llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp

987 lines
32 KiB
C++

//===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
/// \file
//===----------------------------------------------------------------------===//
//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#define DEBUG_TYPE "si-fold-operands"
using namespace llvm;
namespace {
struct FoldCandidate {
MachineInstr *UseMI;
union {
MachineOperand *OpToFold;
uint64_t ImmToFold;
int FrameIndexToFold;
};
unsigned char UseOpNo;
MachineOperand::MachineOperandType Kind;
bool Commuted;
FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
bool Commuted_ = false) :
UseMI(MI), OpToFold(nullptr), UseOpNo(OpNo), Kind(FoldOp->getType()),
Commuted(Commuted_) {
if (FoldOp->isImm()) {
ImmToFold = FoldOp->getImm();
} else if (FoldOp->isFI()) {
FrameIndexToFold = FoldOp->getIndex();
} else {
assert(FoldOp->isReg());
OpToFold = FoldOp;
}
}
bool isFI() const {
return Kind == MachineOperand::MO_FrameIndex;
}
bool isImm() const {
return Kind == MachineOperand::MO_Immediate;
}
bool isReg() const {
return Kind == MachineOperand::MO_Register;
}
bool isCommuted() const {
return Commuted;
}
};
class SIFoldOperands : public MachineFunctionPass {
public:
static char ID;
MachineRegisterInfo *MRI;
const SIInstrInfo *TII;
const SIRegisterInfo *TRI;
const SISubtarget *ST;
void foldOperand(MachineOperand &OpToFold,
MachineInstr *UseMI,
unsigned UseOpIdx,
SmallVectorImpl<FoldCandidate> &FoldList,
SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
const MachineOperand *isClamp(const MachineInstr &MI) const;
bool tryFoldClamp(MachineInstr &MI);
std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
bool tryFoldOMod(MachineInstr &MI);
public:
SIFoldOperands() : MachineFunctionPass(ID) {
initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return "SI Fold Operands"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // End anonymous namespace.
INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
"SI Fold Operands", false, false)
char SIFoldOperands::ID = 0;
char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
// Wrapper around isInlineConstant that understands special cases when
// instruction types are replaced during operand folding.
static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
const MachineInstr &UseMI,
unsigned OpNo,
const MachineOperand &OpToFold) {
if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
return true;
unsigned Opc = UseMI.getOpcode();
switch (Opc) {
case AMDGPU::V_MAC_F32_e64:
case AMDGPU::V_MAC_F16_e64: {
// Special case for mac. Since this is replaced with mad when folded into
// src2, we need to check the legality for the final instruction.
int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
if (static_cast<int>(OpNo) == Src2Idx) {
bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
const MCInstrDesc &MadDesc
= TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
}
return false;
}
default:
return false;
}
}
FunctionPass *llvm::createSIFoldOperandsPass() {
return new SIFoldOperands();
}
static bool updateOperand(FoldCandidate &Fold,
const TargetRegisterInfo &TRI) {
MachineInstr *MI = Fold.UseMI;
MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
assert(Old.isReg());
if (Fold.isImm()) {
Old.ChangeToImmediate(Fold.ImmToFold);
return true;
}
if (Fold.isFI()) {
Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
return true;
}
MachineOperand *New = Fold.OpToFold;
if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) &&
TargetRegisterInfo::isVirtualRegister(New->getReg())) {
Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
Old.setIsUndef(New->isUndef());
return true;
}
// FIXME: Handle physical registers.
return false;
}
static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
const MachineInstr *MI) {
for (auto Candidate : FoldList) {
if (Candidate.UseMI == MI)
return true;
}
return false;
}
static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
MachineInstr *MI, unsigned OpNo,
MachineOperand *OpToFold,
const SIInstrInfo *TII) {
if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
// Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
unsigned Opc = MI->getOpcode();
if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64) &&
(int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
// Check if changing this to a v_mad_{f16, f32} instruction will allow us
// to fold the operand.
