llvm-project/clang-tools-extra/clangd/unittests/XRefsTests.cpp

2234 lines
61 KiB
C++

//===-- XRefsTests.cpp ---------------------------*- C++ -*--------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Annotations.h"
#include "Compiler.h"
#include "Matchers.h"
#include "ParsedAST.h"
#include "Protocol.h"
#include "SourceCode.h"
#include "SyncAPI.h"
#include "TestFS.h"
#include "TestIndex.h"
#include "TestTU.h"
#include "XRefs.h"
#include "index/FileIndex.h"
#include "index/MemIndex.h"
#include "index/SymbolCollector.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Index/IndexingAction.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/ScopedPrinter.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <string>
#include <vector>
namespace clang {
namespace clangd {
namespace {
using ::testing::AllOf;
using ::testing::ElementsAre;
using ::testing::Eq;
using ::testing::IsEmpty;
using ::testing::Matcher;
using ::testing::UnorderedElementsAre;
using ::testing::UnorderedElementsAreArray;
using ::testing::UnorderedPointwise;
MATCHER_P2(FileRange, File, Range, "") {
return Location{URIForFile::canonicalize(File, testRoot()), Range} == arg;
}
MATCHER(DeclRange, "") {
const LocatedSymbol &Sym = ::testing::get<0>(arg);
const Range &Range = ::testing::get<1>(arg);
return Sym.PreferredDeclaration.range == Range;
}
// Extracts ranges from an annotated example, and constructs a matcher for a
// highlight set. Ranges should be named $read/$write as appropriate.
Matcher<const std::vector<DocumentHighlight> &>
HighlightsFrom(const Annotations &Test) {
std::vector<DocumentHighlight> Expected;
auto Add = [&](const Range &R, DocumentHighlightKind K) {
Expected.emplace_back();
Expected.back().range = R;
Expected.back().kind = K;
};
for (const auto &Range : Test.ranges())
Add(Range, DocumentHighlightKind::Text);
for (const auto &Range : Test.ranges("read"))
Add(Range, DocumentHighlightKind::Read);
for (const auto &Range : Test.ranges("write"))
Add(Range, DocumentHighlightKind::Write);
return UnorderedElementsAreArray(Expected);
}
TEST(HighlightsTest, All) {
const char *Tests[] = {
R"cpp(// Local variable
int main() {
int [[bonjour]];
$write[[^bonjour]] = 2;
int test1 = $read[[bonjour]];
}
)cpp",
R"cpp(// Struct
namespace ns1 {
struct [[MyClass]] {
static void foo([[MyClass]]*) {}
};
} // namespace ns1
int main() {
ns1::[[My^Class]]* Params;
}
)cpp",
R"cpp(// Function
int [[^foo]](int) {}
int main() {
[[foo]]([[foo]](42));
auto *X = &[[foo]];
}
)cpp",
R"cpp(// Function parameter in decl
void foo(int [[^bar]]);
)cpp",
R"cpp(// Not touching any identifiers.
struct Foo {
[[~]]Foo() {};
};
void foo() {
Foo f;
f.[[^~]]Foo();
}
)cpp",
R"cpp(// ObjC methods with split selectors.
@interface Foo
+(void) [[x]]:(int)a [[y]]:(int)b;
@end
@implementation Foo
+(void) [[x]]:(int)a [[y]]:(int)b {}
@end
void go() {
[Foo [[x]]:2 [[^y]]:4];
}
)cpp",
};
for (const char *Test : Tests) {
Annotations T(Test);
auto TU = TestTU::withCode(T.code());
TU.ExtraArgs.push_back("-xobjective-c++");
auto AST = TU.build();
EXPECT_THAT(findDocumentHighlights(AST, T.point()), HighlightsFrom(T))
<< Test;
}
}
TEST(HighlightsTest, ControlFlow) {
const char *Tests[] = {
R"cpp(
// Highlight same-function returns.
int fib(unsigned n) {
if (n <= 1) [[ret^urn]] 1;
[[return]] fib(n - 1) + fib(n - 2);
// Returns from other functions not highlighted.
auto Lambda = [] { return; };
class LocalClass { void x() { return; } };
}
)cpp",
R"cpp(
#define FAIL() return false
#define DO(x) { x; }
bool foo(int n) {
if (n < 0) [[FAIL]]();
DO([[re^turn]] true)
}
)cpp",
R"cpp(
// Highlight loop control flow
int magic() {
int counter = 0;
[[^for]] (char c : "fruit loops!") {
if (c == ' ') [[continue]];
counter += c;
if (c == '!') [[break]];
if (c == '?') [[return]] -1;
}
return counter;
}
)cpp",
R"cpp(
// Highlight loop and same-loop control flow
void nonsense() {
[[while]] (true) {
if (false) [[bre^ak]];
switch (1) break;
[[continue]];
}
}
)cpp",
R"cpp(
// Highlight switch for break (but not other breaks).
void describe(unsigned n) {
[[switch]](n) {
case 0:
break;
[[default]]:
[[^break]];
}
}
)cpp",
R"cpp(
// Highlight case and exits for switch-break (but not other cases).
void describe(unsigned n) {
[[switch]](n) {
case 0:
break;
[[case]] 1:
[[default]]:
[[return]];
[[^break]];
}
}
)cpp",
R"cpp(
// Highlight exits and switch for case
void describe(unsigned n) {
[[switch]](n) {
case 0:
break;
[[case]] 1:
[[d^efault]]:
[[return]];
[[break]];
}
}
)cpp",
R"cpp(
// Highlight nothing for switch.
void describe(unsigned n) {
s^witch(n) {
case 0:
break;
case 1:
default:
return;
break;
}
}
)cpp",
R"cpp(
// FIXME: match exception type against catch blocks
int catchy() {
try { // wrong: highlight try with matching catch
try { // correct: has no matching catch
[[thr^ow]] "oh no!";
} catch (int) { } // correct: catch doesn't match type
[[return]] -1; // correct: exits the matching catch
} catch (const char*) { } // wrong: highlight matching catch
[[return]] 42; // wrong: throw doesn't exit function
}
)cpp",
R"cpp(
// Loop highlights goto exiting the loop, but not jumping within it.
void jumpy() {
[[wh^ile]](1) {
up:
if (0) [[goto]] out;
goto up;
}
out: return;
}
)cpp",
};
for (const char *Test : Tests) {
Annotations T(Test);
auto TU = TestTU::withCode(T.code());
TU.ExtraArgs.push_back("-fexceptions"); // FIXME: stop testing on PS4.
auto AST = TU.build();
EXPECT_THAT(findDocumentHighlights(AST, T.point()), HighlightsFrom(T))
<< Test;
}
}
MATCHER_P3(Sym, Name, Decl, DefOrNone, "") {
llvm::Optional<Range> Def = DefOrNone;
if (Name != arg.Name) {
*result_listener << "Name is " << arg.Name;
return false;
}
if (Decl != arg.PreferredDeclaration.range) {
*result_listener << "Declaration is "
<< llvm::to_string(arg.PreferredDeclaration);
return false;
}
if (!Def && !arg.Definition)
return true;
if (Def && !arg.Definition) {
*result_listener << "Has no definition";
return false;
}
if (!Def && arg.Definition) {
*result_listener << "Definition is " << llvm::to_string(arg.Definition);
return false;
}
if (arg.Definition->range != *Def) {
*result_listener << "Definition is " << llvm::to_string(arg.Definition);
return false;
}
return true;
}
MATCHER_P(Sym, Name, "") { return arg.Name == Name; }
MATCHER_P(RangeIs, R, "") { return arg.Loc.range == R; }
MATCHER_P(AttrsAre, A, "") { return arg.Attributes == A; }
TEST(LocateSymbol, WithIndex) {
Annotations SymbolHeader(R"cpp(
class $forward[[Forward]];
class $foo[[Foo]] {};
void $f1[[f1]]();
inline void $f2[[f2]]() {}
)cpp");
Annotations SymbolCpp(R"cpp(
class $forward[[forward]] {};
void $f1[[f1]]() {}
)cpp");
TestTU TU;
TU.Code = std::string(SymbolCpp.code());
TU.HeaderCode = std::string(SymbolHeader.code());
auto Index = TU.index();
auto LocateWithIndex = [&Index](const Annotations &Main) {
auto AST = TestTU::withCode(Main.code()).build();
return clangd::locateSymbolAt(AST, Main.point(), Index.get());
};
Annotations Test(R"cpp(// only declaration in AST.
