llvm-project/llvm/lib/Transforms/Scalar/CallSiteSplitting.cpp

429 lines
15 KiB
C++

//===- CallSiteSplitting.cpp ----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a transformation that tries to split a call-site to pass
// more constrained arguments if its argument is predicated in the control flow
// so that we can expose better context to the later passes (e.g, inliner, jump
// threading, or IPA-CP based function cloning, etc.).
// As of now we support two cases :
//
// 1) If a call site is dominated by an OR condition and if any of its arguments
// are predicated on this OR condition, try to split the condition with more
// constrained arguments. For example, in the code below, we try to split the
// call site since we can predicate the argument(ptr) based on the OR condition.
//
// Split from :
// if (!ptr || c)
// callee(ptr);
// to :
// if (!ptr)
// callee(null) // set the known constant value
// else if (c)
// callee(nonnull ptr) // set non-null attribute in the argument
//
// 2) We can also split a call-site based on constant incoming values of a PHI
// For example,
// from :
// Header:
// %c = icmp eq i32 %i1, %i2
// br i1 %c, label %Tail, label %TBB
// TBB:
// br label Tail%
// Tail:
// %p = phi i32 [ 0, %Header], [ 1, %TBB]
// call void @bar(i32 %p)
// to
// Header:
// %c = icmp eq i32 %i1, %i2
// br i1 %c, label %Tail-split0, label %TBB
// TBB:
// br label %Tail-split1
// Tail-split0:
// call void @bar(i32 0)
// br label %Tail
// Tail-split1:
// call void @bar(i32 1)
// br label %Tail
// Tail:
// %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ]
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/CallSiteSplitting.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "callsite-splitting"
STATISTIC(NumCallSiteSplit, "Number of call-site split");
static void addNonNullAttribute(Instruction *CallI, Instruction *NewCallI,
Value *Op) {
CallSite CS(NewCallI);
unsigned ArgNo = 0;
for (auto &I : CS.args()) {
if (&*I == Op)
CS.addParamAttr(ArgNo, Attribute::NonNull);
++ArgNo;
}
}
static void setConstantInArgument(Instruction *CallI, Instruction *NewCallI,
Value *Op, Constant *ConstValue) {
CallSite CS(NewCallI);
unsigned ArgNo = 0;
for (auto &I : CS.args()) {
if (&*I == Op)
CS.setArgument(ArgNo, ConstValue);
++ArgNo;
}
}
static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallSite CS) {
assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand.");
Value *Op0 = Cmp->getOperand(0);
unsigned ArgNo = 0;
for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E;
++I, ++ArgNo) {
// Don't consider constant or arguments that are already known non-null.
if (isa<Constant>(*I) || CS.paramHasAttr(ArgNo, Attribute::NonNull))
continue;
if (*I == Op0)
return true;
}
return false;
}
/// If From has a conditional jump to To, add the condition to Conditions,
/// if it is relevant to any argument at CS.
static void
recordCondition(const CallSite &CS, BasicBlock *From, BasicBlock *To,
SmallVectorImpl<std::pair<ICmpInst *, unsigned>> &Conditions) {
auto *BI = dyn_cast<BranchInst>(From->getTerminator());
if (!BI || !BI->isConditional())
return;
CmpInst::Predicate Pred;
Value *Cond = BI->getCondition();
if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant())))
return;
ICmpInst *Cmp = cast<ICmpInst>(Cond);
if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
if (isCondRelevantToAnyCallArgument(Cmp, CS))
Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To
? Pred
: Cmp->getInversePredicate()});
}
/// Record ICmp conditions relevant to any argument in CS following Pred's
/// single successors. If there are conflicting conditions along a path, like
/// x == 1 and x == 0, the first condition will be used.
static void
recordConditions(const CallSite &CS, BasicBlock *Pred,
SmallVectorImpl<std::pair<ICmpInst *, unsigned>> &Conditions) {
recordCondition(CS, Pred, CS.getInstruction()->getParent(), Conditions);
BasicBlock *From = Pred;
BasicBlock *To = Pred;
SmallPtrSet<BasicBlock *, 4> Visited = {From};
while (!Visited.count(From->getSinglePredecessor()) &&
(From = From->getSinglePredecessor())) {
recordCondition(CS, From, To, Conditions);
To = From;
}
}
static Instruction *
addConditions(CallSite &CS,
SmallVectorImpl<std::pair<ICmpInst *, unsigned>> &Conditions) {
if (Conditions.empty())
return nullptr;
Instruction *NewCI = CS.getInstruction()->clone();
for (auto &Cond : Conditions) {
Value *Arg = Cond.first->getOperand(0);
Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1));
if (Cond.second == ICmpInst::ICMP_EQ)
setConstantInArgument(CS.getInstruction(), NewCI, Arg, ConstVal);
else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) {
assert(Cond.second == ICmpInst::ICMP_NE);
addNonNullAttribute(CS.getInstruction(), NewCI, Arg);
}
}
return NewCI;
}
static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) {
SmallVector<BasicBlock *, 2> Preds(predecessors((BB)));
assert(Preds.size() == 2 && "Expected exactly 2 predecessors!");
return Preds;
}
static bool canSplitCallSite(CallSite CS) {
// FIXME: As of now we handle only CallInst. InvokeInst could be handled
// without too much effort.
