forked from OSchip/llvm-project
873 lines
34 KiB
C++
873 lines
34 KiB
C++
//===- InputFiles.cpp -----------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains functions to parse Mach-O object files. In this comment,
|
|
// we describe the Mach-O file structure and how we parse it.
|
|
//
|
|
// Mach-O is not very different from ELF or COFF. The notion of symbols,
|
|
// sections and relocations exists in Mach-O as it does in ELF and COFF.
|
|
//
|
|
// Perhaps the notion that is new to those who know ELF/COFF is "subsections".
|
|
// In ELF/COFF, sections are an atomic unit of data copied from input files to
|
|
// output files. When we merge or garbage-collect sections, we treat each
|
|
// section as an atomic unit. In Mach-O, that's not the case. Sections can
|
|
// consist of multiple subsections, and subsections are a unit of merging and
|
|
// garbage-collecting. Therefore, Mach-O's subsections are more similar to
|
|
// ELF/COFF's sections than Mach-O's sections are.
|
|
//
|
|
// A section can have multiple symbols. A symbol that does not have the
|
|
// N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
|
|
// definition, a symbol is always present at the beginning of each subsection. A
|
|
// symbol with N_ALT_ENTRY attribute does not start a new subsection and can
|
|
// point to a middle of a subsection.
|
|
//
|
|
// The notion of subsections also affects how relocations are represented in
|
|
// Mach-O. All references within a section need to be explicitly represented as
|
|
// relocations if they refer to different subsections, because we obviously need
|
|
// to fix up addresses if subsections are laid out in an output file differently
|
|
// than they were in object files. To represent that, Mach-O relocations can
|
|
// refer to an unnamed location via its address. Scattered relocations (those
|
|
// with the R_SCATTERED bit set) always refer to unnamed locations.
|
|
// Non-scattered relocations refer to an unnamed location if r_extern is not set
|
|
// and r_symbolnum is zero.
|
|
//
|
|
// Without the above differences, I think you can use your knowledge about ELF
|
|
// and COFF for Mach-O.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InputFiles.h"
|
|
#include "Config.h"
|
|
#include "Driver.h"
|
|
#include "Dwarf.h"
|
|
#include "ExportTrie.h"
|
|
#include "InputSection.h"
|
|
#include "MachOStructs.h"
|
|
#include "ObjC.h"
|
|
#include "OutputSection.h"
|
|
#include "OutputSegment.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "Target.h"
|
|
|
|
#include "lld/Common/DWARF.h"
|
|
#include "lld/Common/ErrorHandler.h"
|
|
#include "lld/Common/Memory.h"
|
|
#include "lld/Common/Reproduce.h"
|
|
#include "llvm/ADT/iterator.h"
|
|
#include "llvm/BinaryFormat/MachO.h"
|
|
#include "llvm/LTO/LTO.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/TarWriter.h"
|
|
#include "llvm/TextAPI/MachO/Architecture.h"
|
|
#include "llvm/TextAPI/MachO/InterfaceFile.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::MachO;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::sys;
|
|
using namespace lld;
|
|
using namespace lld::macho;
|
|
|
|
// Returns "<internal>", "foo.a(bar.o)", or "baz.o".
|
|
std::string lld::toString(const InputFile *f) {
|
|
if (!f)
|
|
return "<internal>";
|
|
|
|
// Multiple dylibs can be defined in one .tbd file.
|
|
if (auto dylibFile = dyn_cast<DylibFile>(f))
|
|
if (f->getName().endswith(".tbd"))
|
|
return (f->getName() + "(" + dylibFile->dylibName + ")").str();
|
|
|
|
if (f->archiveName.empty())
|
|
return std::string(f->getName());
|
|
return (path::filename(f->archiveName) + "(" + path::filename(f->getName()) +
|
|
")")
|
|
.str();
|
|
}
|
|
|
|
SetVector<InputFile *> macho::inputFiles;
|
|
std::unique_ptr<TarWriter> macho::tar;
|
|
int InputFile::idCount = 0;
|
|
|
|
// Open a given file path and return it as a memory-mapped file.
|
|
Optional<MemoryBufferRef> macho::readFile(StringRef path) {
|
|
// Open a file.
|
|
ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
|
|
if (std::error_code ec = mbOrErr.getError()) {
|
|
error("cannot open " + path + ": " + ec.message());
|
|
return None;
|
|
}
|
|
|
|
std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
|
|
MemoryBufferRef mbref = mb->getMemBufferRef();
|
|
make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
|
|
|
|
// If this is a regular non-fat file, return it.
