid = LLDB_INVALID_THREAD_ID;
|
|
if (!thread_dict.GetValueForKeyAsInteger("tid", tid))
|
|
return ThreadSP();
|
|
|
|
uint32_t core_number;
|
|
addr_t reg_data_addr;
|
|
llvm::StringRef name;
|
|
llvm::StringRef queue;
|
|
|
|
thread_dict.GetValueForKeyAsInteger("core", core_number, UINT32_MAX);
|
|
thread_dict.GetValueForKeyAsInteger("register_data_addr", reg_data_addr,
|
|
LLDB_INVALID_ADDRESS);
|
|
thread_dict.GetValueForKeyAsString("name", name);
|
|
thread_dict.GetValueForKeyAsString("queue", queue);
|
|
|
|
// See if a thread already exists for "tid"
|
|
thread_sp = old_thread_list.FindThreadByID(tid, false);
|
|
if (thread_sp) {
|
|
// A thread already does exist for "tid", make sure it was an operating
|
|
// system
|
|
// plug-in generated thread.
|
|
if (!IsOperatingSystemPluginThread(thread_sp)) {
|
|
// We have thread ID overlap between the protocol threads and the
|
|
// operating system threads, clear the thread so we create an operating
|
|
// system thread for this.
|
|
thread_sp.reset();
|
|
}
|
|
}
|
|
|
|
if (!thread_sp) {
|
|
if (did_create_ptr)
|
|
*did_create_ptr = true;
|
|
thread_sp = std::make_shared<ThreadMemory>(*m_process, tid, name, queue,
|
|
reg_data_addr);
|
|
}
|
|
|
|
if (core_number < core_thread_list.GetSize(false)) {
|
|
ThreadSP core_thread_sp(
|
|
core_thread_list.GetThreadAtIndex(core_number, false));
|
|
if (core_thread_sp) {
|
|
// Keep track of which cores were set as the backing thread for memory
|
|
// threads...
|
|
if (core_number < core_used_map.size())
|
|
core_used_map[core_number] = true;
|
|
|
|
ThreadSP backing_core_thread_sp(core_thread_sp->GetBackingThread());
|
|
if (backing_core_thread_sp) {
|
|
thread_sp->SetBackingThread(backing_core_thread_sp);
|
|
} else {
|
|
thread_sp->SetBackingThread(core_thread_sp);
|
|
}
|
|
}
|
|
}
|
|
return thread_sp;
|
|
}
|
|
|
|
void OperatingSystemPython::ThreadWasSelected(Thread *thread) {}
|
|
|
|
RegisterContextSP
|
|
OperatingSystemPython::CreateRegisterContextForThread(Thread *thread,
|
|
addr_t reg_data_addr) {
|
|
RegisterContextSP reg_ctx_sp;
|
|
if (!m_interpreter || !m_python_object_sp || !thread)
|
|
return reg_ctx_sp;
|
|
|
|
if (!IsOperatingSystemPluginThread(thread->shared_from_this()))
|
|
return reg_ctx_sp;
|
|
|
|
// First thing we have to do is to try to get the API lock, and the
|
|
// interpreter lock. We're going to change the thread content of the process,
|
|
// and we're going to use python, which requires the API lock to do it. We
|
|
// need the interpreter lock to make sure thread_info_dict stays alive.
|
|
//
|
|
// If someone already has the API lock, that is ok, we just want to avoid
|
|
// external code from making new API calls while this call is happening.
|
|
//
|
|
// This is a recursive lock so we can grant it to any Python code called on
|
|
// the stack below us.
|
|
Target &target = m_process->GetTarget();
|
|
std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(),
|
|
std::defer_lock);
|
|
(void)api_lock.try_lock(); // See above.