void [[f1]]();
int main() {
^f1();
}
)cpp");
EXPECT_THAT(LocateWithIndex(Test),
ElementsAre(Sym("f1", Test.range(), SymbolCpp.range("f1"))));
Test = Annotations(R"cpp(// definition in AST.
void [[f1]]() {}
int main() {
^f1();
}
)cpp");
EXPECT_THAT(LocateWithIndex(Test),
ElementsAre(Sym("f1", SymbolHeader.range("f1"), Test.range())));
Test = Annotations(R"cpp(// forward declaration in AST.
class [[Foo]];
F^oo* create();
)cpp");
EXPECT_THAT(LocateWithIndex(Test),
ElementsAre(Sym("Foo", Test.range(), SymbolHeader.range("foo"))));
Test = Annotations(R"cpp(// definition in AST.
class [[Forward]] {};
F^orward create();
)cpp");
EXPECT_THAT(
LocateWithIndex(Test),
ElementsAre(Sym("Forward", SymbolHeader.range("forward"), Test.range())));
}
TEST(LocateSymbol, FindOverrides) {
auto Code = Annotations(R"cpp(
class Foo {
virtual void $1[[fo^o]]() = 0;
};
class Bar : public Foo {
void $2[[foo]]() override;
};
)cpp");
TestTU TU = TestTU::withCode(Code.code());
auto AST = TU.build();
EXPECT_THAT(locateSymbolAt(AST, Code.point(), TU.index().get()),
UnorderedElementsAre(Sym("foo", Code.range("1"), llvm::None),
Sym("foo", Code.range("2"), llvm::None)));
}
TEST(LocateSymbol, WithIndexPreferredLocation) {
Annotations SymbolHeader(R"cpp(
class $p[[Proto]] {};
void $f[[func]]() {};
)cpp");
TestTU TU;
TU.HeaderCode = std::string(SymbolHeader.code());
TU.HeaderFilename = "x.proto"; // Prefer locations in codegen files.
auto Index = TU.index();
Annotations Test(R"cpp(// only declaration in AST.
// Shift to make range different.
class Proto;
void func() {}
P$p^roto* create() {
fu$f^nc();
return nullptr;
}
)cpp");
auto AST = TestTU::withCode(Test.code()).build();
{
auto Locs = clangd::locateSymbolAt(AST, Test.point("p"), Index.get());
auto CodeGenLoc = SymbolHeader.range("p");
EXPECT_THAT(Locs, ElementsAre(Sym("Proto", CodeGenLoc, CodeGenLoc)));
}
{
auto Locs = clangd::locateSymbolAt(AST, Test.point("f"), Index.get());
auto CodeGenLoc = SymbolHeader.range("f");
EXPECT_THAT(Locs, ElementsAre(Sym("func", CodeGenLoc, CodeGenLoc)));
}
}
TEST(LocateSymbol, All) {
// Ranges in tests:
// $decl is the declaration location (if absent, no symbol is located)
// $def is the definition location (if absent, symbol has no definition)
// unnamed range becomes both $decl and $def.
const char *Tests[] = {
R"cpp(// Local variable
int main() {
int [[bonjour]];
^bonjour = 2;
int test1 = bonjour;
}
)cpp",
R"cpp(// Struct
namespace ns1 {
struct [[MyClass]] {};
} // namespace ns1
int main() {
ns1::My^Class* Params;
}
)cpp",
R"cpp(// Function definition via pointer
void [[foo]](int) {}
int main() {
auto *X = &^foo;
}
)cpp",
R"cpp(// Function declaration via call
int $decl[[foo]](int);
int main() {
return ^foo(42);
}
)cpp",
R"cpp(// Field
struct Foo { int [[x]]; };
int main() {
Foo bar;
(void)bar.^x;
}
)cpp",
R"cpp(// Field, member initializer
struct Foo {
int [[x]];
Foo() : ^x(0) {}
};
)cpp",
R"cpp(// Field, field designator
struct Foo { int [[x]]; };
int main() {
Foo bar = { .^x = 2 };
}
)cpp",
R"cpp(// Method call
struct Foo { int $decl[[x]](); };
int main() {
Foo bar;
bar.^x();
}
)cpp",
R"cpp(// Typedef
typedef int $decl[[Foo]];
int main() {
^Foo bar;
}
)cpp",
R"cpp(// Template type parameter
template <typename [[T]]>
void foo() { ^T t; }
)cpp",
R"cpp(// Template template type parameter
template <template<typename> class [[T]]>
void foo() { ^T<int> t; }
)cpp",
R"cpp(// Namespace
namespace $decl[[ns]] {
struct Foo { static void bar(); };
} // namespace ns
int main() { ^ns::Foo::bar(); }
)cpp",
R"cpp(// Macro
class TTT { public: int a; };
#define [[FF]](S) if (int b = S.a) {}
void f() {
TTT t;
F^F(t);
}
)cpp",
R"cpp(// Macro argument
int [[i]];
#define ADDRESSOF(X) &X;
int *j = ADDRESSOF(^i);
)cpp",
R"cpp(// Macro argument appearing multiple times in expansion
#define VALIDATE_TYPE(x) (void)x;
#define ASSERT(expr) \
do { \
VALIDATE_TYPE(expr); \
if (!expr); \
} while (false)
bool [[waldo]]() { return true; }
void foo() {
ASSERT(wa^ldo());
}
)cpp",
R"cpp(// Symbol concatenated inside macro (not supported)
int *pi;
#define POINTER(X) p ## X;
int x = *POINTER(^i);
)cpp",
R"cpp(// Forward class declaration
class $decl[[Foo]];
class $def[[Foo]] {};
F^oo* foo();
)cpp",
R"cpp(// Function declaration
void $decl[[foo]]();
void g() { f^oo(); }
void $def[[foo]]() {}
)cpp",
R"cpp(
#define FF(name) class name##_Test {};
[[FF]](my);
void f() { my^_Test a; }
)cpp",
R"cpp(
#define FF() class [[Test]] {};
FF();
void f() { T^est a; }
)cpp",
R"cpp(// explicit template specialization
template <typename T>
struct Foo { void bar() {} };
template <>
struct [[Foo]]<int> { void bar() {} };
void foo() {
Foo<char> abc;
Fo^o<int> b;
}
)cpp",
R"cpp(// implicit template specialization
template <typename T>
struct [[Foo]] { void bar() {} };
template <>
struct Foo<int> { void bar() {} };
void foo() {
Fo^o<char> abc;
Foo<int> b;
}
)cpp",
R"cpp(// partial template specialization
template <typename T>
struct Foo { void bar() {} };
template <typename T>
struct [[Foo]]<T*> { void bar() {} };
^Foo<int*> x;
)cpp",
R"cpp(// function template specializations
template <class T>
void foo(T) {}
template <>
void [[foo]](int) {}
void bar() {
fo^o(10);
}
)cpp",
R"cpp(// variable template decls
template <class T>
T var = T();
template <>
double [[var]]<int> = 10;
double y = va^r<int>;
)cpp",
R"cpp(// No implicit constructors
struct X {
X(X&& x) = default;
};
X $decl[[makeX]]();
void foo() {
auto x = m^akeX();
}
)cpp",
R"cpp(
struct X {
X& $decl[[operator]]++();
};
void foo(X& x) {
+^+x;
}
)cpp",
R"cpp(
struct S1 { void f(); };
struct S2 { S1 * $decl[[operator]]->(); };
void test(S2 s2) {
s2-^>f();
}
)cpp",
R"cpp(// Declaration of explicit template specialization
template <typename T>
struct $decl[[Foo]] {};
template <>
struct Fo^o<int> {};
)cpp",
R"cpp(// Declaration of partial template specialization
template <typename T>
struct $decl[[Foo]] {};
template <typename T>
struct Fo^o<T*> {};
)cpp",
R"cpp(// auto builtin type (not supported)
^auto x = 42;
)cpp",
R"cpp(// auto on lambda
auto x = [[[]]]{};
^auto y = x;
)cpp",
R"cpp(// auto on struct
namespace ns1 {
struct [[S1]] {};
} // namespace ns1
^auto x = ns1::S1{};
)cpp",
R"cpp(// decltype on struct
namespace ns1 {
struct [[S1]] {};
} // namespace ns1
ns1::S1 i;
^decltype(i) j;
)cpp",
R"cpp(// decltype(auto) on struct
namespace ns1 {
struct [[S1]] {};
} // namespace ns1
ns1::S1 i;
ns1::S1& j = i;
^decltype(auto) k = j;
)cpp",
R"cpp(// auto on template class
template<typename T> class [[Foo]] {};
^auto x = Foo<int>();
)cpp",
R"cpp(// auto on template class with forward declared class
template<typename T> class [[Foo]] {};
class X;
^auto x = Foo<X>();
)cpp",
R"cpp(// auto on specialized template class
template<typename T> class Foo {};
template<> class [[Foo]]<int> {};
^auto x = Foo<int>();
)cpp",
R"cpp(// auto on initializer list.
