llvm-project/lldb/source/Plugins/ABI/MacOSX-arm/ABIMacOSX_arm.cpp

727 lines
40 KiB
C++

//===-- ABIMacOSX_arm.cpp --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ABIMacOSX_arm.h"
#include "lldb/Core/ConstString.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Core/Value.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "llvm/ADT/Triple.h"
#include "Utility/ARM_DWARF_Registers.h"
#include "Utility/ARM_GCC_Registers.h"
#include "Plugins/Process/Utility/ARMDefines.h"
#include <vector>
using namespace lldb;
using namespace lldb_private;
static const char *pluginName = "ABIMacOSX_arm";
static const char *pluginDesc = "Mac OS X ABI for arm targets";
static const char *pluginShort = "abi.macosx-arm";
static RegisterInfo g_register_infos[] =
{
// NAME ALT SZ OFF ENCODING FORMAT COMPILER DWARF GENERIC GDB LLDB NATIVE
// ========== ======= == === ============= ============ ======================= =================== =========================== ======================= ======================
{ "r0", "arg1", 4, 0, eEncodingUint , eFormatHex, { gcc_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1, gdb_arm_r0, LLDB_INVALID_REGNUM }},
{ "r1", "arg2", 4, 0, eEncodingUint , eFormatHex, { gcc_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2, gdb_arm_r1, LLDB_INVALID_REGNUM }},
{ "r2", "arg3", 4, 0, eEncodingUint , eFormatHex, { gcc_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3, gdb_arm_r2, LLDB_INVALID_REGNUM }},
{ "r3", "arg4", 4, 0, eEncodingUint , eFormatHex, { gcc_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4, gdb_arm_r3, LLDB_INVALID_REGNUM }},
{ "r4", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r4, dwarf_r4, LLDB_INVALID_REGNUM, gdb_arm_r4, LLDB_INVALID_REGNUM }},
{ "r5", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r5, dwarf_r5, LLDB_INVALID_REGNUM, gdb_arm_r5, LLDB_INVALID_REGNUM }},
{ "r6", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r6, dwarf_r6, LLDB_INVALID_REGNUM, gdb_arm_r6, LLDB_INVALID_REGNUM }},
{ "r7", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, gdb_arm_r7, LLDB_INVALID_REGNUM }},
{ "r8", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r8, dwarf_r8, LLDB_INVALID_REGNUM, gdb_arm_r8, LLDB_INVALID_REGNUM }},
{ "r9", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r9, dwarf_r9, LLDB_INVALID_REGNUM, gdb_arm_r9, LLDB_INVALID_REGNUM }},
{ "r10", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r10, dwarf_r10, LLDB_INVALID_REGNUM, gdb_arm_r10, LLDB_INVALID_REGNUM }},
{ "r11", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r11, dwarf_r11, LLDB_INVALID_REGNUM, gdb_arm_r11, LLDB_INVALID_REGNUM }},
{ "r12", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r12, dwarf_r12, LLDB_INVALID_REGNUM, gdb_arm_r12, LLDB_INVALID_REGNUM }},
{ "sp", "r13", 4, 0, eEncodingUint , eFormatHex, { gcc_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, gdb_arm_sp, LLDB_INVALID_REGNUM }},
{ "lr", "r14", 4, 0, eEncodingUint , eFormatHex, { gcc_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, gdb_arm_lr, LLDB_INVALID_REGNUM }},
{ "pc", "r15", 4, 0, eEncodingUint , eFormatHex, { gcc_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, gdb_arm_pc, LLDB_INVALID_REGNUM }},
{ "cpsr", "psr", 4, 0, eEncodingUint , eFormatHex, { gcc_cpsr, dwarf_cpsr, LLDB_REGNUM_GENERIC_FLAGS, gdb_arm_cpsr, LLDB_INVALID_REGNUM }},
{ "s0", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, gdb_arm_s0, LLDB_INVALID_REGNUM }},
{ "s1", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, gdb_arm_s1, LLDB_INVALID_REGNUM }},
{ "s2", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, gdb_arm_s2, LLDB_INVALID_REGNUM }},
{ "s3", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, gdb_arm_s3, LLDB_INVALID_REGNUM }},
{ "s4", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, gdb_arm_s4, LLDB_INVALID_REGNUM }},
{ "s5", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, gdb_arm_s5, LLDB_INVALID_REGNUM }},
{ "s6", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, gdb_arm_s6, LLDB_INVALID_REGNUM }},
{ "s7", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, gdb_arm_s7, LLDB_INVALID_REGNUM }},
{ "s8", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, gdb_arm_s8, LLDB_INVALID_REGNUM }},
{ "s9", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, gdb_arm_s9, LLDB_INVALID_REGNUM }},
{ "s10", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, gdb_arm_s10, LLDB_INVALID_REGNUM }},
{ "s11", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, gdb_arm_s11, LLDB_INVALID_REGNUM }},
{ "s12", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, gdb_arm_s12, LLDB_INVALID_REGNUM }},
