llvm-project/lld/ELF/SymbolTable.cpp

721 lines
25 KiB
C++

//===- SymbolTable.cpp ----------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Symbol table is a bag of all known symbols. We put all symbols of
// all input files to the symbol table. The symbol table is basically
// a hash table with the logic to resolve symbol name conflicts using
// the symbol types.
//
//===----------------------------------------------------------------------===//
#include "SymbolTable.h"
#include "Config.h"
#include "Error.h"
#include "LinkerScript.h"
#include "Memory.h"
#include "SymbolListFile.h"
#include "Symbols.h"
#include "llvm/Bitcode/ReaderWriter.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
// All input object files must be for the same architecture
// (e.g. it does not make sense to link x86 object files with
// MIPS object files.) This function checks for that error.
template <class ELFT> static bool isCompatible(InputFile *F) {
if (!isa<ELFFileBase<ELFT>>(F) && !isa<BitcodeFile>(F))
return true;
if (F->EKind == Config->EKind && F->EMachine == Config->EMachine) {
if (Config->EMachine != EM_MIPS)
return true;
if (isMipsN32Abi(F) == Config->MipsN32Abi)
return true;
}
StringRef A = F->getName();
StringRef B = Config->Emulation;
if (B.empty())
B = Config->FirstElf->getName();
error(A + " is incompatible with " + B);
return false;
}
// Add symbols in File to the symbol table.
template <class ELFT> void SymbolTable<ELFT>::addFile(InputFile *File) {
if (!isCompatible<ELFT>(File))
return;
// Binary file
if (auto *F = dyn_cast<BinaryFile>(File)) {
BinaryFiles.push_back(F);
F->parse<ELFT>();
return;
}
// .a file
if (auto *F = dyn_cast<ArchiveFile>(File)) {
F->parse<ELFT>();
return;
}
// Lazy object file
if (auto *F = dyn_cast<LazyObjectFile>(File)) {
F->parse<ELFT>();
return;
}
if (Config->Trace)
outs() << getFilename(File) << "\n";
// .so file
if (auto *F = dyn_cast<SharedFile<ELFT>>(File)) {
// DSOs are uniquified not by filename but by soname.
F->parseSoName();
if (HasError || !SoNames.insert(F->getSoName()).second)
return;
SharedFiles.push_back(F);
F->parseRest();
return;
}
// LLVM bitcode file
if (auto *F = dyn_cast<BitcodeFile>(File)) {
BitcodeFiles.push_back(F);
F->parse<ELFT>(ComdatGroups);
return;
}
// Regular object file
auto *F = cast<ObjectFile<ELFT>>(File);
ObjectFiles.push_back(F);
F->parse(ComdatGroups);
}
// This function is where all the optimizations of link-time
// optimization happens. When LTO is in use, some input files are
// not in native object file format but in the LLVM bitcode format.
// This function compiles bitcode files into a few big native files
// using LLVM functions and replaces bitcode symbols with the results.
// Because all bitcode files that consist of a program are passed
// to the compiler at once, it can do whole-program optimization.
template <class ELFT> void SymbolTable<ELFT>::addCombinedLtoObject() {
if (BitcodeFiles.empty())
return;
// Compile bitcode files and replace bitcode symbols.
Lto.reset(new BitcodeCompiler);
for (BitcodeFile *F : BitcodeFiles)
Lto->add(*F);
for (InputFile *File : Lto->compile()) {
ObjectFile<ELFT> *Obj = cast<ObjectFile<ELFT>>(File);
DenseSet<CachedHashStringRef> DummyGroups;
Obj->parse(DummyGroups);
ObjectFiles.push_back(Obj);
}
}
template <class ELFT>
DefinedRegular<ELFT> *SymbolTable<ELFT>::addAbsolute(StringRef Name,
uint8_t Visibility) {
return cast<DefinedRegular<ELFT>>(
addRegular(Name, Visibility, nullptr, STB_GLOBAL, STT_NOTYPE, 0)->body());
}
// Add Name as an "ignored" symbol. An ignored symbol is a regular
// linker-synthesized defined symbol, but is only defined if needed.
template <class ELFT>
DefinedRegular<ELFT> *SymbolTable<ELFT>::addIgnored(StringRef Name,
uint8_t Visibility) {
if (!find(Name))
return nullptr;
return addAbsolute(Name, Visibility);
}
// Set a flag for --trace-symbol so that we can print out a log message
// if a new symbol with the same name is inserted into the symbol table.
template <class ELFT> void SymbolTable<ELFT>::trace(StringRef Name) {
Symtab.insert({CachedHashStringRef(Name), {-1, true}});
}
// Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM.