namespace std
{
template<class _E>
class [[initializer_list]] {};
}
^auto i = {1,2};
)cpp",
R"cpp(// auto function return with trailing type
struct [[Bar]] {};
^auto test() -> decltype(Bar()) {
return Bar();
}
)cpp",
R"cpp(// decltype in trailing return type
struct [[Bar]] {};
auto test() -> ^decltype(Bar()) {
return Bar();
}
)cpp",
R"cpp(// auto in function return
struct [[Bar]] {};
^auto test() {
return Bar();
}
)cpp",
R"cpp(// auto& in function return
struct [[Bar]] {};
^auto& test() {
static Bar x;
return x;
}
)cpp",
R"cpp(// auto* in function return
struct [[Bar]] {};
^auto* test() {
Bar* x;
return x;
}
)cpp",
R"cpp(// const auto& in function return
struct [[Bar]] {};
const ^auto& test() {
static Bar x;
return x;
}
)cpp",
R"cpp(// decltype(auto) in function return
struct [[Bar]] {};
^decltype(auto) test() {
return Bar();
}
)cpp",
R"cpp(// decltype of function with trailing return type.
struct [[Bar]] {};
auto test() -> decltype(Bar()) {
return Bar();
}
void foo() {
^decltype(test()) i = test();
}
)cpp",
R"cpp(// Override specifier jumps to overridden method
class Y { virtual void $decl[[a]]() = 0; };
class X : Y { void a() ^override {} };
)cpp",
R"cpp(// Final specifier jumps to overridden method
class Y { virtual void $decl[[a]]() = 0; };
class X : Y { void a() ^final {} };
)cpp",
R"cpp(// Heuristic resolution of dependent method
template <typename T>
struct S {
void [[bar]]() {}
};
template <typename T>
void foo(S<T> arg) {
arg.ba^r();
}
)cpp",
R"cpp(// Heuristic resolution of dependent method via this->
template <typename T>
struct S {
void [[foo]]() {
this->fo^o();
}
};
)cpp",
R"cpp(// Heuristic resolution of dependent static method
template <typename T>
struct S {
static void [[bar]]() {}
};
template <typename T>
void foo() {
S<T>::ba^r();
}
)cpp",
R"cpp(// Heuristic resolution of dependent method
// invoked via smart pointer
template <typename> struct S { void [[foo]]() {} };
template <typename T> struct unique_ptr {
T* operator->();
};
template <typename T>
void test(unique_ptr<S<T>>& V) {
V->fo^o();
}
)cpp",
R"cpp(// Heuristic resolution of dependent enumerator
template <typename T>
struct Foo {
enum class E { [[A]], B };
E e = E::A^;
};
)cpp",
R"objc(
@protocol Dog;
@protocol $decl[[Dog]]
- (void)bark;
@end
id<Do^g> getDoggo() {
return 0;
}
)objc",
R"objc(
@interface Cat
@end
@implementation Cat
@end
@interface $decl[[Cat]] (Exte^nsion)
- (void)meow;
@end
@implementation $def[[Cat]] (Extension)
- (void)meow {}
@end
)objc",
R"objc(
@class $decl[[Foo]];
Fo^o * getFoo() {
return 0;
}
)objc",
R"objc(// Prefer interface definition over forward declaration
@class Foo;
@interface $decl[[Foo]]
@end
Fo^o * getFoo() {
return 0;
}
)objc",
R"objc(
@class Foo;
@interface $decl[[Foo]]
@end
@implementation $def[[Foo]]
@end
Fo^o * getFoo() {
return 0;
}
)objc"};
for (const char *Test : Tests) {
Annotations T(Test);
llvm::Optional<Range> WantDecl;
llvm::Optional<Range> WantDef;
if (!T.ranges().empty())
WantDecl = WantDef = T.range();
if (!T.ranges("decl").empty())
WantDecl = T.range("decl");
if (!T.ranges("def").empty())
WantDef = T.range("def");
TestTU TU;
TU.Code = std::string(T.code());
TU.ExtraArgs.push_back("-xobjective-c++");
auto AST = TU.build();
auto Results = locateSymbolAt(AST, T.point());
if (!WantDecl) {
EXPECT_THAT(Results, IsEmpty()) << Test;
} else {
ASSERT_THAT(Results, ::testing::SizeIs(1)) << Test;
EXPECT_EQ(Results[0].PreferredDeclaration.range, *WantDecl) << Test;
llvm::Optional<Range> GotDef;
if (Results[0].Definition)
GotDef = Results[0].Definition->range;
EXPECT_EQ(WantDef, GotDef) << Test;
}
}
}
TEST(LocateSymbol, AllMulti) {
// Ranges in tests:
// $declN is the declaration location
// $defN is the definition location (if absent, symbol has no definition)
//
// NOTE:
// N starts at 0.
struct ExpectedRanges {
Range WantDecl;
llvm::Optional<Range> WantDef;
};
const char *Tests[] = {
R"objc(
@interface $decl0[[Cat]]
@end
@implementation $def0[[Cat]]
@end
@interface $decl1[[Ca^t]] (Extension)
- (void)meow;
@end
@implementation $def1[[Cat]] (Extension)
- (void)meow {}
@end
)objc",
R"objc(
@interface $decl0[[Cat]]
@end
@implementation $def0[[Cat]]
@end
@interface $decl1[[Cat]] (Extension)
- (void)meow;
@end
@implementation $def1[[Ca^t]] (Extension)
- (void)meow {}
@end
)objc",
R"objc(
@interface $decl0[[Cat]]
@end
@interface $decl1[[Ca^t]] ()
- (void)meow;
@end
@implementation $def0[[$def1[[Cat]]]]
- (void)meow {}
@end
)objc",
};
for (const char *Test : Tests) {
Annotations T(Test);
std::vector<ExpectedRanges> Ranges;
for (int Idx = 0; true; Idx++) {
bool HasDecl = !T.ranges("decl" + std::to_string(Idx)).empty();
bool HasDef = !T.ranges("def" + std::to_string(Idx)).empty();
if (!HasDecl && !HasDef)
break;
ExpectedRanges Range;
if (HasDecl)
Range.WantDecl = T.range("decl" + std::to_string(Idx));
if (HasDef)
Range.WantDef = T.range("def" + std::to_string(Idx));
Ranges.push_back(Range);
}
TestTU TU;
TU.Code = std::string(T.code());
TU.ExtraArgs.push_back("-xobjective-c++");
auto AST = TU.build();
auto Results = locateSymbolAt(AST, T.point());
ASSERT_THAT(Results, ::testing::SizeIs(Ranges.size())) << Test;
for (size_t Idx = 0; Idx < Ranges.size(); Idx++) {
EXPECT_EQ(Results[Idx].PreferredDeclaration.range, Ranges[Idx].WantDecl)
<< "($decl" << Idx << ")" << Test;
llvm::Optional<Range> GotDef;
if (Results[Idx].Definition)
GotDef = Results[Idx].Definition->range;
EXPECT_EQ(GotDef, Ranges[Idx].WantDef) << "($def" << Idx << ")" << Test;
}
}
}
// LocateSymbol test cases that produce warnings.