MI->setDesc(TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16));
bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
if (FoldAsMAD) {
MI->untieRegOperand(OpNo);
return true;
}
MI->setDesc(TII->get(Opc));
}
// Special case for s_setreg_b32
if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) {
MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32));
FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
return true;
}
// If we are already folding into another operand of MI, then
// we can't commute the instruction, otherwise we risk making the
// other fold illegal.
if (isUseMIInFoldList(FoldList, MI))
return false;
// Operand is not legal, so try to commute the instruction to
// see if this makes it possible to fold.
unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
if (CanCommute) {
if (CommuteIdx0 == OpNo)
OpNo = CommuteIdx1;
else if (CommuteIdx1 == OpNo)
OpNo = CommuteIdx0;
}
// One of operands might be an Imm operand, and OpNo may refer to it after
// the call of commuteInstruction() below. Such situations are avoided
// here explicitly as OpNo must be a register operand to be a candidate
// for memory folding.
if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
!MI->getOperand(CommuteIdx1).isReg()))
return false;
if (!CanCommute ||
!TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
return false;
if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
return false;
}
FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold, true));
return true;
}
FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
return true;
}
// If the use operand doesn't care about the value, this may be an operand only
// used for register indexing, in which case it is unsafe to fold.
static bool isUseSafeToFold(const SIInstrInfo *TII,
const MachineInstr &MI,
const MachineOperand &UseMO) {
return !UseMO.isUndef() && !TII->isSDWA(MI);
//return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
}
void SIFoldOperands::foldOperand(
MachineOperand &OpToFold,
MachineInstr *UseMI,
unsigned UseOpIdx,
SmallVectorImpl<FoldCandidate> &FoldList,
SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
if (!isUseSafeToFold(TII, *UseMI, UseOp))
return;
// FIXME: Fold operands with subregs.
if (UseOp.isReg() && OpToFold.isReg()) {
if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
return;
// Don't fold subregister extracts into tied operands, only if it is a full
// copy since a subregister use tied to a full register def doesn't really
// make sense. e.g. don't fold:
//
// %1 = COPY %0:sub1
// %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0>
//
// into
// %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0>
if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister)
return;
}
// Special case for REG_SEQUENCE: We can't fold literals into
// REG_SEQUENCE instructions, so we have to fold them into the
// uses of REG_SEQUENCE.
if (UseMI->isRegSequence()) {
unsigned RegSeqDstReg = UseMI->getOperand(0).getReg();
unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
for (MachineRegisterInfo::use_iterator
RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end();
RSUse != RSE; ++RSUse) {
MachineInstr *RSUseMI = RSUse->getParent();
if (RSUse->getSubReg() != RegSeqDstSubReg)
continue;
foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
CopiesToReplace);
}
return;
}
bool FoldingImm = OpToFold.isImm();
// In order to fold immediates into copies, we need to change the
// copy to a MOV.
if (FoldingImm && UseMI->isCopy()) {
unsigned DestReg = UseMI->getOperand(0).getReg();
const TargetRegisterClass *DestRC
= TargetRegisterInfo::isVirtualRegister(DestReg) ?
MRI->getRegClass(DestReg) :
TRI->getPhysRegClass(DestReg);
unsigned MovOp = TII->getMovOpcode(DestRC);
if (MovOp == AMDGPU::COPY)
return;
UseMI->setDesc(TII->get(MovOp));
CopiesToReplace.push_back(UseMI);
} else {
const MCInstrDesc &UseDesc = UseMI->getDesc();
// Don't fold into target independent nodes. Target independent opcodes
// don't have defined register classes.
if (UseDesc.isVariadic() ||
UseDesc.OpInfo[UseOpIdx].RegClass == -1)
return;
}
if (!FoldingImm) {
tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
// FIXME: We could try to change the instruction from 64-bit to 32-bit
// to enable more folding opportunites. The shrink operands pass
// already does this.
return;
}
const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
const TargetRegisterClass *FoldRC =
TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
// Split 64-bit constants into 32-bits for folding.
if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
unsigned UseReg = UseOp.getReg();
const TargetRegisterClass *UseRC
= TargetRegisterInfo::isVirtualRegister(UseReg) ?
