llvm-project/clang/lib/Serialization/ModuleManager.cpp

256 lines
8.2 KiB
C++

//===--- ModuleManager.cpp - Module Manager ---------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ModuleManager class, which manages a set of loaded
// modules for the ASTReader.
//
//===----------------------------------------------------------------------===//
#include "clang/Serialization/ModuleManager.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#ifndef NDEBUG
#include "llvm/Support/GraphWriter.h"
#endif
using namespace clang;
using namespace serialization;
ModuleFile *ModuleManager::lookup(StringRef Name) {
const FileEntry *Entry = FileMgr.getFile(Name);
return Modules[Entry];
}
llvm::MemoryBuffer *ModuleManager::lookupBuffer(StringRef Name) {
const FileEntry *Entry = FileMgr.getFile(Name);
return InMemoryBuffers[Entry];
}
std::pair<ModuleFile *, bool>
ModuleManager::addModule(StringRef FileName, ModuleKind Type,
ModuleFile *ImportedBy, unsigned Generation,
std::string &ErrorStr) {
const FileEntry *Entry = FileMgr.getFile(FileName);
if (!Entry && FileName != "-") {
ErrorStr = "file not found";
return std::make_pair(static_cast<ModuleFile*>(0), false);
}
// Check whether we already loaded this module, before
ModuleFile *&ModuleEntry = Modules[Entry];
bool NewModule = false;
if (!ModuleEntry) {
// Allocate a new module.
ModuleFile *New = new ModuleFile(Type, Generation);
New->FileName = FileName.str();
New->File = Entry;
Chain.push_back(New);
NewModule = true;
ModuleEntry = New;
// Load the contents of the module
if (llvm::MemoryBuffer *Buffer = lookupBuffer(FileName)) {
// The buffer was already provided for us.
assert(Buffer && "Passed null buffer");
New->Buffer.reset(Buffer);
} else {
// Open the AST file.
llvm::error_code ec;
if (FileName == "-") {
ec = llvm::MemoryBuffer::getSTDIN(New->Buffer);
if (ec)
ErrorStr = ec.message();
} else
New->Buffer.reset(FileMgr.getBufferForFile(FileName, &ErrorStr));
if (!New->Buffer)
return std::make_pair(static_cast<ModuleFile*>(0), false);
}
// Initialize the stream
New->StreamFile.init((const unsigned char *)New->Buffer->getBufferStart(),
(const unsigned char *)New->Buffer->getBufferEnd()); }
if (ImportedBy) {
ModuleEntry->ImportedBy.insert(ImportedBy);
ImportedBy->Imports.insert(ModuleEntry);
} else {
ModuleEntry->DirectlyImported = true;
}
return std::make_pair(ModuleEntry, NewModule);
}
void ModuleManager::addInMemoryBuffer(StringRef FileName,
llvm::MemoryBuffer *Buffer) {
const FileEntry *Entry = FileMgr.getVirtualFile(FileName,
Buffer->getBufferSize(), 0);
InMemoryBuffers[Entry] = Buffer;
}
ModuleManager::ModuleManager(FileManager &FileMgr) : FileMgr(FileMgr) { }
ModuleManager::~ModuleManager() {
for (unsigned i = 0, e = Chain.size(); i != e; ++i)
delete Chain[e - i - 1];
}
void ModuleManager::visit(bool (*Visitor)(ModuleFile &M, void *UserData),
void *UserData) {
unsigned N = size();
// Record the number of incoming edges for each module. When we
// encounter a module with no incoming edges, push it into the queue
// to seed the queue.
SmallVector<ModuleFile *, 4> Queue;
Queue.reserve(N);
llvm::DenseMap<ModuleFile *, unsigned> UnusedIncomingEdges;
for (ModuleIterator M = begin(), MEnd = end(); M != MEnd; ++M) {
if (unsigned Size = (*M)->ImportedBy.size())
UnusedIncomingEdges[*M] = Size;
else
Queue.push_back(*M);
}
llvm::SmallPtrSet<ModuleFile *, 4> Skipped;
unsigned QueueStart = 0;
while (QueueStart < Queue.size()) {
ModuleFile *CurrentModule = Queue[QueueStart++];
// Check whether this module should be skipped.
if (Skipped.count(CurrentModule))
continue;
if (Visitor(*CurrentModule, UserData)) {
// The visitor has requested that cut off visitation of any
// module that the current module depends on. To indicate this
// behavior, we mark all of the reachable modules as having N
// incoming edges (which is impossible otherwise).