// These are separated out from All so that in All we can assert
// that there are no diagnostics.
TEST(LocateSymbol, Warnings) {
const char *Tests[] = {
R"cpp(// Field, GNU old-style field designator
struct Foo { int [[x]]; };
int main() {
Foo bar = { ^x : 1 };
}
)cpp",
R"cpp(// Macro
#define MACRO 0
#define [[MACRO]] 1
int main() { return ^MACRO; }
#define MACRO 2
#undef macro
)cpp",
};
for (const char *Test : Tests) {
Annotations T(Test);
llvm::Optional<Range> WantDecl;
llvm::Optional<Range> WantDef;
if (!T.ranges().empty())
WantDecl = WantDef = T.range();
if (!T.ranges("decl").empty())
WantDecl = T.range("decl");
if (!T.ranges("def").empty())
WantDef = T.range("def");
TestTU TU;
TU.Code = std::string(T.code());
auto AST = TU.build();
auto Results = locateSymbolAt(AST, T.point());
if (!WantDecl) {
EXPECT_THAT(Results, IsEmpty()) << Test;
} else {
ASSERT_THAT(Results, ::testing::SizeIs(1)) << Test;
EXPECT_EQ(Results[0].PreferredDeclaration.range, *WantDecl) << Test;
llvm::Optional<Range> GotDef;
if (Results[0].Definition)
GotDef = Results[0].Definition->range;
EXPECT_EQ(WantDef, GotDef) << Test;
}
}
}
TEST(LocateSymbol, TextualSmoke) {
auto T = Annotations(
R"cpp(
struct [[MyClass]] {};
// Comment mentioning M^yClass
)cpp");
auto TU = TestTU::withCode(T.code());
auto AST = TU.build();
auto Index = TU.index();
EXPECT_THAT(locateSymbolAt(AST, T.point(), Index.get()),
ElementsAre(Sym("MyClass", T.range(), T.range())));
}
TEST(LocateSymbol, Textual) {
const char *Tests[] = {
R"cpp(// Comment
struct [[MyClass]] {};
// Comment mentioning M^yClass
)cpp",
R"cpp(// String
struct MyClass {};
// Not triggered for string literal tokens.
const char* s = "String literal mentioning M^yClass";
)cpp",
R"cpp(// Ifdef'ed out code
struct [[MyClass]] {};
#ifdef WALDO
M^yClass var;
#endif
)cpp",
R"cpp(// Macro definition
struct [[MyClass]] {};
#define DECLARE_MYCLASS_OBJ(name) M^yClass name;
)cpp",
R"cpp(// Invalid code
/*error-ok*/
int myFunction(int);
// Not triggered for token which survived preprocessing.
int var = m^yFunction();
)cpp"};
for (const char *Test : Tests) {
Annotations T(Test);
llvm::Optional<Range> WantDecl;
if (!T.ranges().empty())
WantDecl = T.range();
auto TU = TestTU::withCode(T.code());
auto AST = TU.build();
auto Index = TU.index();
auto Word = SpelledWord::touching(
cantFail(sourceLocationInMainFile(AST.getSourceManager(), T.point())),
AST.getTokens(), AST.getLangOpts());
if (!Word) {
ADD_FAILURE() << "No word touching point!" << Test;
continue;
}
auto Results = locateSymbolTextually(*Word, AST, Index.get(),
testPath(TU.Filename), ASTNodeKind());
if (!WantDecl) {
EXPECT_THAT(Results, IsEmpty()) << Test;
} else {
ASSERT_THAT(Results, ::testing::SizeIs(1)) << Test;
EXPECT_EQ(Results[0].PreferredDeclaration.range, *WantDecl) << Test;
}
}
} // namespace
TEST(LocateSymbol, Ambiguous) {
auto T = Annotations(R"cpp(
struct Foo {
Foo();
Foo(Foo&&);
$ConstructorLoc[[Foo]](const char*);
};
Foo f();
void g(Foo foo);
void call() {
const char* str = "123";
Foo a = $1^str;
Foo b = Foo($2^str);
Foo c = $3^f();
$4^g($5^f());
g($6^str);
Foo ab$7^c;
Foo ab$8^cd("asdf");
Foo foox = Fo$9^o("asdf");
Foo abcde$10^("asdf");
Foo foox2 = Foo$11^("asdf");
}
template <typename T>
struct S {
void $NonstaticOverload1[[bar]](int);
void $NonstaticOverload2[[bar]](float);
static void $StaticOverload1[[baz]](int);
static void $StaticOverload2[[baz]](float);
};
template <typename T, typename U>
void dependent_call(S<T> s, U u) {
s.ba$12^r(u);
S<T>::ba$13^z(u);
}
)cpp");
auto TU = TestTU::withCode(T.code());
// FIXME: Go-to-definition in a template requires disabling delayed template
// parsing.
TU.ExtraArgs.push_back("-fno-delayed-template-parsing");
auto AST = TU.build();
// Ordered assertions are deliberate: we expect a predictable order.
EXPECT_THAT(locateSymbolAt(AST, T.point("1")), ElementsAre(Sym("str")));
EXPECT_THAT(locateSymbolAt(AST, T.point("2")), ElementsAre(Sym("str")));
EXPECT_THAT(locateSymbolAt(AST, T.point("3")), ElementsAre(Sym("f")));
EXPECT_THAT(locateSymbolAt(AST, T.point("4")), ElementsAre(Sym("g")));
EXPECT_THAT(locateSymbolAt(AST, T.point("5")), ElementsAre(Sym("f")));
EXPECT_THAT(locateSymbolAt(AST, T.point("6")), ElementsAre(Sym("str")));
// FIXME: Target the constructor as well.
EXPECT_THAT(locateSymbolAt(AST, T.point("7")), ElementsAre(Sym("abc")));
// FIXME: Target the constructor as well.
EXPECT_THAT(locateSymbolAt(AST, T.point("8")), ElementsAre(Sym("abcd")));
// FIXME: Target the constructor as well.
EXPECT_THAT(locateSymbolAt(AST, T.point("9")), ElementsAre(Sym("Foo")));
EXPECT_THAT(locateSymbolAt(AST, T.point("10")),
ElementsAre(Sym("Foo", T.range("ConstructorLoc"), llvm::None)));
EXPECT_THAT(locateSymbolAt(AST, T.point("11")),
ElementsAre(Sym("Foo", T.range("ConstructorLoc"), llvm::None)));
// These assertions are unordered because the order comes from
// CXXRecordDecl::lookupDependentName() which doesn't appear to provide
// an order guarantee.
EXPECT_THAT(locateSymbolAt(AST, T.point("12")),
UnorderedElementsAre(
Sym("bar", T.range("NonstaticOverload1"), llvm::None),
Sym("bar", T.range("NonstaticOverload2"), llvm::None)));
EXPECT_THAT(
locateSymbolAt(AST, T.point("13")),
UnorderedElementsAre(Sym("baz", T.range("StaticOverload1"), llvm::None),
Sym("baz", T.range("StaticOverload2"), llvm::None)));
}
TEST(LocateSymbol, TextualDependent) {
// Put the declarations in the header to make sure we are
// finding them via the index heuristic and not the
// nearby-ident heuristic.