{ "s13", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, gdb_arm_s13, LLDB_INVALID_REGNUM }},
{ "s14", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, gdb_arm_s14, LLDB_INVALID_REGNUM }},
{ "s15", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, gdb_arm_s15, LLDB_INVALID_REGNUM }},
{ "s16", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, gdb_arm_s16, LLDB_INVALID_REGNUM }},
{ "s17", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, gdb_arm_s17, LLDB_INVALID_REGNUM }},
{ "s18", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, gdb_arm_s18, LLDB_INVALID_REGNUM }},
{ "s19", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, gdb_arm_s19, LLDB_INVALID_REGNUM }},
{ "s20", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, gdb_arm_s20, LLDB_INVALID_REGNUM }},
{ "s21", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, gdb_arm_s21, LLDB_INVALID_REGNUM }},
{ "s22", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, gdb_arm_s22, LLDB_INVALID_REGNUM }},
{ "s23", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, gdb_arm_s23, LLDB_INVALID_REGNUM }},
{ "s24", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, gdb_arm_s24, LLDB_INVALID_REGNUM }},
{ "s25", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, gdb_arm_s25, LLDB_INVALID_REGNUM }},
{ "s26", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, gdb_arm_s26, LLDB_INVALID_REGNUM }},
{ "s27", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, gdb_arm_s27, LLDB_INVALID_REGNUM }},
{ "s28", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, gdb_arm_s28, LLDB_INVALID_REGNUM }},
{ "s29", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, gdb_arm_s29, LLDB_INVALID_REGNUM }},
{ "s30", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, gdb_arm_s30, LLDB_INVALID_REGNUM }},
{ "s31", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, gdb_arm_s31, LLDB_INVALID_REGNUM }},
{ "fpscr", NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,LLDB_INVALID_REGNUM, gdb_arm_fpscr, LLDB_INVALID_REGNUM }},
{ "d0", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, gdb_arm_d0, LLDB_INVALID_REGNUM }},
{ "d1", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, gdb_arm_d1, LLDB_INVALID_REGNUM }},
{ "d2", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, gdb_arm_d2, LLDB_INVALID_REGNUM }},
{ "d3", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, gdb_arm_d3, LLDB_INVALID_REGNUM }},
{ "d4", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, gdb_arm_d4, LLDB_INVALID_REGNUM }},
{ "d5", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, gdb_arm_d5, LLDB_INVALID_REGNUM }},
{ "d6", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, gdb_arm_d6, LLDB_INVALID_REGNUM }},
{ "d7", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, gdb_arm_d7, LLDB_INVALID_REGNUM }},
{ "d8", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, gdb_arm_d8, LLDB_INVALID_REGNUM }},
{ "d9", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, gdb_arm_d9, LLDB_INVALID_REGNUM }},
{ "d10", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, gdb_arm_d10, LLDB_INVALID_REGNUM }},
{ "d11", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, gdb_arm_d11, LLDB_INVALID_REGNUM }},
{ "d12", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, gdb_arm_d12, LLDB_INVALID_REGNUM }},
{ "d13", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, gdb_arm_d13, LLDB_INVALID_REGNUM }},
{ "d14", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, gdb_arm_d14, LLDB_INVALID_REGNUM }},
{ "d15", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, gdb_arm_d15, LLDB_INVALID_REGNUM }},
{ "d16", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, gdb_arm_d16, LLDB_INVALID_REGNUM }},
{ "d17", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, gdb_arm_d17, LLDB_INVALID_REGNUM }},
{ "d18", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, gdb_arm_d18, LLDB_INVALID_REGNUM }},
{ "d19", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, gdb_arm_d19, LLDB_INVALID_REGNUM }},
{ "d20", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, gdb_arm_d20, LLDB_INVALID_REGNUM }},
{ "d21", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, gdb_arm_d21, LLDB_INVALID_REGNUM }},
{ "d22", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, gdb_arm_d22, LLDB_INVALID_REGNUM }},
{ "d23", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, gdb_arm_d23, LLDB_INVALID_REGNUM }},
{ "d24", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, gdb_arm_d24, LLDB_INVALID_REGNUM }},
{ "d25", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, gdb_arm_d25, LLDB_INVALID_REGNUM }},