|
|
const char *buf = mbref.getBufferStart();
|
|
const auto *hdr = reinterpret_cast<const fat_header *>(buf);
|
|
if (mbref.getBufferSize() < sizeof(uint32_t) ||
|
|
read32be(&hdr->magic) != FAT_MAGIC) {
|
|
if (tar)
|
|
tar->append(relativeToRoot(path), mbref.getBuffer());
|
|
return mbref;
|
|
}
|
|
|
|
// Object files and archive files may be fat files, which contains
|
|
// multiple real files for different CPU ISAs. Here, we search for a
|
|
// file that matches with the current link target and returns it as
|
|
// a MemoryBufferRef.
|
|
const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
|
|
|
|
for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
|
|
if (reinterpret_cast<const char *>(arch + i + 1) >
|
|
buf + mbref.getBufferSize()) {
|
|
error(path + ": fat_arch struct extends beyond end of file");
|
|
return None;
|
|
}
|
|
|
|
if (read32be(&arch[i].cputype) != target->cpuType ||
|
|
read32be(&arch[i].cpusubtype) != target->cpuSubtype)
|
|
continue;
|
|
|
|
uint32_t offset = read32be(&arch[i].offset);
|
|
uint32_t size = read32be(&arch[i].size);
|
|
if (offset + size > mbref.getBufferSize())
|
|
error(path + ": slice extends beyond end of file");
|
|
if (tar)
|
|
tar->append(relativeToRoot(path), mbref.getBuffer());
|
|
return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc));
|
|
}
|
|
|
|
error("unable to find matching architecture in " + path);
|
|
return None;
|
|
}
|
|
|
|
InputFile::InputFile(Kind kind, const InterfaceFile &interface)
|
|
: id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {}
|
|
|
|
void ObjFile::parseSections(ArrayRef<section_64> sections) {
|
|
subsections.reserve(sections.size());
|
|
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
|
|
|
|
for (const section_64 &sec : sections) {
|
|
InputSection *isec = make<InputSection>();
|
|
isec->file = this;
|
|
isec->name =
|
|
StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
|
|
isec->segname =
|
|
StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
|
|
isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset,
|
|
static_cast<size_t>(sec.size)};
|
|
if (sec.align >= 32)
|
|
error("alignment " + std::to_string(sec.align) + " of section " +
|
|
isec->name + " is too large");
|
|
else
|
|
isec->align = 1 << sec.align;
|
|
isec->flags = sec.flags;
|
|
|
|
if (!(isDebugSection(isec->flags) &&
|
|
isec->segname == segment_names::dwarf)) {
|
|
subsections.push_back({{0, isec}});
|
|
} else {
|
|
// Instead of emitting DWARF sections, we emit STABS symbols to the
|
|
// object files that contain them. We filter them out early to avoid
|
|
// parsing their relocations unnecessarily. But we must still push an
|
|
// empty map to ensure the indices line up for the remaining sections.
|
|
subsections.push_back({});
|
|
debugSections.push_back(isec);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find the subsection corresponding to the greatest section offset that is <=
|
|
// that of the given offset.
|
|
//
|
|
// offset: an offset relative to the start of the original InputSection (before
|
|
// any subsection splitting has occurred). It will be updated to represent the
|
|
// same location as an offset relative to the start of the containing
|
|
// subsection.
|
|
static InputSection *findContainingSubsection(SubsectionMap &map,
|
|
uint32_t *offset) {
|
|
auto it = std::prev(map.upper_bound(*offset));
|
|
*offset -= it->first;
|
|
return it->second;
|
|
}
|
|
|
|
static bool validateRelocationInfo(InputFile *file, const section_64 &sec,
|
|
relocation_info rel) {
|
|
const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
|
|
bool valid = true;
|
|
auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
|
|
valid = false;
|
|
return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
|
|
std::to_string(rel.r_address) + " of " + sec.segname + "," +
|
|
sec.sectname + " in " + toString(file))
|
|
.str();
|
|
};
|
|
|
|
if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
|
|
error(message("must be extern"));
|
|
if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
|
|
error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
|
|
"be PC-relative"));
|
|
if (isThreadLocalVariables(sec.flags) &&
|
|
!relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
|
|
error(message("not allowed in thread-local section, must be UNSIGNED"));
|
|
if (rel.r_length < 2 || rel.r_length > 3 ||
|
|
!relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
|
|
static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
|
|
error(message("has width " + std::to_string(1 << rel.r_length) +
|
|
" bytes, but must be " +
|
|
widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
|
|
" bytes"));
|
|
}
|
|
return valid;
|
|
}
|
|
|
|
void ObjFile::parseRelocations(const section_64 &sec,
|
|
SubsectionMap &subsecMap) {
|
|
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
|
|
ArrayRef<relocation_info> relInfos(
|
|
reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
|
|
|
|
for (size_t i = 0; i < relInfos.size(); i++) {
|
|
// Paired relocations serve as Mach-O's method for attaching a
|
|
// supplemental datum to a primary relocation record. ELF does not
|
|
// need them because the *_RELOC_RELA records contain the extra
|
|
// addend field, vs. *_RELOC_REL which omit the addend.