Annotations Header(R"cpp(
struct Foo {
void $FooLoc[[uniqueMethodName]]();
};
struct Bar {
void $BarLoc[[uniqueMethodName]]();
};
)cpp");
Annotations Source(R"cpp(
template <typename T>
void f(T t) {
t.u^niqueMethodName();
}
)cpp");
TestTU TU;
TU.Code = std::string(Source.code());
TU.HeaderCode = std::string(Header.code());
auto AST = TU.build();
auto Index = TU.index();
// Need to use locateSymbolAt() since we are testing an
// interaction between locateASTReferent() and
// locateSymbolNamedTextuallyAt().
auto Results = locateSymbolAt(AST, Source.point(), Index.get());
EXPECT_THAT(Results,
UnorderedElementsAre(
Sym("uniqueMethodName", Header.range("FooLoc"), llvm::None),
Sym("uniqueMethodName", Header.range("BarLoc"), llvm::None)));
}
TEST(LocateSymbol, Alias) {
const char *Tests[] = {
R"cpp(
template <class T> struct function {};
template <class T> using [[callback]] = function<T()>;
c^allback<int> foo;
)cpp",
// triggered on non-definition of a renaming alias: should not give any
// underlying decls.
R"cpp(
class Foo {};
typedef Foo [[Bar]];
B^ar b;
)cpp",
R"cpp(
class Foo {};
using [[Bar]] = Foo; // definition
Ba^r b;
)cpp",
// triggered on the underlying decl of a renaming alias.
R"cpp(
class [[Foo]];
using Bar = Fo^o;
)cpp",
// triggered on definition of a non-renaming alias: should give underlying
// decls.
R"cpp(
namespace ns { class [[Foo]] {}; }
using ns::F^oo;
)cpp",
R"cpp(
namespace ns { int [[x]](char); int [[x]](double); }
using ns::^x;
)cpp",
R"cpp(
namespace ns { int [[x]](char); int x(double); }
using ns::[[x]];
int y = ^x('a');
)cpp",
R"cpp(
namespace ns { class [[Foo]] {}; }
using ns::Foo;
F^oo f;
)cpp",
// other cases that don't matter much.
R"cpp(
class Foo {};
typedef Foo [[Ba^r]];
)cpp",
R"cpp(
class Foo {};
using [[B^ar]] = Foo;
)cpp",
// Member of dependent base
R"cpp(
template <typename T>
struct Base {
void [[waldo]]() {}
};
template <typename T>
struct Derived : Base<T> {
using Base<T>::w^aldo;
};
)cpp",
};
for (const auto *Case : Tests) {
SCOPED_TRACE(Case);
auto T = Annotations(Case);
auto AST = TestTU::withCode(T.code()).build();
EXPECT_THAT(locateSymbolAt(AST, T.point()),
UnorderedPointwise(DeclRange(), T.ranges()));
}
}
TEST(LocateSymbol, RelPathsInCompileCommand) {
// The source is in "/clangd-test/src".
// We build in "/clangd-test/build".
Annotations SourceAnnotations(R"cpp(
#include "header_in_preamble.h"
int [[foo]];
#include "header_not_in_preamble.h"
int baz = f$p1^oo + bar_pre$p2^amble + bar_not_pre$p3^amble;
)cpp");
Annotations HeaderInPreambleAnnotations(R"cpp(
int [[bar_preamble]];
)cpp");
Annotations HeaderNotInPreambleAnnotations(R"cpp(
int [[bar_not_preamble]];
)cpp");
// Make the compilation paths appear as ../src/foo.cpp in the compile
// commands.
SmallString<32> RelPathPrefix("..");
llvm::sys::path::append(RelPathPrefix, "src");
std::string BuildDir = testPath("build");
MockCompilationDatabase CDB(BuildDir, RelPathPrefix);
MockFS FS;
ClangdServer Server(CDB, FS, ClangdServer::optsForTest());
// Fill the filesystem.
auto FooCpp = testPath("src/foo.cpp");
FS.Files[FooCpp] = "";
auto HeaderInPreambleH = testPath("src/header_in_preamble.h");
FS.Files[HeaderInPreambleH] = std::string(HeaderInPreambleAnnotations.code());
auto HeaderNotInPreambleH = testPath("src/header_not_in_preamble.h");
FS.Files[HeaderNotInPreambleH] =
std::string(HeaderNotInPreambleAnnotations.code());
runAddDocument(Server, FooCpp, SourceAnnotations.code());
// Go to a definition in main source file.
auto Locations =
runLocateSymbolAt(Server, FooCpp, SourceAnnotations.point("p1"));
EXPECT_TRUE(bool(Locations)) << "findDefinitions returned an error";
EXPECT_THAT(*Locations, ElementsAre(Sym("foo", SourceAnnotations.range(),
SourceAnnotations.range())));
// Go to a definition in header_in_preamble.h.
Locations = runLocateSymbolAt(Server, FooCpp, SourceAnnotations.point("p2"));
EXPECT_TRUE(bool(Locations)) << "findDefinitions returned an error";
EXPECT_THAT(
*Locations,
ElementsAre(Sym("bar_preamble", HeaderInPreambleAnnotations.range(),
HeaderInPreambleAnnotations.range())));
// Go to a definition in header_not_in_preamble.h.
Locations = runLocateSymbolAt(Server, FooCpp, SourceAnnotations.point("p3"));
EXPECT_TRUE(bool(Locations)) << "findDefinitions returned an error";
EXPECT_THAT(*Locations,
ElementsAre(Sym("bar_not_preamble",
HeaderNotInPreambleAnnotations.range(),
HeaderNotInPreambleAnnotations.range())));
}
TEST(GoToInclude, All) {
MockFS FS;
MockCompilationDatabase CDB;
ClangdServer Server(CDB, FS, ClangdServer::optsForTest());
auto FooCpp = testPath("foo.cpp");
const char *SourceContents = R"cpp(
#include ^"$2^foo.h$3^"
#include "$4^invalid.h"
int b = a;
// test
int foo;
#in$5^clude "$6^foo.h"$7^
)cpp";
Annotations SourceAnnotations(SourceContents);
FS.Files[FooCpp] = std::string(SourceAnnotations.code());
auto FooH = testPath("foo.h");
const char *HeaderContents = R"cpp([[]]#pragma once
int a;
)cpp";
Annotations HeaderAnnotations(HeaderContents);
FS.Files[FooH] = std::string(HeaderAnnotations.code());
runAddDocument(Server, FooH, HeaderAnnotations.code());
runAddDocument(Server, FooCpp, SourceAnnotations.code());
// Test include in preamble.
auto Locations = runLocateSymbolAt(Server, FooCpp, SourceAnnotations.point());
ASSERT_TRUE(bool(Locations)) << "locateSymbolAt returned an error";
EXPECT_THAT(*Locations, ElementsAre(Sym("foo.h", HeaderAnnotations.range(),
HeaderAnnotations.range())));
// Test include in preamble, last char.
Locations = runLocateSymbolAt(Server, FooCpp, SourceAnnotations.point("2"));
ASSERT_TRUE(bool(Locations)) << "locateSymbolAt returned an error";
EXPECT_THAT(*Locations, ElementsAre(Sym("foo.h", HeaderAnnotations.range(),
HeaderAnnotations.range())));
Locations = runLocateSymbolAt(Server, FooCpp, SourceAnnotations.point("3"));
ASSERT_TRUE(bool(Locations)) << "locateSymbolAt returned an error";
EXPECT_THAT(*Locations, ElementsAre(Sym("foo.h", HeaderAnnotations.range(),
HeaderAnnotations.range())));
// Test include outside of preamble.
Locations = runLocateSymbolAt(Server, FooCpp, SourceAnnotations.point("6"));
ASSERT_TRUE(bool(Locations)) << "locateSymbolAt returned an error";
EXPECT_THAT(*Locations, ElementsAre(Sym("foo.h", HeaderAnnotations.range(),
HeaderAnnotations.range())));
// Test a few positions that do not result in Locations.