{ "d26", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, gdb_arm_d26, LLDB_INVALID_REGNUM }},
{ "d27", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, gdb_arm_d27, LLDB_INVALID_REGNUM }},
{ "d28", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, gdb_arm_d28, LLDB_INVALID_REGNUM }},
{ "d29", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, gdb_arm_d29, LLDB_INVALID_REGNUM }},
{ "d30", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, gdb_arm_d30, LLDB_INVALID_REGNUM }},
{ "d31", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, gdb_arm_d31, LLDB_INVALID_REGNUM }},
{ "r8_usr", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r8_usr, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r9_usr", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r9_usr, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r10_usr", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r10_usr, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r11_usr", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r11_usr, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r12_usr", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r12_usr, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r13_usr", "sp_usr", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r13_usr, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r14_usr", "lr_usr", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r14_usr, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r8_fiq", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r8_fiq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r9_fiq", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r9_fiq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r10_fiq", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r10_fiq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r11_fiq", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r11_fiq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r12_fiq", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r12_fiq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r13_fiq", "sp_fiq", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r13_fiq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r14_fiq", "lr_fiq", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r14_fiq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r13_irq", "sp_irq", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r13_irq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r14_irq", "lr_irq", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r14_irq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r13_abt", "sp_abt", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r13_abt, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r14_abt", "lr_abt", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r14_abt, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r13_und", "sp_und", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r13_und, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r14_und", "lr_und", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r14_und, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r13_svc", "sp_svc", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r13_svc, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }},
{ "r14_svc", "lr_svc", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r14_svc, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }}
};
static const uint32_t k_num_register_infos = sizeof(g_register_infos)/sizeof(RegisterInfo);
static bool g_register_info_names_constified = false;
const lldb_private::RegisterInfo *
ABIMacOSX_arm::GetRegisterInfoArray (uint32_t &count)
{
// Make the C-string names and alt_names for the register infos into const
// C-string values by having the ConstString unique the names in the global
// constant C-string pool.
if (!g_register_info_names_constified)
{
g_register_info_names_constified = true;
for (uint32_t i=0; i<k_num_register_infos; ++i)
{
if (g_register_infos[i].name)
g_register_infos[i].name = ConstString(g_register_infos[i].name).GetCString();
if (g_register_infos[i].alt_name)
g_register_infos[i].alt_name = ConstString(g_register_infos[i].alt_name).GetCString();
}
}
count = k_num_register_infos;
return g_register_infos;
}
size_t
ABIMacOSX_arm::GetRedZoneSize () const
{
return 0;
}
//------------------------------------------------------------------
// Static Functions
//------------------------------------------------------------------
ABISP
ABIMacOSX_arm::CreateInstance (const ArchSpec &arch)
{
static ABISP g_abi_sp;
const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch();