// Used to implement --wrap.
template <class ELFT> void SymbolTable<ELFT>::wrap(StringRef Name) {
SymbolBody *B = find(Name);
if (!B)
return;
Symbol *Sym = B->symbol();
Symbol *Real = addUndefined(Saver.save("__real_" + Name));
Symbol *Wrap = addUndefined(Saver.save("__wrap_" + Name));
// We rename symbols by replacing the old symbol's SymbolBody with the new
// symbol's SymbolBody. This causes all SymbolBody pointers referring to the
// old symbol to instead refer to the new symbol.
memcpy(Real->Body.buffer, Sym->Body.buffer, sizeof(Sym->Body));
memcpy(Sym->Body.buffer, Wrap->Body.buffer, sizeof(Wrap->Body));
}
static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) {
if (VA == STV_DEFAULT)
return VB;
if (VB == STV_DEFAULT)
return VA;
return std::min(VA, VB);
}
// Parses a symbol in the form of <name>@<version> or <name>@@<version>.
static std::pair<StringRef, uint16_t> getSymbolVersion(StringRef S) {
if (Config->VersionDefinitions.empty())
return {S, Config->DefaultSymbolVersion};
size_t Pos = S.find('@');
if (Pos == 0 || Pos == StringRef::npos)
return {S, Config->DefaultSymbolVersion};
StringRef Name = S.substr(0, Pos);
StringRef Verstr = S.substr(Pos + 1);
if (Verstr.empty())
return {S, Config->DefaultSymbolVersion};
// '@@' in a symbol name means the default version.
// It is usually the most recent one.
bool IsDefault = (Verstr[0] == '@');
if (IsDefault)
Verstr = Verstr.substr(1);
for (VersionDefinition &V : Config->VersionDefinitions) {
if (V.Name == Verstr)
return {Name, IsDefault ? V.Id : (V.Id | VERSYM_HIDDEN)};
}
// It is an error if the specified version was not defined.
error("symbol " + S + " has undefined version " + Verstr);
return {S, Config->DefaultSymbolVersion};
}
// Find an existing symbol or create and insert a new one.
template <class ELFT>
std::pair<Symbol *, bool> SymbolTable<ELFT>::insert(StringRef &Name) {
auto P = Symtab.insert(
{CachedHashStringRef(Name), SymIndex((int)SymVector.size(), false)});
SymIndex &V = P.first->second;
bool IsNew = P.second;
if (V.Idx == -1) {
IsNew = true;
V = SymIndex((int)SymVector.size(), true);
}
Symbol *Sym;
if (IsNew) {
Sym = new (BAlloc) Symbol;
Sym->Binding = STB_WEAK;
Sym->Visibility = STV_DEFAULT;
Sym->IsUsedInRegularObj = false;
Sym->ExportDynamic = false;
Sym->Traced = V.Traced;
std::tie(Name, Sym->VersionId) = getSymbolVersion(Name);
SymVector.push_back(Sym);
} else {
Sym = SymVector[V.Idx];
}
return {Sym, IsNew};
}
// Construct a string in the form of "Sym in File1 and File2".
// Used to construct an error message.
static std::string conflictMsg(SymbolBody *Existing, InputFile *NewFile) {
return maybeDemangle(Existing->getName()) + " in " +
getFilename(Existing->File) + " and " + getFilename(NewFile);
}
// Find an existing symbol or create and insert a new one, then apply the given
// attributes.
template <class ELFT>
std::pair<Symbol *, bool>
SymbolTable<ELFT>::insert(StringRef &Name, uint8_t Type, uint8_t Visibility,
bool CanOmitFromDynSym, InputFile *File) {
bool IsUsedInRegularObj = !File || File->kind() == InputFile::ObjectKind;
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(Name);
// Merge in the new symbol's visibility.