Instruction *Instr = CS.getInstruction();
if (!isa<CallInst>(Instr))
return false;
// Allow splitting a call-site only when there is no instruction before the
// call-site in the basic block. Based on this constraint, we only clone the
// call instruction, and we do not move a call-site across any other
// instruction.
BasicBlock *CallSiteBB = Instr->getParent();
if (Instr != CallSiteBB->getFirstNonPHIOrDbg())
return false;
// Need 2 predecessors and cannot split an edge from an IndirectBrInst.
SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB));
if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) ||
isa<IndirectBrInst>(Preds[1]->getTerminator()))
return false;
return CallSiteBB->canSplitPredecessors();
}
/// Return true if the CS is split into its new predecessors which are directly
/// hooked to each of its orignial predecessors pointed by PredBB1 and PredBB2.
/// In OR predicated case, PredBB1 will point the header, and PredBB2 will point
/// to the second compare block. CallInst1 and CallInst2 will be the new
/// call-sites placed in the new predecessors split for PredBB1 and PredBB2,
/// repectively. Therefore, CallInst1 will be the call-site placed
/// between Header and Tail, and CallInst2 will be the call-site between TBB and
/// Tail. For example, in the IR below with an OR condition, the call-site can
/// be split
///
/// from :
///
/// Header:
/// %c = icmp eq i32* %a, null
/// br i1 %c %Tail, %TBB
/// TBB:
/// %c2 = icmp eq i32* %b, null
/// br i1 %c %Tail, %End
/// Tail:
/// %ca = call i1 @callee (i32* %a, i32* %b)
///
/// to :
///
/// Header: // PredBB1 is Header
/// %c = icmp eq i32* %a, null
/// br i1 %c %Tail-split1, %TBB
/// TBB: // PredBB2 is TBB
/// %c2 = icmp eq i32* %b, null
/// br i1 %c %Tail-split2, %End
/// Tail-split1:
/// %ca1 = call @callee (i32* null, i32* %b) // CallInst1
/// br %Tail
/// Tail-split2:
/// %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2
/// br %Tail
/// Tail:
/// %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2]
///
/// Note that for an OR predicated case, CallInst1 and CallInst2 should be
/// created with more constrained arguments in
/// createCallSitesOnOrPredicatedArgument().
static void splitCallSite(CallSite CS, BasicBlock *PredBB1, BasicBlock *PredBB2,
Instruction *CallInst1, Instruction *CallInst2) {
Instruction *Instr = CS.getInstruction();
BasicBlock *TailBB = Instr->getParent();
assert(Instr == (TailBB->getFirstNonPHIOrDbg()) && "Unexpected call-site");
BasicBlock *SplitBlock1 =
SplitBlockPredecessors(TailBB, PredBB1, ".predBB1.split");
BasicBlock *SplitBlock2 =
SplitBlockPredecessors(TailBB, PredBB2, ".predBB2.split");
assert((SplitBlock1 && SplitBlock2) && "Unexpected new basic block split.");
if (!CallInst1)
CallInst1 = Instr->clone();
if (!CallInst2)
CallInst2 = Instr->clone();
CallInst1->insertBefore(&*SplitBlock1->getFirstInsertionPt());
CallInst2->insertBefore(&*SplitBlock2->getFirstInsertionPt());
CallSite CS1(CallInst1);
CallSite CS2(CallInst2);
// Handle PHIs used as arguments in the call-site.
for (auto &PI : *TailBB) {
PHINode *PN = dyn_cast<PHINode>(&PI);
if (!PN)
break;
unsigned ArgNo = 0;
for (auto &CI : CS.args()) {
if (&*CI == PN) {
CS1.setArgument(ArgNo, PN->getIncomingValueForBlock(SplitBlock1));
CS2.setArgument(ArgNo, PN->getIncomingValueForBlock(SplitBlock2));
}
++ArgNo;
}
}
// Replace users of the original call with a PHI mering call-sites split.