if ((arch_type == llvm::Triple::arm) ||
(arch_type == llvm::Triple::thumb))
{
if (!g_abi_sp)
g_abi_sp.reset (new ABIMacOSX_arm);
return g_abi_sp;
}
return ABISP();
}
bool
ABIMacOSX_arm::PrepareTrivialCall (Thread &thread,
addr_t sp,
addr_t function_addr,
addr_t return_addr,
addr_t *arg1_ptr,
addr_t *arg2_ptr,
addr_t *arg3_ptr,
addr_t *arg4_ptr,
addr_t *arg5_ptr,
addr_t *arg6_ptr) const
{
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
const uint32_t pc_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
const uint32_t sp_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
const uint32_t ra_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA);
RegisterValue reg_value;
if (arg1_ptr)
{
reg_value.SetUInt32(*arg1_ptr);
if (!reg_ctx->WriteRegister (reg_ctx->GetRegisterInfoByName("r0"), reg_value))
return false;
if (arg2_ptr)
{
reg_value.SetUInt32(*arg2_ptr);
if (!reg_ctx->WriteRegister (reg_ctx->GetRegisterInfoByName("r1"), reg_value))
return false;
if (arg3_ptr)
{
reg_value.SetUInt32(*arg3_ptr);
if (!reg_ctx->WriteRegister (reg_ctx->GetRegisterInfoByName("r2"), reg_value))
return false;
if (arg4_ptr)
{
reg_value.SetUInt32(*arg4_ptr);
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("r3");
if (!reg_ctx->WriteRegister (reg_info, reg_value))
return false;
if (arg5_ptr)
{
// Keep the stack 8 byte aligned, not that we need to
sp -= 8;
sp &= ~(8ull-1ull);
reg_value.SetUInt32(*arg5_ptr);
if (reg_ctx->WriteRegisterValueToMemory (reg_info, sp, reg_info->byte_size, reg_value).Fail())
return false;
if (arg6_ptr)
{
reg_value.SetUInt32(*arg6_ptr);
if (reg_ctx->WriteRegisterValueToMemory (reg_info, sp + 4, reg_info->byte_size, reg_value).Fail())
return false;
}
}
}
}
}
}
Target *target = &thread.GetProcess().GetTarget();
Address so_addr;
// Figure out if our return address is ARM or Thumb by using the
// Address::GetCallableLoadAddress(Target*) which will figure out the ARM
// thumb-ness and set the correct address bits for us.
so_addr.SetLoadAddress (return_addr, target);
return_addr = so_addr.GetCallableLoadAddress (target);
// Set "lr" to the return address
if (!reg_ctx->WriteRegisterFromUnsigned (ra_reg_num, return_addr))
return false;
// Set "sp" to the requested value
if (!reg_ctx->WriteRegisterFromUnsigned (sp_reg_num, sp))
return false;
// If bit zero or 1 is set, this must be a thumb function, no need to figure
// this out from the symbols.
so_addr.SetLoadAddress (function_addr, target);
function_addr = so_addr.GetCallableLoadAddress (target);
const RegisterInfo *cpsr_reg_info = reg_ctx->GetRegisterInfoByName("cpsr");
const uint32_t curr_cpsr = reg_ctx->ReadRegisterAsUnsigned(cpsr_reg_info, 0);
// Make a new CPSR and mask out any Thumb IT (if/then) bits
uint32_t new_cpsr = curr_cpsr & ~MASK_CPSR_IT_MASK;
// If bit zero or 1 is set, this must be thumb...
if (function_addr & 1ull)
new_cpsr |= MASK_CPSR_T; // Set T bit in CPSR
else
new_cpsr &= ~MASK_CPSR_T; // Clear T bit in CPSR
if (new_cpsr != curr_cpsr)
{
if (!reg_ctx->WriteRegisterFromUnsigned (cpsr_reg_info, new_cpsr))
return false;
}
function_addr &= ~1ull; // clear bit zero since the CPSR will take care of the mode for us
// Set "pc" to the address requested
if (!reg_ctx->WriteRegisterFromUnsigned (pc_reg_num, function_addr))
return false;
return true;
}
bool
ABIMacOSX_arm::GetArgumentValues (Thread &thread,
ValueList &values) const
{
uint32_t num_values = values.GetSize();
// For now, assume that the types in the AST values come from the Target's
// scratch AST.
clang::ASTContext *ast_context = thread.CalculateTarget()->GetScratchClangASTContext()->getASTContext();
// Extract the register context so we can read arguments from registers
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
addr_t sp = reg_ctx->GetSP(0);
if (!sp)
return false;
for (uint32_t value_idx = 0; value_idx < num_values; ++value_idx)
{
// We currently only support extracting values with Clang QualTypes.
// Do we care about others?
Value *value = values.GetValueAtIndex(value_idx);
if (!value)
return false;
void *value_type = value->GetClangType();
if (value_type)
{
bool is_signed = false;
size_t bit_width = 0;
if (ClangASTContext::IsIntegerType (value_type, is_signed))
{
bit_width = ClangASTType::GetClangTypeBitWidth(ast_context, value_type);
}
else if (ClangASTContext::IsPointerOrReferenceType (value_type))
{
bit_width = ClangASTType::GetClangTypeBitWidth(ast_context, value_type);
}
else
{
// We only handle integer, pointer and reference types currently...
return false;
}
if (bit_width <= (thread.GetProcess().GetAddressByteSize() * 8))
{
if (value_idx < 4)
{
// Arguments 1-4 are in r0-r3...