|
|
//
|
|
// The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
|
|
// and the paired *_RELOC_UNSIGNED record holds the minuend. The
|
|
// datum for each is a symbolic address. The result is the offset
|
|
// between two addresses.
|
|
//
|
|
// The ARM64_RELOC_ADDEND record holds the addend, and the paired
|
|
// ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
|
|
// base symbolic address.
|
|
//
|
|
// Note: X86 does not use *_RELOC_ADDEND because it can embed an
|
|
// addend into the instruction stream. On X86, a relocatable address
|
|
// field always occupies an entire contiguous sequence of byte(s),
|
|
// so there is no need to merge opcode bits with address
|
|
// bits. Therefore, it's easy and convenient to store addends in the
|
|
// instruction-stream bytes that would otherwise contain zeroes. By
|
|
// contrast, RISC ISAs such as ARM64 mix opcode bits with with
|
|
// address bits so that bitwise arithmetic is necessary to extract
|
|
// and insert them. Storing addends in the instruction stream is
|
|
// possible, but inconvenient and more costly at link time.
|
|
|
|
int64_t pairedAddend = 0;
|
|
relocation_info relInfo = relInfos[i];
|
|
if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
|
|
pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
|
|
relInfo = relInfos[++i];
|
|
}
|
|
assert(i < relInfos.size());
|
|
if (!validateRelocationInfo(this, sec, relInfo))
|
|
continue;
|
|
if (relInfo.r_address & R_SCATTERED)
|
|
fatal("TODO: Scattered relocations not supported");
|
|
|
|
int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec, relInfo);
|
|
assert(!(embeddedAddend && pairedAddend));
|
|
int64_t totalAddend = pairedAddend + embeddedAddend;
|
|
Reloc r;
|
|
r.type = relInfo.r_type;
|
|
r.pcrel = relInfo.r_pcrel;
|
|
r.length = relInfo.r_length;
|
|
r.offset = relInfo.r_address;
|
|
if (relInfo.r_extern) {
|
|
r.referent = symbols[relInfo.r_symbolnum];
|
|
r.addend = totalAddend;
|
|
} else {
|
|
SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1];
|
|
const section_64 &referentSec = sectionHeaders[relInfo.r_symbolnum - 1];
|
|
uint32_t referentOffset;
|
|
if (relInfo.r_pcrel) {
|
|
// The implicit addend for pcrel section relocations is the pcrel offset
|
|
// in terms of the addresses in the input file. Here we adjust it so
|
|
// that it describes the offset from the start of the referent section.
|
|
// FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
|
|
// have pcrel section relocations. We may want to factor this out into
|
|
// the arch-specific .cpp file.
|
|
assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
|
|
referentOffset =
|
|
sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr;
|
|
} else {
|
|
// The addend for a non-pcrel relocation is its absolute address.
|
|
referentOffset = totalAddend - referentSec.addr;
|
|
}
|
|
r.referent = findContainingSubsection(referentSubsecMap, &referentOffset);
|
|
r.addend = referentOffset;
|
|
}
|
|
|
|
InputSection *subsec = findContainingSubsection(subsecMap, &r.offset);
|
|
subsec->relocs.push_back(r);
|
|
|
|
if (target->hasAttr(r.type, RelocAttrBits::SUBTRAHEND)) {
|
|
relInfo = relInfos[++i];
|
|
// SUBTRACTOR relocations should always be followed by an UNSIGNED one
|
|
// indicating the minuend symbol.
|
|
assert(target->hasAttr(relInfo.r_type, RelocAttrBits::UNSIGNED) &&
|
|
relInfo.r_extern);
|
|
Reloc p;
|
|
p.type = relInfo.r_type;
|
|
p.referent = symbols[relInfo.r_symbolnum];
|
|
subsec->relocs.push_back(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
static macho::Symbol *createDefined(const structs::nlist_64 &sym,
|
|
StringRef name, InputSection *isec,
|
|
uint32_t value) {
|
|
// Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
|
|
// N_EXT: Global symbols
|
|
// N_EXT | N_PEXT: Linkage unit (think: dylib) scoped
|
|
// N_PEXT: Does not occur in input files in practice,
|
|
// a private extern must be external.
