llvm-project/lldb/source/Expression/ClangUserExpression.cpp

476 lines
15 KiB
C++

//===-- ClangUserExpression.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
#include <stdio.h>
#if HAVE_SYS_TYPES_H
# include <sys/types.h>
#endif
// C++ Includes
#include <cstdlib>
#include <string>
#include <map>
#include "lldb/Core/ConstString.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Expression/ClangExpressionDeclMap.h"
#include "lldb/Expression/ClangExpressionParser.h"
#include "lldb/Expression/ClangFunction.h"
#include "lldb/Expression/ASTResultSynthesizer.h"
#include "lldb/Expression/ClangUserExpression.h"
#include "lldb/Host/Host.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
using namespace lldb_private;
ClangUserExpression::ClangUserExpression (const char *expr) :
m_expr_text(expr),
m_transformed_text(),
m_jit_addr(LLDB_INVALID_ADDRESS),
m_cplusplus(false),
m_objectivec(false),
m_needs_object_ptr(false)
{
}
ClangUserExpression::~ClangUserExpression ()
{
}
clang::ASTConsumer *
ClangUserExpression::ASTTransformer (clang::ASTConsumer *passthrough)
{
return new ASTResultSynthesizer(passthrough);
}
void
ClangUserExpression::ScanContext(ExecutionContext &exe_ctx)
{
if (!exe_ctx.frame)
return;
VariableList *vars = exe_ctx.frame->GetVariableList(false);
if (!vars)
return;
if (vars->FindVariable(ConstString("this")).get())
m_cplusplus = true;
else if (vars->FindVariable(ConstString("self")).get())
m_objectivec = true;
}
// This is a really nasty hack, meant to fix Objective-C expressions of the form
// (int)[myArray count]. Right now, because the type information for count is
// not available, [myArray count] returns id, which can't be directly cast to
// int without causing a clang error.
static void
ApplyObjcCastHack(std::string &expr)
{
#define OBJC_CAST_HACK_FROM "(int)["
#define OBJC_CAST_HACK_TO "(int)(long long)["
size_t from_offset;
while ((from_offset = expr.find(OBJC_CAST_HACK_FROM)) != expr.npos)
expr.replace(from_offset, sizeof(OBJC_CAST_HACK_FROM) - 1, OBJC_CAST_HACK_TO);
#undef OBJC_CAST_HACK_TO
#undef OBJC_CAST_HACK_FROM
}
// Another hack, meant to allow use of unichar despite it not being available in
// the type information. Although we could special-case it in type lookup,
// hopefully we'll figure out a way to #include the same environment as is
// present in the original source file rather than try to hack specific type
// definitions in as needed.
static void
ApplyUnicharHack(std::string &expr)
{
#define UNICHAR_HACK_FROM "unichar"
#define UNICHAR_HACK_TO "unsigned short"
size_t from_offset;
while ((from_offset = expr.find(UNICHAR_HACK_FROM)) != expr.npos)
expr.replace(from_offset, sizeof(UNICHAR_HACK_FROM) - 1, UNICHAR_HACK_TO);
#undef UNICHAR_HACK_TO
#undef UNICHAR_HACK_FROM
}
bool
ClangUserExpression::Parse (Stream &error_stream, ExecutionContext &exe_ctx)
{
Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
ScanContext(exe_ctx);
StreamString m_transformed_stream;
////////////////////////////////////
// Generate the expression
//
ApplyObjcCastHack(m_expr_text);
ApplyUnicharHack(m_expr_text);
if (m_cplusplus)
{
m_transformed_stream.Printf("void \n"
"$__lldb_class::%s(void *$__lldb_arg) \n"
"{ \n"
" %s; \n"
"} \n",
FunctionName(),
m_expr_text.c_str());
m_needs_object_ptr = true;
}
else
{
m_transformed_stream.Printf("void \n"
"%s(void *$__lldb_arg) \n"
"{ \n"
" %s; \n"
"} \n",
FunctionName(),
m_expr_text.c_str());
}
m_transformed_text = m_transformed_stream.GetData();
if (log)