SmallVector<ModuleFile *, 4> Stack;
Stack.push_back(CurrentModule);
Skipped.insert(CurrentModule);
while (!Stack.empty()) {
ModuleFile *NextModule = Stack.back();
Stack.pop_back();
// For any module that this module depends on, push it on the
// stack (if it hasn't already been marked as visited).
for (llvm::SetVector<ModuleFile *>::iterator
M = NextModule->Imports.begin(),
MEnd = NextModule->Imports.end();
M != MEnd; ++M) {
if (Skipped.insert(*M))
Stack.push_back(*M);
}
}
continue;
}
// For any module that this module depends on, push it on the
// stack (if it hasn't already been marked as visited).
for (llvm::SetVector<ModuleFile *>::iterator M = CurrentModule->Imports.begin(),
MEnd = CurrentModule->Imports.end();
M != MEnd; ++M) {
// Remove our current module as an impediment to visiting the
// module we depend on. If we were the last unvisited module
// that depends on this particular module, push it into the
// queue to be visited.
unsigned &NumUnusedEdges = UnusedIncomingEdges[*M];
if (NumUnusedEdges && (--NumUnusedEdges == 0))
Queue.push_back(*M);
}
}
}
/// \brief Perform a depth-first visit of the current module.
static bool visitDepthFirst(ModuleFile &M,
bool (*Visitor)(ModuleFile &M, bool Preorder,
void *UserData),
void *UserData,
llvm::SmallPtrSet<ModuleFile *, 4> &Visited) {
// Preorder visitation
if (Visitor(M, /*Preorder=*/true, UserData))
return true;
// Visit children
for (llvm::SetVector<ModuleFile *>::iterator IM = M.Imports.begin(),
IMEnd = M.Imports.end();
IM != IMEnd; ++IM) {
if (!Visited.insert(*IM))
continue;
if (visitDepthFirst(**IM, Visitor, UserData, Visited))
return true;
}
// Postorder visitation
return Visitor(M, /*Preorder=*/false, UserData);
}
void ModuleManager::visitDepthFirst(bool (*Visitor)(ModuleFile &M, bool Preorder,
void *UserData),
void *UserData) {
llvm::SmallPtrSet<ModuleFile *, 4> Visited;
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
if (!Visited.insert(Chain[I]))
continue;
if (::visitDepthFirst(*Chain[I], Visitor, UserData, Visited))
return;
}
}
#ifndef NDEBUG
namespace llvm {
template<>
struct GraphTraits<ModuleManager> {
typedef ModuleFile NodeType;
typedef llvm::SetVector<ModuleFile *>::const_iterator ChildIteratorType;
typedef ModuleManager::ModuleConstIterator nodes_iterator;
static ChildIteratorType child_begin(NodeType *Node) {
return Node->Imports.begin();
}
static ChildIteratorType child_end(NodeType *Node) {
return Node->Imports.end();
}
static nodes_iterator nodes_begin(const ModuleManager &Manager) {
return Manager.begin();
}
static nodes_iterator nodes_end(const ModuleManager &Manager) {
return Manager.end();
}
};
template<>
struct DOTGraphTraits<ModuleManager> : public DefaultDOTGraphTraits {
explicit DOTGraphTraits(bool IsSimple = false)
: DefaultDOTGraphTraits(IsSimple) { }
static bool renderGraphFromBottomUp() {
return true;
}
std::string getNodeLabel(ModuleFile *M, const ModuleManager&) {
return llvm::sys::path::stem(M->FileName);
}
};
}
void ModuleManager::viewGraph() {
llvm::ViewGraph(*this, "Modules");
}
#endif