|
|
// 0: Translation-unit scoped. These are not in the symbol table.
|
|
|
|
if (sym.n_type & (N_EXT | N_PEXT)) {
|
|
assert((sym.n_type & N_EXT) && "invalid input");
|
|
return symtab->addDefined(name, isec->file, isec, value,
|
|
sym.n_desc & N_WEAK_DEF, sym.n_type & N_PEXT);
|
|
}
|
|
return make<Defined>(name, isec->file, isec, value, sym.n_desc & N_WEAK_DEF,
|
|
/*isExternal=*/false, /*isPrivateExtern=*/false);
|
|
}
|
|
|
|
// Checks if the version specified in `cmd` is compatible with target
|
|
// version. IOW, check if cmd's version >= config's version.
|
|
static bool hasCompatVersion(const InputFile *input,
|
|
const build_version_command *cmd) {
|
|
|
|
if (config->target.Platform != static_cast<PlatformKind>(cmd->platform)) {
|
|
error(toString(input) + " has platform " +
|
|
getPlatformName(static_cast<PlatformKind>(cmd->platform)) +
|
|
Twine(", which is different from target platform ") +
|
|
getPlatformName(config->target.Platform));
|
|
return false;
|
|
}
|
|
|
|
unsigned major = cmd->minos >> 16;
|
|
unsigned minor = (cmd->minos >> 8) & 0xffu;
|
|
unsigned subMinor = cmd->minos & 0xffu;
|
|
VersionTuple version(major, minor, subMinor);
|
|
if (version >= config->platformInfo.minimum)
|
|
return true;
|
|
|
|
error(toString(input) + " has version " + version.getAsString() +
|
|
", which is incompatible with target version of " +
|
|
config->platformInfo.minimum.getAsString());
|
|
return false;
|
|
}
|
|
|
|
// Absolute symbols are defined symbols that do not have an associated
|
|
// InputSection. They cannot be weak.
|
|
static macho::Symbol *createAbsolute(const structs::nlist_64 &sym,
|
|
InputFile *file, StringRef name) {
|
|
if (sym.n_type & (N_EXT | N_PEXT)) {
|
|
assert((sym.n_type & N_EXT) && "invalid input");
|
|
return symtab->addDefined(name, file, nullptr, sym.n_value,
|
|
/*isWeakDef=*/false, sym.n_type & N_PEXT);
|
|
}
|
|
return make<Defined>(name, file, nullptr, sym.n_value, /*isWeakDef=*/false,
|
|
/*isExternal=*/false, /*isPrivateExtern=*/false);
|
|
}
|
|
|
|
macho::Symbol *ObjFile::parseNonSectionSymbol(const structs::nlist_64 &sym,
|
|
StringRef name) {
|
|
uint8_t type = sym.n_type & N_TYPE;
|
|
switch (type) {
|
|
case N_UNDF:
|
|
return sym.n_value == 0
|
|
? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
|
|
: symtab->addCommon(name, this, sym.n_value,
|
|
1 << GET_COMM_ALIGN(sym.n_desc),
|
|
sym.n_type & N_PEXT);
|
|
case N_ABS:
|
|
return createAbsolute(sym, this, name);
|
|
case N_PBUD:
|
|
case N_INDR:
|
|
error("TODO: support symbols of type " + std::to_string(type));
|
|
return nullptr;
|
|
case N_SECT:
|
|
llvm_unreachable(
|
|
"N_SECT symbols should not be passed to parseNonSectionSymbol");
|
|
default:
|
|
llvm_unreachable("invalid symbol type");
|
|
}
|
|
}
|
|
|
|
void ObjFile::parseSymbols(ArrayRef<structs::nlist_64> nList,
|
|
const char *strtab, bool subsectionsViaSymbols) {
|
|
// resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols
|
|
// out-of-sequence.
|
|
symbols.resize(nList.size());
|
|
std::vector<size_t> altEntrySymIdxs;
|
|
|
|
for (size_t i = 0, n = nList.size(); i < n; ++i) {
|
|
const structs::nlist_64 &sym = nList[i];
|
|
StringRef name = strtab + sym.n_strx;
|
|
|
|
if ((sym.n_type & N_TYPE) != N_SECT) {
|
|
symbols[i] = parseNonSectionSymbol(sym, name);
|
|
continue;
|
|
}
|
|
|
|
const section_64 &sec = sectionHeaders[sym.n_sect - 1];
|
|
SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
|
|
|
|
// parseSections() may have chosen not to parse this section.