MRI->getRegClass(UseReg) :
TRI->getPhysRegClass(UseReg);
if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
return;
APInt Imm(64, OpToFold.getImm());
if (UseOp.getSubReg() == AMDGPU::sub0) {
Imm = Imm.getLoBits(32);
} else {
assert(UseOp.getSubReg() == AMDGPU::sub1);
Imm = Imm.getHiBits(32);
}
MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
return;
}
tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
}
static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
uint32_t LHS, uint32_t RHS) {
switch (Opcode) {
case AMDGPU::V_AND_B32_e64:
case AMDGPU::V_AND_B32_e32:
case AMDGPU::S_AND_B32:
Result = LHS & RHS;
return true;
case AMDGPU::V_OR_B32_e64:
case AMDGPU::V_OR_B32_e32:
case AMDGPU::S_OR_B32:
Result = LHS | RHS;
return true;
case AMDGPU::V_XOR_B32_e64:
case AMDGPU::V_XOR_B32_e32:
case AMDGPU::S_XOR_B32:
Result = LHS ^ RHS;
return true;
case AMDGPU::V_LSHL_B32_e64:
case AMDGPU::V_LSHL_B32_e32:
case AMDGPU::S_LSHL_B32:
// The instruction ignores the high bits for out of bounds shifts.
Result = LHS << (RHS & 31);
return true;
case AMDGPU::V_LSHLREV_B32_e64:
case AMDGPU::V_LSHLREV_B32_e32:
Result = RHS << (LHS & 31);
return true;
case AMDGPU::V_LSHR_B32_e64:
case AMDGPU::V_LSHR_B32_e32:
case AMDGPU::S_LSHR_B32:
Result = LHS >> (RHS & 31);
return true;
case AMDGPU::V_LSHRREV_B32_e64:
case AMDGPU::V_LSHRREV_B32_e32:
Result = RHS >> (LHS & 31);
return true;
case AMDGPU::V_ASHR_I32_e64:
case AMDGPU::V_ASHR_I32_e32:
case AMDGPU::S_ASHR_I32:
Result = static_cast<int32_t>(LHS) >> (RHS & 31);
return true;
case AMDGPU::V_ASHRREV_I32_e64:
case AMDGPU::V_ASHRREV_I32_e32:
Result = static_cast<int32_t>(RHS) >> (LHS & 31);
return true;
default:
return false;
}
}
static unsigned getMovOpc(bool IsScalar) {
return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
}
/// Remove any leftover implicit operands from mutating the instruction. e.g.
/// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
/// anymore.
static void stripExtraCopyOperands(MachineInstr &MI) {
const MCInstrDesc &Desc = MI.getDesc();
unsigned NumOps = Desc.getNumOperands() +
Desc.getNumImplicitUses() +
Desc.getNumImplicitDefs();
for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
MI.RemoveOperand(I);
}
static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
MI.setDesc(NewDesc);
stripExtraCopyOperands(MI);
}
static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
MachineOperand &Op) {
if (Op.isReg()) {
// If this has a subregister, it obviously is a register source.
if (Op.getSubReg() != AMDGPU::NoSubRegister)
return &Op;
MachineInstr *Def = MRI.getVRegDef(Op.getReg());
if (Def && Def->isMoveImmediate()) {
MachineOperand &ImmSrc = Def->getOperand(1);
if (ImmSrc.isImm())
return &ImmSrc;
}
}
return &Op;
}
// Try to simplify operations with a constant that may appear after instruction
// selection.
// TODO: See if a frame index with a fixed offset can fold.
static bool tryConstantFoldOp(MachineRegisterInfo &MRI,
const SIInstrInfo *TII,
MachineInstr *MI,
MachineOperand *ImmOp) {
unsigned Opc = MI->getOpcode();
if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
Opc == AMDGPU::S_NOT_B32) {
MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm());
mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
return true;
}
int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
if (Src1Idx == -1)
return false;
int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
if (!Src0->isImm() && !Src1->isImm())
return false;
// and k0, k1 -> v_mov_b32 (k0 & k1)
// or k0, k1 -> v_mov_b32 (k0 | k1)
// xor k0, k1 -> v_mov_b32 (k0 ^ k1)
if (Src0->isImm() && Src1->isImm()) {
int32_t NewImm;
if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
return false;
const SIRegisterInfo &TRI = TII->getRegisterInfo();
bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
// Be careful to change the right operand, src0 may belong to a different
// instruction.
MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
MI->RemoveOperand(Src1Idx);
mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
return true;
}
if (!MI->isCommutable())
return false;
if (Src0->isImm() && !Src1->isImm()) {
std::swap(Src0, Src1);
std::swap(Src0Idx, Src1Idx);
}
int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
if (Opc == AMDGPU::V_OR_B32_e64 ||
Opc == AMDGPU::V_OR_B32_e32 ||
Opc == AMDGPU::S_OR_B32) {
if (Src1Val == 0) {
// y = or x, 0 => y = copy x
MI->RemoveOperand(Src1Idx);
mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
} else if (Src1Val == -1) {
// y = or x, -1 => y = v_mov_b32 -1
MI->RemoveOperand(Src1Idx);
mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
} else
return false;
return true;
}
if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
MI->getOpcode() == AMDGPU::S_AND_B32) {
if (Src1Val == 0) {
// y = and x, 0 => y = v_mov_b32 0
MI->RemoveOperand(Src0Idx);
mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
} else if (Src1Val == -1) {
// y = and x, -1 => y = copy x
MI->RemoveOperand(Src1Idx);
mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
stripExtraCopyOperands(*MI);
} else
return false;
return true;
}
if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
MI->getOpcode() == AMDGPU::S_XOR_B32) {
if (Src1Val == 0) {
// y = xor x, 0 => y = copy x
MI->RemoveOperand(Src1Idx);
mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
return true;
}
}
return false;
}
// Try to fold an instruction into a simpler one
static bool tryFoldInst(const SIInstrInfo *TII,
MachineInstr *MI) {
unsigned Opc = MI->getOpcode();
if (Opc == AMDGPU::V_CNDMASK_B32_e32 ||
Opc == AMDGPU::V_CNDMASK_B32_e64 ||
Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) {
const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1);
if (Src1->isIdenticalTo(*Src0)) {
DEBUG(dbgs() << "Folded " << *MI << " into ");
int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
if (Src2Idx != -1)
MI->RemoveOperand(Src2Idx);
MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
mutateCopyOp(*MI, TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY
: getMovOpc(false)));
DEBUG(dbgs() << *MI << '\n');
return true;
}
}
return false;
}
void SIFoldOperands::foldInstOperand(MachineInstr &MI,
MachineOperand &OpToFold) const {
// We need mutate the operands of new mov instructions to add implicit
// uses of EXEC, but adding them invalidates the use_iterator, so defer
// this.
SmallVector<MachineInstr *, 4> CopiesToReplace;
SmallVector<FoldCandidate, 4> FoldList;
MachineOperand &Dst = MI.getOperand(0);
bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
if (FoldingImm) {
unsigned NumLiteralUses = 0;
MachineOperand *NonInlineUse = nullptr;
int NonInlineUseOpNo = -1;
MachineRegisterInfo::use_iterator NextUse;
for (MachineRegisterInfo::use_iterator
Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
Use != E; Use = NextUse) {
NextUse = std::next(Use);
MachineInstr *UseMI = Use->getParent();
unsigned OpNo = Use.getOperandNo();
// Folding the immediate may reveal operations that can be constant
// folded or replaced with a copy. This can happen for example after
// frame indices are lowered to constants or from splitting 64-bit
// constants.
//
// We may also encounter cases where one or both operands are
// immediates materialized into a register, which would ordinarily not
// be folded due to multiple uses or operand constraints.
if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
DEBUG(dbgs() << "Constant folded " << *UseMI <<'\n');
// Some constant folding cases change the same immediate's use to a new
// instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
// again. The same constant folded instruction could also have a second
// use operand.
NextUse = MRI->use_begin(Dst.getReg());
FoldList.clear();
continue;
}
// Try to fold any inline immediate uses, and then only fold other
// constants if they have one use.
//
// The legality of the inline immediate must be checked based on the use
// operand, not the defining instruction, because 32-bit instructions
// with 32-bit inline immediate sources may be used to materialize
// constants used in 16-bit operands.