S->Visibility = getMinVisibility(S->Visibility, Visibility);
if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic))
S->ExportDynamic = true;
if (IsUsedInRegularObj)
S->IsUsedInRegularObj = true;
if (!WasInserted && S->body()->Type != SymbolBody::UnknownType &&
((Type == STT_TLS) != S->body()->isTls()))
error("TLS attribute mismatch for symbol: " + conflictMsg(S->body(), File));
return {S, WasInserted};
}
template <class ELFT> Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name) {
return addUndefined(Name, STB_GLOBAL, STV_DEFAULT, /*Type*/ 0,
/*CanOmitFromDynSym*/ false, /*File*/ nullptr);
}
template <class ELFT>
Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name, uint8_t Binding,
uint8_t StOther, uint8_t Type,
bool CanOmitFromDynSym,
InputFile *File) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) =
insert(Name, Type, StOther & 3, CanOmitFromDynSym, File);
if (WasInserted) {
S->Binding = Binding;
replaceBody<Undefined>(S, Name, StOther, Type, File);
return S;
}
if (Binding != STB_WEAK) {
if (S->body()->isShared() || S->body()->isLazy())
S->Binding = Binding;
if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(S->body()))
SS->file()->IsUsed = true;
}
if (auto *L = dyn_cast<Lazy>(S->body())) {
// An undefined weak will not fetch archive members, but we have to remember
// its type. See also comment in addLazyArchive.
if (S->isWeak())
L->Type = Type;
else if (InputFile *F = L->fetch())
addFile(F);
}
return S;
}
// We have a new defined symbol with the specified binding. Return 1 if the new
// symbol should win, -1 if the new symbol should lose, or 0 if both symbols are
// strong defined symbols.
static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding) {
if (WasInserted)
return 1;
SymbolBody *Body = S->body();
if (Body->isLazy() || Body->isUndefined() || Body->isShared())
return 1;
if (Binding == STB_WEAK)
return -1;
if (S->isWeak())
return 1;
return 0;
}
// We have a new non-common defined symbol with the specified binding. Return 1
// if the new symbol should win, -1 if the new symbol should lose, or 0 if there
// is a conflict. If the new symbol wins, also update the binding.
static int compareDefinedNonCommon(Symbol *S, bool WasInserted,
uint8_t Binding) {
if (int Cmp = compareDefined(S, WasInserted, Binding)) {
if (Cmp > 0)
S->Binding = Binding;
return Cmp;
}
if (isa<DefinedCommon>(S->body())) {
// Non-common symbols take precedence over common symbols.
if (Config->WarnCommon)
warn("common " + S->body()->getName() + " is overridden");
return 1;
}
return 0;
}
template <class ELFT>
Symbol *SymbolTable<ELFT>::addCommon(StringRef N, uint64_t Size,
uint64_t Alignment, uint8_t Binding,
uint8_t StOther, uint8_t Type,
InputFile *File) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) =
insert(N, Type, StOther & 3, /*CanOmitFromDynSym*/ false, File);
int Cmp = compareDefined(S, WasInserted, Binding);
if (Cmp > 0) {
S->Binding = Binding;
replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type, File);
} else if (Cmp == 0) {
auto *C = dyn_cast<DefinedCommon>(S->body());
if (!C) {
// Non-common symbols take precedence over common symbols.