Locations = runLocateSymbolAt(Server, FooCpp, SourceAnnotations.point("4"));
ASSERT_TRUE(bool(Locations)) << "locateSymbolAt returned an error";
EXPECT_THAT(*Locations, IsEmpty());
Locations = runLocateSymbolAt(Server, FooCpp, SourceAnnotations.point("5"));
ASSERT_TRUE(bool(Locations)) << "locateSymbolAt returned an error";
EXPECT_THAT(*Locations, ElementsAre(Sym("foo.h", HeaderAnnotations.range(),
HeaderAnnotations.range())));
Locations = runLocateSymbolAt(Server, FooCpp, SourceAnnotations.point("7"));
ASSERT_TRUE(bool(Locations)) << "locateSymbolAt returned an error";
EXPECT_THAT(*Locations, ElementsAre(Sym("foo.h", HeaderAnnotations.range(),
HeaderAnnotations.range())));
// Objective C #import directive.
Annotations ObjC(R"objc(
#import "^foo.h"
)objc");
auto FooM = testPath("foo.m");
FS.Files[FooM] = std::string(ObjC.code());
runAddDocument(Server, FooM, ObjC.code());
Locations = runLocateSymbolAt(Server, FooM, ObjC.point());
ASSERT_TRUE(bool(Locations)) << "locateSymbolAt returned an error";
EXPECT_THAT(*Locations, ElementsAre(Sym("foo.h", HeaderAnnotations.range(),
HeaderAnnotations.range())));
}
TEST(LocateSymbol, WithPreamble) {
// Test stragety: AST should always use the latest preamble instead of last
// good preamble.
MockFS FS;
MockCompilationDatabase CDB;
ClangdServer Server(CDB, FS, ClangdServer::optsForTest());
auto FooCpp = testPath("foo.cpp");
// The trigger locations must be the same.
Annotations FooWithHeader(R"cpp(#include "fo^o.h")cpp");
Annotations FooWithoutHeader(R"cpp(double [[fo^o]]();)cpp");
FS.Files[FooCpp] = std::string(FooWithHeader.code());
auto FooH = testPath("foo.h");
Annotations FooHeader(R"cpp([[]])cpp");
FS.Files[FooH] = std::string(FooHeader.code());
runAddDocument(Server, FooCpp, FooWithHeader.code());
// LocateSymbol goes to a #include file: the result comes from the preamble.
EXPECT_THAT(
cantFail(runLocateSymbolAt(Server, FooCpp, FooWithHeader.point())),
ElementsAre(Sym("foo.h", FooHeader.range(), FooHeader.range())));
// Only preamble is built, and no AST is built in this request.
Server.addDocument(FooCpp, FooWithoutHeader.code(), "null",
WantDiagnostics::No);
// We build AST here, and it should use the latest preamble rather than the
// stale one.
EXPECT_THAT(
cantFail(runLocateSymbolAt(Server, FooCpp, FooWithoutHeader.point())),
ElementsAre(Sym("foo", FooWithoutHeader.range(), llvm::None)));
// Reset test environment.
runAddDocument(Server, FooCpp, FooWithHeader.code());
// Both preamble and AST are built in this request.
Server.addDocument(FooCpp, FooWithoutHeader.code(), "null",
WantDiagnostics::Yes);
// Use the AST being built in above request.
EXPECT_THAT(
cantFail(runLocateSymbolAt(Server, FooCpp, FooWithoutHeader.point())),
ElementsAre(Sym("foo", FooWithoutHeader.range(), llvm::None)));
}
TEST(LocateSymbol, NearbyTokenSmoke) {
auto T = Annotations(R"cpp(
// prints e^rr and crashes
void die(const char* [[err]]);
)cpp");
auto AST = TestTU::withCode(T.code()).build();
// We don't pass an index, so can't hit index-based fallback.
EXPECT_THAT(locateSymbolAt(AST, T.point()),
ElementsAre(Sym("err", T.range(), T.range())));
}
TEST(LocateSymbol, NearbyIdentifier) {
const char *Tests[] = {
R"cpp(
// regular identifiers (won't trigger)
int hello;
int y = he^llo;
)cpp",
R"cpp(
// disabled preprocessor sections
int [[hello]];
#if 0
int y = ^hello;
#endif
)cpp",
R"cpp(
// comments
// he^llo, world
int [[hello]];
)cpp",
R"cpp(
// not triggered by string literals
int hello;
const char* greeting = "h^ello, world";
)cpp",
R"cpp(
// can refer to macro invocations
#define INT int
[[INT]] x;
// I^NT
)cpp",
R"cpp(
// can refer to macro invocations (even if they expand to nothing)
#define EMPTY
[[EMPTY]] int x;
// E^MPTY
)cpp",
R"cpp(
// prefer nearest occurrence, backwards is worse than forwards
int hello;
int x = hello;
// h^ello
int y = [[hello]];
int z = hello;
)cpp",
R"cpp(
// short identifiers find near results
int [[hi]];
// h^i
)cpp",
R"cpp(
// short identifiers don't find far results
int hi;
// h^i
int x = hi;
)cpp",
R"cpp(
// prefer nearest occurrence even if several matched tokens
// have the same value of `floor(log2(<token line> - <word line>))`.
int hello;
int x = hello, y = hello;
int z = [[hello]];
// h^ello
)cpp"};
for (const char *Test : Tests) {
Annotations T(Test);
auto AST = TestTU::withCode(T.code()).build();
const auto &SM = AST.getSourceManager();
llvm::Optional<Range> Nearby;
auto Word =
SpelledWord::touching(cantFail(sourceLocationInMainFile(SM, T.point())),
AST.getTokens(), AST.getLangOpts());
if (!Word) {
ADD_FAILURE() << "No word at point! " << Test;
continue;
}
if (const auto *Tok = findNearbyIdentifier(*Word, AST.getTokens()))
Nearby = halfOpenToRange(SM, CharSourceRange::getCharRange(
Tok->location(), Tok->endLocation()));
if (T.ranges().empty())
EXPECT_THAT(Nearby, Eq(llvm::None)) << Test;
else
EXPECT_EQ(Nearby, T.range()) << Test;
}
}
TEST(FindImplementations, Inheritance) {
llvm::StringRef Test = R"cpp(
struct $0^Base {
virtual void F$1^oo();
void C$4^oncrete();
};
struct $0[[Child1]] : Base {
void $1[[Fo$3^o]]() override;
virtual void B$2^ar();
void Concrete(); // No implementations for concrete methods.
};
struct Child2 : Child1 {
void $3[[Foo]]() override;
void $2[[Bar]]() override;
};
void FromReference() {
$0^Base* B;
B->Fo$1^o();
B->C$4^oncrete();
&Base::Fo$1^o;
Child1 * C1;
C1->B$2^ar();
C1->Fo$3^o();
}
// CRTP should work.
template<typename T>
struct $5^TemplateBase {};
struct $5[[Child3]] : public TemplateBase<Child3> {};
// Local classes.
void LocationFunction() {
struct $0[[LocalClass1]] : Base {
void $1[[Foo]]() override;
};
struct $6^LocalBase {
virtual void $7^Bar();
};
struct $6[[LocalClass2]]: LocalBase {
void $7[[Bar]]() override;
};
}
)cpp";
Annotations Code(Test);
auto TU = TestTU::withCode(Code.code());
auto AST = TU.build();
auto Index = TU.index();
for (StringRef Label : {"0", "1", "2", "3", "4", "5", "6", "7"}) {
for (const auto &Point : Code.points(Label)) {
EXPECT_THAT(findImplementations(AST, Point, Index.get()),
UnorderedPointwise(DeclRange(), Code.ranges(Label)))
<< Code.code() << " at " << Point << " for Label " << Label;
}
}
}
TEST(FindImplementations, CaptureDefintion) {
llvm::StringRef Test = R"cpp(
struct Base {
virtual void F^oo();
};
struct Child1 : Base {
void $Decl[[Foo]]() override;
};
struct Child2 : Base {
void $Child2[[Foo]]() override;
};
void Child1::$Def[[Foo]]() { /* Definition */ }
)cpp";
Annotations Code(Test);
auto TU = TestTU::withCode(Code.code());
auto AST = TU.build();
EXPECT_THAT(
findImplementations(AST, Code.point(), TU.index().get()),
UnorderedElementsAre(Sym("Foo", Code.range("Decl"), Code.range("Def")),
Sym("Foo", Code.range("Child2"), llvm::None)))
<< Test;
}
void checkFindRefs(llvm::StringRef Test, bool UseIndex = false) {
Annotations T(Test);
auto TU = TestTU::withCode(T.code());
auto AST = TU.build();
std::vector<Matcher<ReferencesResult::Reference>> ExpectedLocations;
for (const auto &R : T.ranges())
ExpectedLocations.push_back(AllOf(RangeIs(R), AttrsAre(0u)));
// $def is actually shorthand for both definition and declaration.