//
// e.g. it is unsafe to fold:
// s_mov_b32 s0, 1.0 // materializes 0x3f800000
// v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
// Folding immediates with more than one use will increase program size.
// FIXME: This will also reduce register usage, which may be better
// in some cases. A better heuristic is needed.
if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
} else {
if (++NumLiteralUses == 1) {
NonInlineUse = &*Use;
NonInlineUseOpNo = OpNo;
}
}
}
if (NumLiteralUses == 1) {
MachineInstr *UseMI = NonInlineUse->getParent();
foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
}
} else {
// Folding register.
for (MachineRegisterInfo::use_iterator
Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
Use != E; ++Use) {
MachineInstr *UseMI = Use->getParent();
foldOperand(OpToFold, UseMI, Use.getOperandNo(),
FoldList, CopiesToReplace);
}
}
MachineFunction *MF = MI.getParent()->getParent();
// Make sure we add EXEC uses to any new v_mov instructions created.
for (MachineInstr *Copy : CopiesToReplace)
Copy->addImplicitDefUseOperands(*MF);
for (FoldCandidate &Fold : FoldList) {
if (updateOperand(Fold, *TRI)) {
// Clear kill flags.
if (Fold.isReg()) {
assert(Fold.OpToFold && Fold.OpToFold->isReg());
// FIXME: Probably shouldn't bother trying to fold if not an
// SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
// copies.
MRI->clearKillFlags(Fold.OpToFold->getReg());
}
DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " <<
static_cast<int>(Fold.UseOpNo) << " of " << *Fold.UseMI << '\n');
tryFoldInst(TII, Fold.UseMI);
} else if (Fold.isCommuted()) {
// Restoring instruction's original operand order if fold has failed.
TII->commuteInstruction(*Fold.UseMI, false);
}
}
}
// Clamp patterns are canonically selected to v_max_* instructions, so only
// handle them.
const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
unsigned Op = MI.getOpcode();
switch (Op) {
case AMDGPU::V_MAX_F32_e64:
case AMDGPU::V_MAX_F16_e64:
case AMDGPU::V_MAX_F64:
case AMDGPU::V_PK_MAX_F16: {
if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
return nullptr;
// Make sure sources are identical.
const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
if (!Src0->isReg() || !Src1->isReg() ||
Src0->getReg() != Src1->getReg() ||
Src0->getSubReg() != Src1->getSubReg() ||
Src0->getSubReg() != AMDGPU::NoSubRegister)
return nullptr;
// Can't fold up if we have modifiers.
if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
return nullptr;
unsigned Src0Mods
= TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
unsigned Src1Mods
= TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
// Having a 0 op_sel_hi would require swizzling the output in the source
// instruction, which we can't do.
unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 : 0;
if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
return nullptr;
return Src0;
}
default:
return nullptr;
}
}
// We obviously have multiple uses in a clamp since the register is used twice
// in the same instruction.
static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) {
int Count = 0;
for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
I != E; ++I) {
if (++Count > 1)
return false;
}
return true;
}
// FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
const MachineOperand *ClampSrc = isClamp(MI);
if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg()))
return false;
MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
// The type of clamp must be compatible.
if (TII->getClampMask(*Def) != TII->getClampMask(MI))
return false;
MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
if (!DefClamp)
return false;
DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def << '\n');
// Clamp is applied after omod, so it is OK if omod is set.
DefClamp->setImm(1);
MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
MI.eraseFromParent();
return true;
}
static int getOModValue(unsigned Opc, int64_t Val) {
switch (Opc) {
case AMDGPU::V_MUL_F32_e64: {
switch (static_cast<uint32_t>(Val)) {
case 0x3f000000: // 0.5
return SIOutMods::DIV2;
case 0x40000000: // 2.0
return SIOutMods::MUL2;
case 0x40800000: // 4.0
return SIOutMods::MUL4;
default:
return SIOutMods::NONE;
}
}
case AMDGPU::V_MUL_F16_e64: {
switch (static_cast<uint16_t>(Val)) {
case 0x3800: // 0.5
return SIOutMods::DIV2;
case 0x4000: // 2.0
return SIOutMods::MUL2;
case 0x4400: // 4.0
return SIOutMods::MUL4;
default:
return SIOutMods::NONE;
}
}
default:
llvm_unreachable("invalid mul opcode");
}
}
// FIXME: Does this really not support denormals with f16?
// FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
// handled, so will anything other than that break?
std::pair<const MachineOperand *, int>
SIFoldOperands::isOMod(const MachineInstr &MI) const {
unsigned Op = MI.getOpcode();
switch (Op) {
case AMDGPU::V_MUL_F32_e64:
case AMDGPU::V_MUL_F16_e64: {
// If output denormals are enabled, omod is ignored.
if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) ||
(Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals()))
return std::make_pair(nullptr, SIOutMods::NONE);
const MachineOperand *RegOp = nullptr;
const MachineOperand *ImmOp = nullptr;
const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
if (Src0->isImm()) {
ImmOp = Src0;
RegOp = Src1;
} else if (Src1->isImm()) {
ImmOp = Src1;
RegOp = Src0;
} else
return std::make_pair(nullptr, SIOutMods::NONE);
int OMod = getOModValue(Op, ImmOp->getImm());
if (OMod == SIOutMods::NONE ||
TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
return std::make_pair(nullptr, SIOutMods::NONE);
return std::make_pair(RegOp, OMod);
}
case AMDGPU::V_ADD_F32_e64:
case AMDGPU::V_ADD_F16_e64: {
// If output denormals are enabled, omod is ignored.
if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) ||
(Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals()))
return std::make_pair(nullptr, SIOutMods::NONE);
// Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
Src0->getSubReg() == Src1->getSubReg() &&
!TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
!TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
!TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
!TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
return std::make_pair(Src0, SIOutMods::MUL2);
return std::make_pair(nullptr, SIOutMods::NONE);
}
default:
return std::make_pair(nullptr, SIOutMods::NONE);
}
}
// FIXME: Does this need to check IEEE bit on function?
bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
const MachineOperand *RegOp;
int OMod;
std::tie(RegOp, OMod) = isOMod(MI);
if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
RegOp->getSubReg() != AMDGPU::NoSubRegister ||
!hasOneNonDBGUseInst(*MRI, RegOp->getReg()))
return false;
MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
return false;
// Clamp is applied after omod. If the source already has clamp set, don't
// fold it.
if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
return false;
DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n');
DefOMod->setImm(OMod);
MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
MI.eraseFromParent();
return true;
}
bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
MRI = &MF.getRegInfo();
ST = &MF.getSubtarget<SISubtarget>();
TII = ST->getInstrInfo();
TRI = &TII->getRegisterInfo();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
// omod is ignored by hardware if IEEE bit is enabled. omod also does not
// correctly handle signed zeros.
//
// TODO: Check nsz on instructions when fast math flags are preserved to MI
// level.
bool IsIEEEMode = ST->enableIEEEBit(MF) || !MFI->hasNoSignedZerosFPMath();
for (MachineBasicBlock *MBB : depth_first(&MF)) {
MachineBasicBlock::iterator I, Next;
for (I = MBB->begin(); I != MBB->end(); I = Next) {
Next = std::next(I);
MachineInstr &MI = *I;
tryFoldInst(TII, &MI);
if (!TII->isFoldableCopy(MI)) {
if (IsIEEEMode || !tryFoldOMod(MI))
tryFoldClamp(MI);
continue;
}
MachineOperand &OpToFold = MI.getOperand(1);
bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
// FIXME: We could also be folding things like TargetIndexes.
if (!FoldingImm && !OpToFold.isReg())
continue;
if (OpToFold.isReg() &&
!TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()))
continue;
// Prevent folding operands backwards in the function. For example,
// the COPY opcode must not be replaced by 1 in this example:
//
// %3 = COPY %vgpr0; VGPR_32:%3
// ...
// %vgpr0 = V_MOV_B32_e32 1, implicit %exec
MachineOperand &Dst = MI.getOperand(0);
if (Dst.isReg() &&
!TargetRegisterInfo::isVirtualRegister(Dst.getReg()))
continue;
foldInstOperand(MI, OpToFold);
}
}
return false;
}