const RegisterInfo *arg_reg_info = NULL;
// Search by generic ID first, then fall back to by name
uint32_t arg_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + value_idx);
if (arg_reg_num != LLDB_INVALID_REGNUM)
{
arg_reg_info = reg_ctx->GetRegisterInfoAtIndex(arg_reg_num);
}
else
{
switch (value_idx)
{
case 0: arg_reg_info = reg_ctx->GetRegisterInfoByName("r0"); break;
case 1: arg_reg_info = reg_ctx->GetRegisterInfoByName("r1"); break;
case 2: arg_reg_info = reg_ctx->GetRegisterInfoByName("r2"); break;
case 3: arg_reg_info = reg_ctx->GetRegisterInfoByName("r3"); break;
}
}
if (arg_reg_info)
{
RegisterValue reg_value;
if (reg_ctx->ReadRegister(arg_reg_info, reg_value))
{
if (is_signed)
reg_value.SignExtend(bit_width);
if (!reg_value.GetScalarValue(value->GetScalar()))
return false;
continue;
}
}
return false;
}
else
{
// Arguments 5 on up are on the stack
const uint32_t arg_byte_size = (bit_width + (8-1)) / 8;
Error error;
if (!thread.GetProcess().ReadScalarIntegerFromMemory(sp, arg_byte_size, is_signed, value->GetScalar(), error))
return false;
sp += arg_byte_size;
}
}
}
}
return true;
}
bool
ABIMacOSX_arm::GetReturnValue (Thread &thread,
Value &value) const
{
switch (value.GetContextType())
{
default:
return false;
case Value::eContextTypeClangType:
{
// Extract the Clang AST context from the PC so that we can figure out type
// sizes
clang::ASTContext *ast_context = thread.CalculateTarget()->GetScratchClangASTContext()->getASTContext();
// Get the pointer to the first stack argument so we have a place to start
// when reading data
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
void *value_type = value.GetClangType();
bool is_signed;
const RegisterInfo *r0_reg_info = reg_ctx->GetRegisterInfoByName("r0", 0);
if (ClangASTContext::IsIntegerType (value_type, is_signed))
{
size_t bit_width = ClangASTType::GetClangTypeBitWidth(ast_context, value_type);
switch (bit_width)
{
default:
return false;
case 64:
{
const RegisterInfo *r1_reg_info = reg_ctx->GetRegisterInfoByName("r1", 0);
uint64_t raw_value;
raw_value = reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT32_MAX;
raw_value |= ((uint64_t)(reg_ctx->ReadRegisterAsUnsigned(r1_reg_info, 0) & UINT32_MAX)) << 32;
if (is_signed)
value.GetScalar() = (int64_t)raw_value;
else
value.GetScalar() = (uint64_t)raw_value;
}
break;
case 32:
if (is_signed)
value.GetScalar() = (int32_t)(reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT32_MAX);
else
value.GetScalar() = (uint32_t)(reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT32_MAX);
break;
case 16:
if (is_signed)
value.GetScalar() = (int16_t)(reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT16_MAX);
else
value.GetScalar() = (uint16_t)(reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT16_MAX);
break;
case 8:
if (is_signed)
value.GetScalar() = (int8_t)(reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT8_MAX);
else
value.GetScalar() = (uint8_t)(reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT8_MAX);
break;
}
}
else if (ClangASTContext::IsPointerType (value_type))
{
uint32_t ptr = thread.GetRegisterContext()->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT32_MAX;
value.GetScalar() = ptr;
}
else
{
// not handled yet
return false;
}
}
break;
}
return true;
}
bool
ABIMacOSX_arm::CreateFunctionEntryUnwindPlan (UnwindPlan &unwind_plan)
{
uint32_t reg_kind = unwind_plan.GetRegisterKind();
uint32_t lr_reg_num = LLDB_INVALID_REGNUM;
uint32_t sp_reg_num = LLDB_INVALID_REGNUM;
uint32_t pc_reg_num = LLDB_INVALID_REGNUM;
switch (reg_kind)
{
case eRegisterKindDWARF:
case eRegisterKindGCC:
lr_reg_num = dwarf_lr;
sp_reg_num = dwarf_sp;
pc_reg_num = dwarf_pc;
break;
case eRegisterKindGeneric:
lr_reg_num = LLDB_REGNUM_GENERIC_RA;
sp_reg_num = LLDB_REGNUM_GENERIC_SP;
pc_reg_num = LLDB_REGNUM_GENERIC_PC;
break;
}
if (lr_reg_num == LLDB_INVALID_REGNUM ||
sp_reg_num == LLDB_INVALID_REGNUM ||
pc_reg_num == LLDB_INVALID_REGNUM)
return false;
UnwindPlan::Row row;
// Our previous Call Frame Address is the stack pointer
row.SetCFARegister (sp_reg_num);
// Our previous PC is in the LR
row.SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
unwind_plan.AppendRow (row);
// All other registers are the same.