// If we have cases that are definition-only, we should change this.
for (const auto &R : T.ranges("def"))
ExpectedLocations.push_back(
AllOf(RangeIs(R), AttrsAre(ReferencesResult::Definition |
ReferencesResult::Declaration)));
for (const auto &R : T.ranges("decl"))
ExpectedLocations.push_back(
AllOf(RangeIs(R), AttrsAre(ReferencesResult::Declaration)));
for (const auto &R : T.ranges("overridedecl"))
ExpectedLocations.push_back(AllOf(
RangeIs(R),
AttrsAre(ReferencesResult::Declaration | ReferencesResult::Override)));
for (const auto &R : T.ranges("overridedef"))
ExpectedLocations.push_back(
AllOf(RangeIs(R), AttrsAre(ReferencesResult::Declaration |
ReferencesResult::Definition |
ReferencesResult::Override)));
EXPECT_THAT(
findReferences(AST, T.point(), 0, UseIndex ? TU.index().get() : nullptr)
.References,
UnorderedElementsAreArray(ExpectedLocations))
<< Test;
}
TEST(FindReferences, WithinAST) {
const char *Tests[] = {
R"cpp(// Local variable
int main() {
int $def[[foo]];
[[^foo]] = 2;
int test1 = [[foo]];
}
)cpp",
R"cpp(// Struct
namespace ns1 {
struct $def[[Foo]] {};
} // namespace ns1
int main() {
ns1::[[Fo^o]]* Params;
}
)cpp",
R"cpp(// Forward declaration
class $decl[[Foo]];
class $def[[Foo]] {};
int main() {
[[Fo^o]] foo;
}
)cpp",
R"cpp(// Function
int $def[[foo]](int) {}
int main() {
auto *X = &[[^foo]];
[[foo]](42);
}
)cpp",
R"cpp(// Field
struct Foo {
int $def[[foo]];
Foo() : [[foo]](0) {}
};
int main() {
Foo f;
f.[[f^oo]] = 1;
}
)cpp",
R"cpp(// Method call
struct Foo { int $decl[[foo]](); };
int Foo::$def[[foo]]() {}
int main() {
Foo f;
f.[[^foo]]();
}
)cpp",
R"cpp(// Constructor
struct Foo {
$decl[[F^oo]](int);
};
void foo() {
Foo f = [[Foo]](42);
}
)cpp",
R"cpp(// Typedef
typedef int $def[[Foo]];
int main() {
[[^Foo]] bar;
}
)cpp",
R"cpp(// Namespace
namespace $decl[[ns]] { // FIXME: def?
struct Foo {};
} // namespace ns
int main() { [[^ns]]::Foo foo; }
)cpp",
R"cpp(// Macros
#define TYPE(X) X
#define FOO Foo
#define CAT(X, Y) X##Y
class $def[[Fo^o]] {};
void test() {
TYPE([[Foo]]) foo;
[[FOO]] foo2;
TYPE(TYPE([[Foo]])) foo3;
[[CAT]](Fo, o) foo4;
}
)cpp",
R"cpp(// Macros
#define $def[[MA^CRO]](X) (X+1)
void test() {
int x = [[MACRO]]([[MACRO]](1));
}
)cpp",
R"cpp(// Macro outside preamble
int breakPreamble;
#define $def[[MA^CRO]](X) (X+1)
void test() {
int x = [[MACRO]]([[MACRO]](1));
}
)cpp",
R"cpp(
int $def[[v^ar]] = 0;
void foo(int s = [[var]]);
)cpp",
R"cpp(
template <typename T>
class $def[[Fo^o]] {};
void func([[Foo]]<int>);
)cpp",
R"cpp(
template <typename T>
class $def[[Foo]] {};
void func([[Fo^o]]<int>);
)cpp",
R"cpp(// Not touching any identifiers.
struct Foo {
$def[[~]]Foo() {};
};
void foo() {
Foo f;
f.[[^~]]Foo();
}
)cpp",
R"cpp(// Lambda capture initializer
void foo() {
int $def[[w^aldo]] = 42;
auto lambda = [x = [[waldo]]](){};
}
)cpp",
R"cpp(// Renaming alias
template <typename> class Vector {};
using $def[[^X]] = Vector<int>;
[[X]] x1;
Vector<int> x2;
Vector<double> y;
)cpp",
R"cpp(// Dependent code
template <typename T> void $decl[[foo]](T t);
template <typename T> void bar(T t) { [[foo]](t); } // foo in bar is uninstantiated.
void baz(int x) { [[f^oo]](x); }
)cpp",
R"cpp(
namespace ns {
struct S{};
void $decl[[foo]](S s);
} // namespace ns
template <typename T> void foo(T t);
// FIXME: Maybe report this foo as a ref to ns::foo (because of ADL)
// when bar<ns::S> is instantiated?
template <typename T> void bar(T t) { foo(t); }
void baz(int x) {
ns::S s;
bar<ns::S>(s);
[[f^oo]](s);
}
)cpp",
};
for (const char *Test : Tests)
checkFindRefs(Test);
}
TEST(FindReferences, IncludeOverrides) {
llvm::StringRef Test =
R"cpp(
class Base {
public:
virtual void $decl[[f^unc]]() = 0;
};
class Derived : public Base {
public:
void $overridedecl[[func]]() override;
};
void Derived::$overridedef[[func]]() {}
void test(Derived* D) {
D->func(); // No references to the overrides.
})cpp";
checkFindRefs(Test, /*UseIndex=*/true);
}
TEST(FindReferences, RefsToBaseMethod) {
llvm::StringRef Test =
R"cpp(
class BaseBase {
public:
virtual void [[func]]();
};
class Base : public BaseBase {
public:
void [[func]]() override;
};
class Derived : public Base {
public:
void $decl[[fu^nc]]() override;
};
void test(BaseBase* BB, Base* B, Derived* D) {
// refs to overridden methods in complete type hierarchy are reported.
BB->[[func]]();
B->[[func]]();
D->[[func]]();
})cpp";
checkFindRefs(Test, /*UseIndex=*/true);
}
TEST(FindReferences, MainFileReferencesOnly) {
llvm::StringRef Test =
R"cpp(
void test() {
int [[fo^o]] = 1;
// refs not from main file should not be included.
#include "foo.inc"
})cpp";
Annotations Code(Test);
auto TU = TestTU::withCode(Code.code());
TU.AdditionalFiles["foo.inc"] = R"cpp(
foo = 3;
)cpp";
auto AST = TU.build();
std::vector<Matcher<ReferencesResult::Reference>> ExpectedLocations;
for (const auto &R : Code.ranges())
ExpectedLocations.push_back(RangeIs(R));
EXPECT_THAT(findReferences(AST, Code.point(), 0).References,
ElementsAreArray(ExpectedLocations))
<< Test;
}
TEST(FindReferences, ExplicitSymbols) {
const char *Tests[] = {
R"cpp(
struct Foo { Foo* $decl[[self]]() const; };
void f() {
Foo foo;
if (Foo* T = foo.[[^self]]()) {} // Foo member call expr.