|
|
if (subsecMap.empty())
|
|
continue;
|
|
|
|
uint64_t offset = sym.n_value - sec.addr;
|
|
|
|
// If the input file does not use subsections-via-symbols, all symbols can
|
|
// use the same subsection. Otherwise, we must split the sections along
|
|
// symbol boundaries.
|
|
if (!subsectionsViaSymbols) {
|
|
symbols[i] = createDefined(sym, name, subsecMap[0], offset);
|
|
continue;
|
|
}
|
|
|
|
// nList entries aren't necessarily arranged in address order. Therefore,
|
|
// we can't create alt-entry symbols at this point because a later symbol
|
|
// may split its section, which may affect which subsection the alt-entry
|
|
// symbol is assigned to. So we need to handle them in a second pass below.
|
|
if (sym.n_desc & N_ALT_ENTRY) {
|
|
altEntrySymIdxs.push_back(i);
|
|
continue;
|
|
}
|
|
|
|
// Find the subsection corresponding to the greatest section offset that is
|
|
// <= that of the current symbol. The subsection that we find either needs
|
|
// to be used directly or split in two.
|
|
uint32_t firstSize = offset;
|
|
InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize);
|
|
|
|
if (firstSize == 0) {
|
|
// Alias of an existing symbol, or the first symbol in the section. These
|
|
// are handled by reusing the existing section.
|
|
symbols[i] = createDefined(sym, name, firstIsec, 0);
|
|
continue;
|
|
}
|
|
|
|
// We saw a symbol definition at a new offset. Split the section into two
|
|
// subsections. The new symbol uses the second subsection.
|
|
auto *secondIsec = make<InputSection>(*firstIsec);
|
|
secondIsec->data = firstIsec->data.slice(firstSize);
|
|
firstIsec->data = firstIsec->data.slice(0, firstSize);
|
|
// TODO: ld64 appears to preserve the original alignment as well as each
|
|
// subsection's offset from the last aligned address. We should consider
|
|
// emulating that behavior.
|
|
secondIsec->align = MinAlign(firstIsec->align, offset);
|
|
|
|
subsecMap[offset] = secondIsec;
|
|
// By construction, the symbol will be at offset zero in the new section.
|
|
symbols[i] = createDefined(sym, name, secondIsec, 0);
|
|
}
|
|
|
|
for (size_t idx : altEntrySymIdxs) {
|
|
const structs::nlist_64 &sym = nList[idx];
|
|
StringRef name = strtab + sym.n_strx;
|
|
SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
|
|
uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr;
|
|
InputSection *subsec = findContainingSubsection(subsecMap, &off);
|
|
symbols[idx] = createDefined(sym, name, subsec, off);
|
|
}
|
|
}
|
|
|
|
OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
|
|
StringRef sectName)
|
|
: InputFile(OpaqueKind, mb) {
|
|
InputSection *isec = make<InputSection>();
|
|
isec->file = this;
|
|
isec->name = sectName.take_front(16);
|
|
isec->segname = segName.take_front(16);
|
|
const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
|
|
isec->data = {buf, mb.getBufferSize()};
|
|
subsections.push_back({{0, isec}});
|
|
}
|
|
|
|
ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName)
|
|
: InputFile(ObjKind, mb), modTime(modTime) {
|
|
this->archiveName = std::string(archiveName);
|
|
|
|
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
|
|
auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart());
|
|
|
|
Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
|
|
if (arch != config->target.Arch) {
|
|
error(toString(this) + " has architecture " + getArchitectureName(arch) +
|
|
" which is incompatible with target architecture " +
|
|
getArchitectureName(config->target.Arch));
|
|
return;
|
|
}
|
|
|
|
if (const auto *cmd =
|
|
findCommand<build_version_command>(hdr, LC_BUILD_VERSION)) {
|
|
if (!hasCompatVersion(this, cmd))
|
|
return;
|
|
}
|
|
|
|
if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) {
|
|
auto *c = reinterpret_cast<const linker_option_command *>(cmd);
|
|
StringRef data{reinterpret_cast<const char *>(c + 1),
|
|
c->cmdsize - sizeof(linker_option_command)};
|
|
parseLCLinkerOption(this, c->count, data);
|
|
}
|
|
|
|
if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) {
|
|
auto *c = reinterpret_cast<const segment_command_64 *>(cmd);
|
|
sectionHeaders = ArrayRef<section_64>{
|
|
reinterpret_cast<const section_64 *>(c + 1), c->nsects};
|
|
parseSections(sectionHeaders);
|
|
}
|
|
|
|
// TODO: Error on missing LC_SYMTAB?