if (Instr->getNumUses()) {
PHINode *PN = PHINode::Create(Instr->getType(), 2, "phi.call",
TailBB->getFirstNonPHI());
PN->addIncoming(CallInst1, SplitBlock1);
PN->addIncoming(CallInst2, SplitBlock2);
Instr->replaceAllUsesWith(PN);
}
DEBUG(dbgs() << "split call-site : " << *Instr << " into \n");
DEBUG(dbgs() << " " << *CallInst1 << " in " << SplitBlock1->getName()
<< "\n");
DEBUG(dbgs() << " " << *CallInst2 << " in " << SplitBlock2->getName()
<< "\n");
Instr->eraseFromParent();
NumCallSiteSplit++;
}
// Return true if the call-site has an argument which is a PHI with only
// constant incoming values.
static bool isPredicatedOnPHI(CallSite CS) {
Instruction *Instr = CS.getInstruction();
BasicBlock *Parent = Instr->getParent();
if (Instr != Parent->getFirstNonPHIOrDbg())
return false;
for (auto &BI : *Parent) {
if (PHINode *PN = dyn_cast<PHINode>(&BI)) {
for (auto &I : CS.args())
if (&*I == PN) {
assert(PN->getNumIncomingValues() == 2 &&
"Unexpected number of incoming values");
if (PN->getIncomingBlock(0) == PN->getIncomingBlock(1))
return false;
if (PN->getIncomingValue(0) == PN->getIncomingValue(1))
continue;
if (isa<Constant>(PN->getIncomingValue(0)) &&
isa<Constant>(PN->getIncomingValue(1)))
return true;
}
}
break;
}
return false;
}
static bool tryToSplitOnPHIPredicatedArgument(CallSite CS) {
if (!isPredicatedOnPHI(CS))
return false;
auto Preds = getTwoPredecessors(CS.getInstruction()->getParent());
splitCallSite(CS, Preds[0], Preds[1], nullptr, nullptr);
return true;
}
// Check if one of the predecessors is a single predecessors of the other.
// This is a requirement for control flow modeling an OR. HeaderBB points to
// the single predecessor and OrBB points to other node. HeaderBB potentially
// contains the first compare of the OR and OrBB the second.
static bool isOrHeader(BasicBlock *HeaderBB, BasicBlock *OrBB) {
return OrBB->getSinglePredecessor() == HeaderBB &&
HeaderBB->getTerminator()->getNumSuccessors() == 2;
}
static bool tryToSplitOnOrPredicatedArgument(CallSite CS) {
auto Preds = getTwoPredecessors(CS.getInstruction()->getParent());
if (!isOrHeader(Preds[0], Preds[1]) && !isOrHeader(Preds[1], Preds[0]))
return false;
SmallVector<std::pair<ICmpInst *, unsigned>, 2> C1, C2;
recordConditions(CS, Preds[0], C1);
recordConditions(CS, Preds[1], C2);
Instruction *CallInst1 = addConditions(CS, C1);
Instruction *CallInst2 = addConditions(CS, C2);
if (!CallInst1 && !CallInst2)
return false;
splitCallSite(CS, Preds[1], Preds[0], CallInst2, CallInst1);
return true;
}
static bool tryToSplitCallSite(CallSite CS) {
if (!CS.arg_size() || !canSplitCallSite(CS))
return false;
return tryToSplitOnOrPredicatedArgument(CS) ||
tryToSplitOnPHIPredicatedArgument(CS);
}
static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI) {
bool Changed = false;
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) {
BasicBlock &BB = *BI++;
for (BasicBlock::iterator II = BB.begin(), IE = BB.end(); II != IE;) {
Instruction *I = &*II++;
CallSite CS(cast<Value>(I));
if (!CS || isa<IntrinsicInst>(I) || isInstructionTriviallyDead(I, &TLI))
continue;
Function *Callee = CS.getCalledFunction();
if (!Callee || Callee->isDeclaration())
continue;
Changed |= tryToSplitCallSite(CS);
}
}
return Changed;
}
namespace {
struct CallSiteSplittingLegacyPass : public FunctionPass {
static char ID;
CallSiteSplittingLegacyPass() : FunctionPass(ID) {
initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetLibraryInfoWrapperPass>();
FunctionPass::getAnalysisUsage(AU);
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
return doCallSiteSplitting(F, TLI);
}
};
} // namespace
char CallSiteSplittingLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting",
"Call-site splitting", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting",
"Call-site splitting", false, false)
FunctionPass *llvm::createCallSiteSplittingPass() {
return new CallSiteSplittingLegacyPass();
}
PreservedAnalyses CallSiteSplittingPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
if (!doCallSiteSplitting(F, TLI))
return PreservedAnalyses::all();
PreservedAnalyses PA;
return PA;
}