}
)cpp",
R"cpp(
struct Foo { Foo(int); };
Foo f() {
int $def[[b]];
return [[^b]]; // Foo constructor expr.
}
)cpp",
R"cpp(
struct Foo {};
void g(Foo);
Foo $decl[[f]]();
void call() {
g([[^f]]()); // Foo constructor expr.
}
)cpp",
R"cpp(
void $decl[[foo]](int);
void $decl[[foo]](double);
namespace ns {
using ::$decl[[fo^o]];
}
)cpp",
R"cpp(
struct X {
operator bool();
};
int test() {
X $def[[a]];
[[a]].operator bool();
if ([[a^]]) {} // ignore implicit conversion-operator AST node
}
)cpp",
};
for (const char *Test : Tests)
checkFindRefs(Test);
}
TEST(FindReferences, NeedsIndexForSymbols) {
const char *Header = "int foo();";
Annotations Main("int main() { [[f^oo]](); }");
TestTU TU;
TU.Code = std::string(Main.code());
TU.HeaderCode = Header;
auto AST = TU.build();
// References in main file are returned without index.
EXPECT_THAT(
findReferences(AST, Main.point(), 0, /*Index=*/nullptr).References,
ElementsAre(RangeIs(Main.range())));
Annotations IndexedMain(R"cpp(
int [[foo]]() { return 42; }
)cpp");
// References from indexed files are included.
TestTU IndexedTU;
IndexedTU.Code = std::string(IndexedMain.code());
IndexedTU.Filename = "Indexed.cpp";
IndexedTU.HeaderCode = Header;
EXPECT_THAT(
findReferences(AST, Main.point(), 0, IndexedTU.index().get()).References,
ElementsAre(RangeIs(Main.range()),
AllOf(RangeIs(IndexedMain.range()),
AttrsAre(ReferencesResult::Declaration |
ReferencesResult::Definition))));
auto LimitRefs =
findReferences(AST, Main.point(), /*Limit*/ 1, IndexedTU.index().get());
EXPECT_EQ(1u, LimitRefs.References.size());
EXPECT_TRUE(LimitRefs.HasMore);
// Avoid indexed results for the main file. Use AST for the mainfile.
TU.Code = ("\n\n" + Main.code()).str();
EXPECT_THAT(findReferences(AST, Main.point(), 0, TU.index().get()).References,
ElementsAre(RangeIs(Main.range())));
}
TEST(FindReferences, NeedsIndexForMacro) {
const char *Header = "#define MACRO(X) (X+1)";
Annotations Main(R"cpp(
int main() {
int a = [[MA^CRO]](1);
}
)cpp");
TestTU TU;
TU.Code = std::string(Main.code());
TU.HeaderCode = Header;
auto AST = TU.build();
// References in main file are returned without index.
EXPECT_THAT(
findReferences(AST, Main.point(), 0, /*Index=*/nullptr).References,
ElementsAre(RangeIs(Main.range())));
Annotations IndexedMain(R"cpp(
int indexed_main() {
int a = [[MACRO]](1);
}
)cpp");
// References from indexed files are included.
TestTU IndexedTU;
IndexedTU.Code = std::string(IndexedMain.code());
IndexedTU.Filename = "Indexed.cpp";
IndexedTU.HeaderCode = Header;
EXPECT_THAT(
findReferences(AST, Main.point(), 0, IndexedTU.index().get()).References,
ElementsAre(RangeIs(Main.range()), RangeIs(IndexedMain.range())));
auto LimitRefs =
findReferences(AST, Main.point(), /*Limit*/ 1, IndexedTU.index().get());
EXPECT_EQ(1u, LimitRefs.References.size());
EXPECT_TRUE(LimitRefs.HasMore);
}
TEST(FindReferences, NoQueryForLocalSymbols) {
struct RecordingIndex : public MemIndex {
mutable Optional<llvm::DenseSet<SymbolID>> RefIDs;
bool refs(const RefsRequest &Req,
llvm::function_ref<void(const Ref &)>) const override {
RefIDs = Req.IDs;
return false;
}
};
struct Test {
StringRef AnnotatedCode;
bool WantQuery;
} Tests[] = {
{"int ^x;", true},
// For now we don't assume header structure which would allow skipping.
{"namespace { int ^x; }", true},
{"static int ^x;", true},
// Anything in a function certainly can't be referenced though.
{"void foo() { int ^x; }", false},
{"void foo() { struct ^x{}; }", false},
{"auto lambda = []{ int ^x; };", false},
};
for (Test T : Tests) {
Annotations File(T.AnnotatedCode);
RecordingIndex Rec;
auto AST = TestTU::withCode(File.code()).build();
findReferences(AST, File.point(), 0, &Rec);
if (T.WantQuery)
EXPECT_NE(Rec.RefIDs, None) << T.AnnotatedCode;
else
EXPECT_EQ(Rec.RefIDs, None) << T.AnnotatedCode;
}
}
TEST(GetNonLocalDeclRefs, All) {
struct Case {
llvm::StringRef AnnotatedCode;
std::vector<std::string> ExpectedDecls;
} Cases[] = {
{
// VarDecl and ParamVarDecl
R"cpp(
void bar();
void ^foo(int baz) {
int x = 10;
bar();
})cpp",
{"bar"},
},
{
// Method from class
R"cpp(
class Foo { public: void foo(); };
class Bar {
void foo();
void bar();
};
void Bar::^foo() {
Foo f;
bar();
f.foo();
})cpp",
{"Bar", "Bar::bar", "Foo", "Foo::foo"},
},
{
// Local types
R"cpp(
void ^foo() {
class Foo { public: void foo() {} };
class Bar { public: void bar() {} };
Foo f;
Bar b;
b.bar();
f.foo();
})cpp",
{},
},
{
// Template params
R"cpp(
template <typename T, template<typename> class Q>
void ^foo() {
T x;
Q<T> y;
})cpp",
{},
},
};
for (const Case &C : Cases) {
Annotations File(C.AnnotatedCode);
auto AST = TestTU::withCode(File.code()).build();
SourceLocation SL = llvm::cantFail(
sourceLocationInMainFile(AST.getSourceManager(), File.point()));
const FunctionDecl *FD =
llvm::dyn_cast<FunctionDecl>(&findDecl(AST, [SL](const NamedDecl &ND) {
return ND.getLocation() == SL && llvm::isa<FunctionDecl>(ND);
}));
ASSERT_NE(FD, nullptr);
auto NonLocalDeclRefs = getNonLocalDeclRefs(AST, FD);
std::vector<std::string> Names;
for (const Decl *D : NonLocalDeclRefs) {
if (const auto *ND = llvm::dyn_cast<NamedDecl>(D))
Names.push_back(ND->getQualifiedNameAsString());
}
EXPECT_THAT(Names, UnorderedElementsAreArray(C.ExpectedDecls))
<< File.code();
}
}
TEST(DocumentLinks, All) {
Annotations MainCpp(R"cpp(
#/*comments*/include /*comments*/ $foo[["foo.h"]] //more comments
int end_of_preamble = 0;
#include $bar[[<bar.h>]]
)cpp");
TestTU TU;
TU.Code = std::string(MainCpp.code());
TU.AdditionalFiles = {{"foo.h", ""}, {"bar.h", ""}};
TU.ExtraArgs = {"-isystem."};
auto AST = TU.build();
EXPECT_THAT(
clangd::getDocumentLinks(AST),
ElementsAre(
DocumentLink({MainCpp.range("foo"),
URIForFile::canonicalize(testPath("foo.h"), "")}),
DocumentLink({MainCpp.range("bar"),
URIForFile::canonicalize(testPath("bar.h"), "")})));
}
} // namespace
} // namespace clangd
} // namespace clang