|
|
auto interpreter_lock = m_interpreter->AcquireInterpreterLock();
|
|
|
|
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD));
|
|
|
|
if (reg_data_addr != LLDB_INVALID_ADDRESS) {
|
|
// The registers data is in contiguous memory, just create the register
|
|
// context using the address provided
|
|
LLDB_LOGF(log,
|
|
"OperatingSystemPython::CreateRegisterContextForThread (tid "
|
|
"= 0x%" PRIx64 ", 0x%" PRIx64 ", reg_data_addr = 0x%" PRIx64
|
|
") creating memory register context",
|
|
thread->GetID(), thread->GetProtocolID(), reg_data_addr);
|
|
reg_ctx_sp = std::make_shared<RegisterContextMemory>(
|
|
*thread, 0, *GetDynamicRegisterInfo(), reg_data_addr);
|
|
} else {
|
|
// No register data address is provided, query the python plug-in to let it
|
|
// make up the data as it sees fit
|
|
LLDB_LOGF(log,
|
|
"OperatingSystemPython::CreateRegisterContextForThread (tid "
|
|
"= 0x%" PRIx64 ", 0x%" PRIx64
|
|
") fetching register data from python",
|
|
thread->GetID(), thread->GetProtocolID());
|
|
|
|
StructuredData::StringSP reg_context_data =
|
|
m_interpreter->OSPlugin_RegisterContextData(m_python_object_sp,
|
|
thread->GetID());
|
|
if (reg_context_data) {
|
|
std::string value = std::string(reg_context_data->GetValue());
|
|
DataBufferSP data_sp(new DataBufferHeap(value.c_str(), value.length()));
|
|
if (data_sp->GetByteSize()) {
|
|
RegisterContextMemory *reg_ctx_memory = new RegisterContextMemory(
|
|
*thread, 0, *GetDynamicRegisterInfo(), LLDB_INVALID_ADDRESS);
|
|
if (reg_ctx_memory) {
|
|
reg_ctx_sp.reset(reg_ctx_memory);
|
|
reg_ctx_memory->SetAllRegisterData(data_sp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// if we still have no register data, fallback on a dummy context to avoid
|
|
// crashing
|
|
if (!reg_ctx_sp) {
|
|
LLDB_LOGF(log,
|
|
"OperatingSystemPython::CreateRegisterContextForThread (tid "
|
|
"= 0x%" PRIx64 ") forcing a dummy register context",
|
|
thread->GetID());
|
|
reg_ctx_sp = std::make_shared<RegisterContextDummy>(
|
|
*thread, 0, target.GetArchitecture().GetAddressByteSize());
|
|
}
|
|
return reg_ctx_sp;
|
|
}
|
|
|
|
StopInfoSP
|
|
OperatingSystemPython::CreateThreadStopReason(lldb_private::Thread *thread) {
|
|
// We should have gotten the thread stop info from the dictionary of data for
|
|
// the thread in the initial call to get_thread_info(), this should have been
|
|
// cached so we can return it here
|
|
StopInfoSP
|
|
stop_info_sp; //(StopInfo::CreateStopReasonWithSignal (*thread, SIGSTOP));
|
|
return stop_info_sp;
|
|
}
|
|
|
|
lldb::ThreadSP OperatingSystemPython::CreateThread(lldb::tid_t tid,
|
|
addr_t context) {
|
|
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD));
|
|
|
|
LLDB_LOGF(log,
|
|
"OperatingSystemPython::CreateThread (tid = 0x%" PRIx64
|
|
", context = 0x%" PRIx64 ") fetching register data from python",
|
|
tid, context);
|
|
|
|
if (m_interpreter && m_python_object_sp) {
|
|
// First thing we have to do is to try to get the API lock, and the
|
|
// interpreter lock. We're going to change the thread content of the
|
|
// process, and we're going to use python, which requires the API lock to
|
|
// do it. We need the interpreter lock to make sure thread_info_dict stays
|
|
// alive.
|
|
//
|
|
// If someone already has the API lock, that is ok, we just want to avoid
|
|
// external code from making new API calls while this call is happening.
|
|
//
|
|
// This is a recursive lock so we can grant it to any Python code called on
|
|
// the stack below us.
|
|
Target &target = m_process->GetTarget();
|
|
std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(),
|
|
std::defer_lock);
|
|
(void)api_lock.try_lock(); // See above.
|
|
auto interpreter_lock = m_interpreter->AcquireInterpreterLock();
|
|
|
|
StructuredData::DictionarySP thread_info_dict =
|
|
m_interpreter->OSPlugin_CreateThread(m_python_object_sp, tid, context);
|
|
std::vector<bool> core_used_map;
|
|
if (thread_info_dict) {
|
|
ThreadList core_threads(m_process);
|
|
ThreadList &thread_list = m_process->GetThreadList();
|
|
bool did_create = false;
|
|
ThreadSP thread_sp(
|
|
CreateThreadFromThreadInfo(*thread_info_dict, core_threads,
|
|
thread_list, core_used_map, &did_create));
|
|
if (did_create)
|
|
thread_list.AddThread(thread_sp);
|
|
return thread_sp;
|
|
}
|
|
}
|
|
return ThreadSP();
|
|
}
|
|
|
|
#endif // #if LLDB_ENABLE_PYTHON
|