|
|
if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
|
|
auto *c = reinterpret_cast<const symtab_command *>(cmd);
|
|
ArrayRef<structs::nlist_64> nList(
|
|
reinterpret_cast<const structs::nlist_64 *>(buf + c->symoff), c->nsyms);
|
|
const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
|
|
bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
|
|
parseSymbols(nList, strtab, subsectionsViaSymbols);
|
|
}
|
|
|
|
// The relocations may refer to the symbols, so we parse them after we have
|
|
// parsed all the symbols.
|
|
for (size_t i = 0, n = subsections.size(); i < n; ++i)
|
|
if (!subsections[i].empty())
|
|
parseRelocations(sectionHeaders[i], subsections[i]);
|
|
|
|
parseDebugInfo();
|
|
}
|
|
|
|
void ObjFile::parseDebugInfo() {
|
|
std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
|
|
if (!dObj)
|
|
return;
|
|
|
|
auto *ctx = make<DWARFContext>(
|
|
std::move(dObj), "",
|
|
[&](Error err) {
|
|
warn(toString(this) + ": " + toString(std::move(err)));
|
|
},
|
|
[&](Error warning) {
|
|
warn(toString(this) + ": " + toString(std::move(warning)));
|
|
});
|
|
|
|
// TODO: Since object files can contain a lot of DWARF info, we should verify
|
|
// that we are parsing just the info we need
|
|
const DWARFContext::compile_unit_range &units = ctx->compile_units();
|
|
// FIXME: There can be more than one compile unit per object file. See
|
|
// PR48637.
|
|
auto it = units.begin();
|
|
compileUnit = it->get();
|
|
}
|
|
|
|
// The path can point to either a dylib or a .tbd file.
|
|
static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) {
|
|
Optional<MemoryBufferRef> mbref = readFile(path);
|
|
if (!mbref) {
|
|
error("could not read dylib file at " + path);
|
|
return {};
|
|
}
|
|
return loadDylib(*mbref, umbrella);
|
|
}
|
|
|
|
// TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
|
|
// the first document storing child pointers to the rest of them. When we are
|
|
// processing a given TBD file, we store that top-level document in
|
|
// currentTopLevelTapi. When processing re-exports, we search its children for
|
|
// potentially matching documents in the same TBD file. Note that the children
|
|
// themselves don't point to further documents, i.e. this is a two-level tree.
|
|
//
|
|
// Re-exports can either refer to on-disk files, or to documents within .tbd
|
|
// files.
|
|
static Optional<DylibFile *>
|
|
findDylib(StringRef path, DylibFile *umbrella,
|
|
const InterfaceFile *currentTopLevelTapi) {
|
|
if (path::is_absolute(path, path::Style::posix))
|
|
for (StringRef root : config->systemLibraryRoots)
|
|
if (Optional<std::string> dylibPath =
|
|
resolveDylibPath((root + path).str()))
|
|
return loadDylib(*dylibPath, umbrella);
|
|
|
|
// TODO: Expand @loader_path, @executable_path, @rpath etc, handle -dylib_path
|
|
|
|
if (currentTopLevelTapi) {
|
|
for (InterfaceFile &child :
|
|
make_pointee_range(currentTopLevelTapi->documents())) {
|
|
assert(child.documents().empty());
|
|
if (path == child.getInstallName())
|
|
return make<DylibFile>(child, umbrella);
|
|
}
|
|
}
|
|
|
|
if (Optional<std::string> dylibPath = resolveDylibPath(path))
|
|
return loadDylib(*dylibPath, umbrella);
|
|
|
|
return {};
|
|
}
|
|
|
|
// If a re-exported dylib is public (lives in /usr/lib or
|
|
// /System/Library/Frameworks), then it is considered implicitly linked: we
|
|
// should bind to its symbols directly instead of via the re-exporting umbrella
|
|
// library.