if (Config->WarnCommon)
warn("common " + S->body()->getName() + " is overridden");
return S;
}
if (Config->WarnCommon)
warn("multiple common of " + S->body()->getName());
Alignment = C->Alignment = std::max(C->Alignment, Alignment);
if (Size > C->Size)
replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type, File);
}
return S;
}
template <class ELFT>
void SymbolTable<ELFT>::reportDuplicate(SymbolBody *Existing,
InputFile *NewFile) {
std::string Msg = "duplicate symbol: " + conflictMsg(Existing, NewFile);
if (Config->AllowMultipleDefinition)
warn(Msg);
else
error(Msg);
}
template <typename ELFT>
Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, const Elf_Sym &Sym,
InputSectionBase<ELFT> *Section) {
return addRegular(Name, Sym.st_other, Sym.getType(), Sym.st_value,
Sym.st_size, Sym.getBinding(), Section);
}
template <typename ELFT>
Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, uint8_t StOther,
uint8_t Type, uintX_t Value, uintX_t Size,
uint8_t Binding,
InputSectionBase<ELFT> *Section) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(Name, Type, StOther & 3,
/*CanOmitFromDynSym*/ false,
Section ? Section->getFile() : nullptr);
int Cmp = compareDefinedNonCommon(S, WasInserted, Binding);
if (Cmp > 0)
replaceBody<DefinedRegular<ELFT>>(S, Name, StOther, Type, Value, Size,
Section);
else if (Cmp == 0)
reportDuplicate(S->body(), Section->getFile());
return S;
}
template <typename ELFT>
Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, uint8_t StOther,
InputSectionBase<ELFT> *Section,
uint8_t Binding, uint8_t Type,
uintX_t Value) {
return addRegular(Name, StOther, Type, Value, 0, Binding, Section);
}
template <typename ELFT>
Symbol *SymbolTable<ELFT>::addSynthetic(StringRef N,
OutputSectionBase<ELFT> *Section,
uintX_t Value, uint8_t StOther) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(N, STT_NOTYPE, /*Visibility*/ StOther & 0x3,
/*CanOmitFromDynSym*/ false, nullptr);
int Cmp = compareDefinedNonCommon(S, WasInserted, STB_GLOBAL);
if (Cmp > 0)
replaceBody<DefinedSynthetic<ELFT>>(S, N, Value, Section);
else if (Cmp == 0)
reportDuplicate(S->body(), nullptr);
return S;
}
template <typename ELFT>
void SymbolTable<ELFT>::addShared(SharedFile<ELFT> *F, StringRef Name,
const Elf_Sym &Sym,
const typename ELFT::Verdef *Verdef) {
// DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT
// as the visibility, which will leave the visibility in the symbol table
// unchanged.
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) =
insert(Name, Sym.getType(), STV_DEFAULT, /*CanOmitFromDynSym*/ true, F);
// Make sure we preempt DSO symbols with default visibility.
if (Sym.getVisibility() == STV_DEFAULT)
S->ExportDynamic = true;
if (WasInserted || isa<Undefined>(S->body())) {
replaceBody<SharedSymbol<ELFT>>(S, F, Name, Sym, Verdef);
if (!S->isWeak())
F->IsUsed = true;
}
}
template <class ELFT>
Symbol *SymbolTable<ELFT>::addBitcode(StringRef Name, uint8_t Binding,
uint8_t StOther, uint8_t Type,
bool CanOmitFromDynSym, BitcodeFile *F) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) =
insert(Name, Type, StOther & 3, CanOmitFromDynSym, F);
int Cmp = compareDefinedNonCommon(S, WasInserted, Binding);
if (Cmp > 0)
replaceBody<DefinedRegular<ELFT>>(S, Name, StOther, Type, F);
else if (Cmp == 0)
reportDuplicate(S->body(), F);
return S;
}
template <class ELFT> SymbolBody *SymbolTable<ELFT>::find(StringRef Name) {
auto It = Symtab.find(CachedHashStringRef(Name));
if (It == Symtab.end())
return nullptr;
SymIndex V = It->second;
if (V.Idx == -1)
return nullptr;
return SymVector[V.Idx]->body();
}
// Returns a list of defined symbols that match with a given regex.
template <class ELFT>
std::vector<SymbolBody *> SymbolTable<ELFT>::findAll(const StringMatcher &M) {
std::vector<SymbolBody *> Res;
for (Symbol *Sym : SymVector) {
SymbolBody *B = Sym->body();
StringRef Name = B->getName();
if (!B->isUndefined() && M.match(Name))
Res.push_back(B);
}
return Res;
}
template <class ELFT>
void SymbolTable<ELFT>::addLazyArchive(ArchiveFile *F,
const object::Archive::Symbol Sym) {
Symbol *S;
bool WasInserted;
StringRef Name = Sym.getName();
std::tie(S, WasInserted) = insert(Name);
if (WasInserted) {
replaceBody<LazyArchive>(S, *F, Sym, SymbolBody::UnknownType);
return;
}
if (!S->body()->isUndefined())
return;
// Weak undefined symbols should not fetch members from archives. If we were
// to keep old symbol we would not know that an archive member was available
// if a strong undefined symbol shows up afterwards in the link. If a strong
// undefined symbol never shows up, this lazy symbol will get to the end of
// the link and must be treated as the weak undefined one. We already marked
// this symbol as used when we added it to the symbol table, but we also need
// to preserve its type. FIXME: Move the Type field to Symbol.