unwind_plan.SetSourceName ("arm at-func-entry default");
return true;
}
bool
ABIMacOSX_arm::CreateDefaultUnwindPlan (UnwindPlan &unwind_plan)
{
uint32_t reg_kind = unwind_plan.GetRegisterKind();
uint32_t fp_reg_num = LLDB_INVALID_REGNUM;
uint32_t sp_reg_num = LLDB_INVALID_REGNUM;
uint32_t pc_reg_num = LLDB_INVALID_REGNUM;
switch (reg_kind)
{
case eRegisterKindDWARF:
case eRegisterKindGCC:
fp_reg_num = dwarf_r7; // apple uses r7 for all frames. Normal arm uses r11
sp_reg_num = dwarf_sp;
pc_reg_num = dwarf_pc;
break;
case eRegisterKindGeneric:
fp_reg_num = LLDB_REGNUM_GENERIC_FP;
sp_reg_num = LLDB_REGNUM_GENERIC_SP;
pc_reg_num = LLDB_REGNUM_GENERIC_PC;
break;
}
if (fp_reg_num == LLDB_INVALID_REGNUM ||
sp_reg_num == LLDB_INVALID_REGNUM ||
pc_reg_num == LLDB_INVALID_REGNUM)
return false;
UnwindPlan::Row row;
const int32_t ptr_size = 4;
unwind_plan.SetRegisterKind (eRegisterKindGeneric);
row.SetCFARegister (fp_reg_num);
row.SetCFAOffset (2 * ptr_size);
row.SetOffset (0);
row.SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
row.SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
unwind_plan.AppendRow (row);
unwind_plan.SetSourceName ("arm-apple-darwin default unwind plan");
return true;
}
bool
ABIMacOSX_arm::RegisterIsVolatile (const RegisterInfo *reg_info)
{
if (reg_info)
{
// Volatile registers include: ebx, ebp, esi, edi, esp, eip
const char *name = reg_info->name;
if (name[0] == 'r')
{
switch (name[1])
{
case '0': return name[2] == '\0'; // r0
case '1':
switch (name[2])
{
case '\0':
return true; // r1
case '2':
case '3':
return name[2] == '\0'; // r12 - r13
default:
break;
}
break;
case '2': return name[2] == '\0'; // r2
case '3': return name[2] == '\0'; // r3
case '9': return name[2] == '\0'; // r9 (apple-darwin only...)
break;
}
}
else if (name[0] == 'd')
{
switch (name[1])
{
case '0':
return name[2] == '\0'; // d0
case '1':
switch (name[2])
{
case '\0':
return true; // d1;
case '6':
case '7':
case '8':
case '9':
return name[3] == '\0'; // d16 - d19
default:
break;
}
break;
case '2':
switch (name[2])
{
case '\0':
return true; // d2;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
return name[3] == '\0'; // d20 - d29
default:
break;
}
break;
case '3':
switch (name[2])
{
case '\0':
return true; // d3;
case '0':
case '1':
return name[3] == '\0'; // d30 - d31
default:
break;
}
case '4':
case '5':
case '6':
case '7':
return name[2] == '\0'; // d4 - d7
default:
break;
}
}
else if (name[0] == 's' && name[1] == 'p' && name[2] == '\0')
return true;
}
return false;
}
void
ABIMacOSX_arm::Initialize()
{
PluginManager::RegisterPlugin (pluginName,
pluginDesc,
CreateInstance);
}
void
ABIMacOSX_arm::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
const char *
ABIMacOSX_arm::GetPluginName()
{
return pluginName;
}
const char *
ABIMacOSX_arm::GetShortPluginName()
{
return pluginShort;
}
uint32_t
ABIMacOSX_arm::GetPluginVersion()
{
return 1;
}