|
|
static bool isImplicitlyLinked(StringRef path) {
|
|
if (!config->implicitDylibs)
|
|
return false;
|
|
|
|
if (path::parent_path(path) == "/usr/lib")
|
|
return true;
|
|
|
|
// Match /System/Library/Frameworks/$FOO.framework/**/$FOO
|
|
if (path.consume_front("/System/Library/Frameworks/")) {
|
|
StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
|
|
return path::filename(path) == frameworkName;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void loadReexport(StringRef path, DylibFile *umbrella,
|
|
const InterfaceFile *currentTopLevelTapi) {
|
|
Optional<DylibFile *> reexport =
|
|
findDylib(path, umbrella, currentTopLevelTapi);
|
|
if (!reexport)
|
|
error("unable to locate re-export with install name " + path);
|
|
else if (isImplicitlyLinked(path))
|
|
inputFiles.insert(*reexport);
|
|
}
|
|
|
|
DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
|
|
bool isBundleLoader)
|
|
: InputFile(DylibKind, mb), refState(RefState::Unreferenced),
|
|
isBundleLoader(isBundleLoader) {
|
|
assert(!isBundleLoader || !umbrella);
|
|
if (umbrella == nullptr)
|
|
umbrella = this;
|
|
|
|
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
|
|
auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart());
|
|
|
|
// Initialize dylibName.
|
|
if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
|
|
auto *c = reinterpret_cast<const dylib_command *>(cmd);
|
|
currentVersion = read32le(&c->dylib.current_version);
|
|
compatibilityVersion = read32le(&c->dylib.compatibility_version);
|
|
dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
|
|
} else if (!isBundleLoader) {
|
|
// macho_executable and macho_bundle don't have LC_ID_DYLIB,
|
|
// so it's OK.
|
|
error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
|
|
return;
|
|
}
|
|
|
|
if (const build_version_command *cmd =
|
|
findCommand<build_version_command>(hdr, LC_BUILD_VERSION)) {
|
|
if (!hasCompatVersion(this, cmd))
|
|
return;
|
|
}
|
|
|
|
// Initialize symbols.
|
|
DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella;
|
|
if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
|
|
auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
|
|
parseTrie(buf + c->export_off, c->export_size,
|
|
[&](const Twine &name, uint64_t flags) {
|
|
bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
|
|
bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
|
|
symbols.push_back(symtab->addDylib(
|
|
saver.save(name), exportingFile, isWeakDef, isTlv));
|
|
});
|
|
} else {
|
|
error("LC_DYLD_INFO_ONLY not found in " + toString(this));
|
|
return;
|
|
}
|
|
|
|
const uint8_t *p =
|
|
reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64);
|
|
for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
|
|
auto *cmd = reinterpret_cast<const load_command *>(p);
|
|
p += cmd->cmdsize;
|
|
|
|
if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
|
|
cmd->cmd == LC_REEXPORT_DYLIB) {
|
|
const auto *c = reinterpret_cast<const dylib_command *>(cmd);
|
|
StringRef reexportPath =
|
|
reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
|
|
loadReexport(reexportPath, exportingFile, nullptr);
|
|
}
|
|
|
|
// FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
|
|
// LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
|
|
// MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
|
|
if (config->namespaceKind == NamespaceKind::flat &&
|
|
cmd->cmd == LC_LOAD_DYLIB) {
|
|
const auto *c = reinterpret_cast<const dylib_command *>(cmd);
|
|
StringRef dylibPath =
|
|
reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
|
|
Optional<DylibFile *> dylib = findDylib(dylibPath, umbrella, nullptr);
|
|
if (!dylib)
|
|
error(Twine("unable to locate library '") + dylibPath +
|
|
"' loaded from '" + toString(this) + "' for -flat_namespace");
|
|
}
|
|
}
|
|
}
|
|
|
|
DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
|
|
bool isBundleLoader)
|
|
: InputFile(DylibKind, interface), refState(RefState::Unreferenced),
|
|
isBundleLoader(isBundleLoader) {
|
|
// FIXME: Add test for the missing TBD code path.
|
|
|
|
if (umbrella == nullptr)
|
|
umbrella = this;
|
|
|
|
dylibName = saver.save(interface.getInstallName());
|
|
compatibilityVersion = interface.getCompatibilityVersion().rawValue();
|
|
currentVersion = interface.getCurrentVersion().rawValue();
|
|
|
|
if (!is_contained(interface.targets(), config->target)) {
|
|
error(toString(this) + " is incompatible with " +
|
|
std::string(config->target));
|
|
return;
|
|
}
|
|
|
|
DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella;
|
|
auto addSymbol = [&](const Twine &name) -> void {
|
|
symbols.push_back(symtab->addDylib(saver.save(name), exportingFile,
|
|
/*isWeakDef=*/false,
|
|
/*isTlv=*/false));
|
|
};
|
|
// TODO(compnerd) filter out symbols based on the target platform
|
|
// TODO: handle weak defs, thread locals
|
|
for (const auto *symbol : interface.symbols()) {
|
|
if (!symbol->getArchitectures().has(config->target.Arch))
|
|
continue;
|
|
|
|
switch (symbol->getKind()) {
|
|
case SymbolKind::GlobalSymbol:
|
|
addSymbol(symbol->getName());
|
|
break;
|
|
case SymbolKind::ObjectiveCClass:
|
|
// XXX ld64 only creates these symbols when -ObjC is passed in. We may
|
|
// want to emulate that.