if (S->isWeak()) {
replaceBody<LazyArchive>(S, *F, Sym, S->body()->Type);
return;
}
std::pair<MemoryBufferRef, uint64_t> MBInfo = F->getMember(&Sym);
if (!MBInfo.first.getBuffer().empty())
addFile(createObjectFile(MBInfo.first, F->getName(), MBInfo.second));
}
template <class ELFT>
void SymbolTable<ELFT>::addLazyObject(StringRef Name, LazyObjectFile &Obj) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(Name);
if (WasInserted) {
replaceBody<LazyObject>(S, Name, Obj, SymbolBody::UnknownType);
return;
}
if (!S->body()->isUndefined())
return;
// See comment for addLazyArchive above.
if (S->isWeak()) {
replaceBody<LazyObject>(S, Name, Obj, S->body()->Type);
} else {
MemoryBufferRef MBRef = Obj.getBuffer();
if (!MBRef.getBuffer().empty())
addFile(createObjectFile(MBRef));
}
}
// Process undefined (-u) flags by loading lazy symbols named by those flags.
template <class ELFT> void SymbolTable<ELFT>::scanUndefinedFlags() {
for (StringRef S : Config->Undefined)
if (auto *L = dyn_cast_or_null<Lazy>(find(S)))
if (InputFile *File = L->fetch())
addFile(File);
}
// This function takes care of the case in which shared libraries depend on
// the user program (not the other way, which is usual). Shared libraries
// may have undefined symbols, expecting that the user program provides
// the definitions for them. An example is BSD's __progname symbol.
// We need to put such symbols to the main program's .dynsym so that
// shared libraries can find them.
// Except this, we ignore undefined symbols in DSOs.
template <class ELFT> void SymbolTable<ELFT>::scanShlibUndefined() {
for (SharedFile<ELFT> *File : SharedFiles)
for (StringRef U : File->getUndefinedSymbols())
if (SymbolBody *Sym = find(U))
if (Sym->isDefined())
Sym->symbol()->ExportDynamic = true;
}
// This function processes --export-dynamic-symbol and --dynamic-list.
template <class ELFT> void SymbolTable<ELFT>::scanDynamicList() {
for (StringRef S : Config->DynamicList)
if (SymbolBody *B = find(S))
B->symbol()->ExportDynamic = true;
}
static void setVersionId(SymbolBody *Body, StringRef VersionName,
StringRef Name, uint16_t Version) {
if (!Body || Body->isUndefined()) {
if (Config->NoUndefinedVersion)
error("version script assignment of " + VersionName + " to symbol " +
Name + " failed: symbol not defined");
return;
}
Symbol *Sym = Body->symbol();
if (Sym->VersionId != Config->DefaultSymbolVersion)
warn("duplicate symbol " + Name + " in version script");
Sym->VersionId = Version;
}
// Returns a map from demangled symbols to symbol objects.
// The relationship is 1:N instead of 1:1 because with the symbol
// versioning, more than one symbol may have the same name.