log->Printf("Parsing the following code:\n%s", m_transformed_text.c_str());
////////////////////////////////////
// Set up the target and compiler
//
Target *target = exe_ctx.target;
if (!target)
{
error_stream.PutCString ("error: invalid target\n");
return false;
}
ConstString target_triple;
target->GetTargetTriple (target_triple);
if (!target_triple)
target_triple = Host::GetTargetTriple ();
if (!target_triple)
{
error_stream.PutCString ("error: invalid target triple\n");
return false;
}
//////////////////////////
// Parse the expression
//
m_expr_decl_map.reset(new ClangExpressionDeclMap(&exe_ctx));
ClangExpressionParser parser(target_triple.GetCString(), *this);
unsigned num_errors = parser.Parse (error_stream);
if (num_errors)
{
error_stream.Printf ("error: %d errors parsing expression\n", num_errors);
return false;
}
///////////////////////////////////////////////
// Convert the output of the parser to DWARF
//
m_dwarf_opcodes.reset(new StreamString);
m_dwarf_opcodes->SetByteOrder (lldb::eByteOrderHost);
m_dwarf_opcodes->GetFlags ().Set (Stream::eBinary);
m_local_variables.reset(new ClangExpressionVariableStore());
Error dwarf_error = parser.MakeDWARF ();
if (dwarf_error.Success())
{
if (log)
log->Printf("Code can be interpreted.");
return true;
}
//////////////////////////////////
// JIT the output of the parser
//
m_dwarf_opcodes.reset();
lldb::addr_t jit_end;
Error jit_error = parser.MakeJIT (m_jit_addr, jit_end, exe_ctx);
if (jit_error.Success())
{
if (log)
{
log->Printf("Code can be run in the target.");
StreamString disassembly_stream;
Error err = parser.DisassembleFunction(disassembly_stream, exe_ctx);
if (!err.Success())
{
log->Printf("Couldn't disassemble function : %s", err.AsCString("unknown error"));
}
else
{
log->Printf("Function disassembly:\n%s", disassembly_stream.GetData());
}
}
return true;
}
else
{
error_stream.Printf ("error: expression can't be interpreted or run\n", num_errors);
return false;
}
}
bool
ClangUserExpression::PrepareToExecuteJITExpression (Stream &error_stream,
ExecutionContext &exe_ctx,
lldb::addr_t &struct_address,
lldb::addr_t &object_ptr)
{
Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
if (m_jit_addr != LLDB_INVALID_ADDRESS)
{
Error materialize_error;
if (m_needs_object_ptr && !(m_expr_decl_map->GetObjectPointer(object_ptr, &exe_ctx, materialize_error)))
{
error_stream.Printf("Couldn't get required object pointer: %s\n", materialize_error.AsCString());
return false;
}
if (!m_expr_decl_map->Materialize(&exe_ctx, struct_address, materialize_error))
{
error_stream.Printf("Couldn't materialize struct: %s\n", materialize_error.AsCString());
return false;
}
if (log)
{
log->Printf("Function address : 0x%llx", (uint64_t)m_jit_addr);
if (m_needs_object_ptr)
log->Printf("Object pointer : 0x%llx", (uint64_t)object_ptr);
log->Printf("Structure address : 0x%llx", (uint64_t)struct_address);
StreamString args;
Error dump_error;
if (struct_address)
{
if (!m_expr_decl_map->DumpMaterializedStruct(&exe_ctx, args, dump_error))
{
log->Printf("Couldn't extract variable values : %s", dump_error.AsCString("unknown error"));
}
else
{
log->Printf("Structure contents:\n%s", args.GetData());
}
}
}
}
return true;
}
ThreadPlan *
ClangUserExpression::GetThreadPlanToExecuteJITExpression (Stream &error_stream,
ExecutionContext &exe_ctx)
{
lldb::addr_t struct_address;
lldb::addr_t object_ptr = NULL;
PrepareToExecuteJITExpression (error_stream, exe_ctx, struct_address, object_ptr);
return ClangFunction::GetThreadPlanToCallFunction (exe_ctx,