|
|
addSymbol(objc::klass + symbol->getName());
|
|
addSymbol(objc::metaclass + symbol->getName());
|
|
break;
|
|
case SymbolKind::ObjectiveCClassEHType:
|
|
addSymbol(objc::ehtype + symbol->getName());
|
|
break;
|
|
case SymbolKind::ObjectiveCInstanceVariable:
|
|
addSymbol(objc::ivar + symbol->getName());
|
|
break;
|
|
}
|
|
}
|
|
|
|
const InterfaceFile *topLevel =
|
|
interface.getParent() == nullptr ? &interface : interface.getParent();
|
|
|
|
for (InterfaceFileRef intfRef : interface.reexportedLibraries()) {
|
|
InterfaceFile::const_target_range targets = intfRef.targets();
|
|
if (is_contained(targets, config->target))
|
|
loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
|
|
}
|
|
}
|
|
|
|
ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
|
|
: InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {
|
|
for (const object::Archive::Symbol &sym : file->symbols())
|
|
symtab->addLazy(sym.getName(), this, sym);
|
|
}
|
|
|
|
void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
|
|
object::Archive::Child c =
|
|
CHECK(sym.getMember(), toString(this) +
|
|
": could not get the member for symbol " +
|
|
toMachOString(sym));
|
|
|
|
if (!seen.insert(c.getChildOffset()).second)
|
|
return;
|
|
|
|
MemoryBufferRef mb =
|
|
CHECK(c.getMemoryBufferRef(),
|
|
toString(this) +
|
|
": could not get the buffer for the member defining symbol " +
|
|
toMachOString(sym));
|
|
|
|
if (tar && c.getParent()->isThin())
|
|
tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
|
|
|
|
uint32_t modTime = toTimeT(
|
|
CHECK(c.getLastModified(), toString(this) +
|
|
": could not get the modification time "
|
|
"for the member defining symbol " +
|
|
toMachOString(sym)));
|
|
|
|
// `sym` is owned by a LazySym, which will be replace<>() by make<ObjFile>
|
|
// and become invalid after that call. Copy it to the stack so we can refer
|
|
// to it later.
|
|
const object::Archive::Symbol sym_copy = sym;
|
|
|
|
if (Optional<InputFile *> file =
|
|
loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) {
|
|
inputFiles.insert(*file);
|
|
// ld64 doesn't demangle sym here even with -demangle. Match that, so
|
|
// intentionally no call to toMachOString() here.
|
|
printArchiveMemberLoad(sym_copy.getName(), *file);
|
|
}
|
|
}
|
|
|
|
static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
|
|
BitcodeFile &file) {
|
|
StringRef name = saver.save(objSym.getName());
|
|
|
|
// TODO: support weak references
|
|
if (objSym.isUndefined())
|
|
return symtab->addUndefined(name, &file, /*isWeakRef=*/false);
|
|
|
|
assert(!objSym.isCommon() && "TODO: support common symbols in LTO");
|
|
|
|
// TODO: Write a test demonstrating why computing isPrivateExtern before
|
|
// LTO compilation is important.
|
|
bool isPrivateExtern = false;
|
|
switch (objSym.getVisibility()) {
|
|
case GlobalValue::HiddenVisibility:
|
|
isPrivateExtern = true;
|
|
break;
|
|
case GlobalValue::ProtectedVisibility:
|
|
error(name + " has protected visibility, which is not supported by Mach-O");
|
|
break;
|
|
case GlobalValue::DefaultVisibility:
|
|
break;
|
|
}
|
|
|
|
return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
|
|
objSym.isWeak(), isPrivateExtern);
|
|
}
|
|
|
|
BitcodeFile::BitcodeFile(MemoryBufferRef mbref)
|
|
: InputFile(BitcodeKind, mbref) {
|
|
obj = check(lto::InputFile::create(mbref));
|
|
|
|
// Convert LTO Symbols to LLD Symbols in order to perform resolution. The
|
|
// "winning" symbol will then be marked as Prevailing at LTO compilation
|
|
// time.
|
|
for (const lto::InputFile::Symbol &objSym : obj->symbols())
|
|
symbols.push_back(createBitcodeSymbol(objSym, *this));
|
|
}
|