template <class ELFT>
std::map<std::string, std::vector<SymbolBody *>>
SymbolTable<ELFT>::getDemangledSyms() {
std::map<std::string, std::vector<SymbolBody *>> Result;
for (Symbol *Sym : SymVector) {
SymbolBody *B = Sym->body();
Result[demangle(B->getName())].push_back(B);
}
return Result;
}
static bool hasExternCpp() {
for (VersionDefinition &V : Config->VersionDefinitions)
for (SymbolVersion Sym : V.Globals)
if (Sym.IsExternCpp)
return true;
return false;
}
static ArrayRef<SymbolBody *>
findDemangled(std::map<std::string, std::vector<SymbolBody *>> &D,
StringRef Name) {
auto I = D.find(Name);
if (I != D.end())
return I->second;
return {};
}
static std::vector<SymbolBody *>
findAllDemangled(const std::map<std::string, std::vector<SymbolBody *>> &D,
StringMatcher &M) {
std::vector<SymbolBody *> Res;
for (auto &P : D) {
if (M.match(P.first))
for (SymbolBody *Body : P.second)
if (!Body->isUndefined())
Res.push_back(Body);
}
return Res;
}
// If there's only one anonymous version definition in a version
// script file, the script does not actullay define any symbol version,
// but just specifies symbols visibilities. We assume that the script was
// in the form of { global: foo; bar; local *; }. So, local is default.
// In this function, we make specified symbols global.
template <class ELFT> void SymbolTable<ELFT>::handleAnonymousVersion() {
std::vector<StringRef> Patterns;
for (SymbolVersion &Sym : Config->VersionScriptGlobals) {
if (hasWildcard(Sym.Name)) {
Patterns.push_back(Sym.Name);
continue;
}
if (SymbolBody *B = find(Sym.Name))
B->symbol()->VersionId = VER_NDX_GLOBAL;
}
if (Patterns.empty())
return;
StringMatcher M(Patterns);
std::vector<SymbolBody *> Syms = findAll(M);
for (SymbolBody *B : Syms)
B->symbol()->VersionId = VER_NDX_GLOBAL;
}
// This function processes version scripts by updating VersionId
// member of symbols.
template <class ELFT> void SymbolTable<ELFT>::scanVersionScript() {
// Handle edge cases first.
if (!Config->VersionScriptGlobals.empty()) {
handleAnonymousVersion();
return;
}
if (Config->VersionDefinitions.empty())
return;
// Now we have version definitions, so we need to set version ids to symbols.
// Each version definition has a glob pattern, and all symbols that match
// with the pattern get that version.
// Users can use "extern C++ {}" directive to match against demangled
// C++ symbols. For example, you can write a pattern such as
// "llvm::*::foo(int, ?)". Obviously, there's no way to handle this
// other than trying to match a regexp against all demangled symbols.
// So, if "extern C++" feature is used, we demangle all known symbols.
std::map<std::string, std::vector<SymbolBody *>> Demangled;
if (hasExternCpp())
Demangled = getDemangledSyms();
// First, we assign versions to exact matching symbols,
// i.e. version definitions not containing any glob meta-characters.
for (VersionDefinition &V : Config->VersionDefinitions) {
for (SymbolVersion Sym : V.Globals) {
if (Sym.HasWildcards)
continue;
StringRef N = Sym.Name;
if (Sym.IsExternCpp) {
for (SymbolBody *B : findDemangled(Demangled, N))
setVersionId(B, V.Name, N, V.Id);
continue;
}
setVersionId(find(N), V.Name, N, V.Id);
}
}
// Next, we assign versions to fuzzy matching symbols,
// i.e. version definitions containing glob meta-characters.
// Note that because the last match takes precedence over previous matches,
// we iterate over the definitions in the reverse order.
for (size_t I = Config->VersionDefinitions.size() - 1; I != (size_t)-1; --I) {
VersionDefinition &V = Config->VersionDefinitions[I];
for (SymbolVersion &Sym : V.Globals) {
if (!Sym.HasWildcards)
continue;
StringMatcher M({Sym.Name});
std::vector<SymbolBody *> Syms =
Sym.IsExternCpp ? findAllDemangled(Demangled, M) : findAll(M);
// Exact matching takes precendence over fuzzy matching,
// so we set a version to a symbol only if no version has been assigned
// to the symbol. This behavior is compatible with GNU.
for (SymbolBody *B : Syms)
if (B->symbol()->VersionId == Config->DefaultSymbolVersion)
B->symbol()->VersionId = V.Id;
}
}
}
template class elf::SymbolTable<ELF32LE>;
template class elf::SymbolTable<ELF32BE>;
template class elf::SymbolTable<ELF64LE>;
template class elf::SymbolTable<ELF64BE>;