m_jit_addr,
struct_address,
error_stream,
true,
true,
(m_needs_object_ptr ? &object_ptr : NULL));
}
bool
ClangUserExpression::FinalizeJITExecution (Stream &error_stream,
ExecutionContext &exe_ctx,
ClangExpressionVariable *&result)
{
Error expr_error;
if (!m_expr_decl_map->Dematerialize(&exe_ctx, result, expr_error))
{
error_stream.Printf ("Couldn't dematerialize struct : %s\n", expr_error.AsCString("unknown error"));
return false;
}
return true;
}
bool
ClangUserExpression::Execute (Stream &error_stream,
ExecutionContext &exe_ctx,
ClangExpressionVariable *&result)
{
if (m_dwarf_opcodes.get())
{
// TODO execute the JITted opcodes
error_stream.Printf("We don't currently support executing DWARF expressions");
return false;
}
else if (m_jit_addr != LLDB_INVALID_ADDRESS)
{
lldb::addr_t struct_address;
lldb::addr_t object_ptr = NULL;
PrepareToExecuteJITExpression (error_stream, exe_ctx, struct_address, object_ptr);
ClangFunction::ExecutionResults execution_result =
ClangFunction::ExecuteFunction (exe_ctx,
m_jit_addr,
struct_address,
true,
true,
10000000,
error_stream,
(m_needs_object_ptr ? &object_ptr : NULL));
if (execution_result != ClangFunction::eExecutionCompleted)
{
const char *result_name;
switch (execution_result)
{
case ClangFunction::eExecutionCompleted:
result_name = "eExecutionCompleted";
break;
case ClangFunction::eExecutionDiscarded:
result_name = "eExecutionDiscarded";
break;
case ClangFunction::eExecutionInterrupted:
result_name = "eExecutionInterrupted";
break;
case ClangFunction::eExecutionSetupError:
result_name = "eExecutionSetupError";
break;
case ClangFunction::eExecutionTimedOut:
result_name = "eExecutionTimedOut";
break;
}
error_stream.Printf ("Couldn't execute function; result was %s\n", result_name);
return false;
}
return FinalizeJITExecution (error_stream, exe_ctx, result);
}
else
{
error_stream.Printf("Expression can't be run; neither DWARF nor a JIT compiled function are present");
return false;
}
}
StreamString &
ClangUserExpression::DwarfOpcodeStream ()
{
if (!m_dwarf_opcodes.get())
m_dwarf_opcodes.reset(new StreamString());
return *m_dwarf_opcodes.get();
}
lldb::ValueObjectSP
ClangUserExpression::Evaluate (ExecutionContext &exe_ctx, const char *expr_cstr)
{
Error error;
lldb::ValueObjectSP result_valobj_sp;
ClangUserExpression user_expression (expr_cstr);
StreamString error_stream;
if (!user_expression.Parse (error_stream, exe_ctx))
{
if (error_stream.GetString().empty())
error.SetErrorString ("expression failed to parse, unknown error");
else
error.SetErrorString (error_stream.GetString().c_str());
}
else
{
ClangExpressionVariable *expr_result = NULL;
error_stream.GetString().clear();
if (!user_expression.Execute (error_stream, exe_ctx, expr_result))
{
if (error_stream.GetString().empty())
error.SetErrorString ("expression failed to execute, unknown error");
else
error.SetErrorString (error_stream.GetString().c_str());
}
else
{
// TODO: seems weird to get a pointer to a result object back from
// a function. Do we own it? Feels like we do, but from looking at the
// code we don't. Might be best to make this a reference and state
// explicitly that we don't own it when we get a reference back from
// the execute?
if (expr_result)
{
result_valobj_sp = expr_result->GetExpressionResult (&exe_ctx);
}
else
{
error.SetErrorString ("Expression did not return a result");
}
}
}
if (result_valobj_sp.get() == NULL)
result_valobj_sp.reset (new ValueObjectConstResult (error));
return result_valobj_sp;
}