forked from OSchip/llvm-project
352 lines
13 KiB
C++
352 lines
13 KiB
C++
//===- CSE.cpp - Common Sub-expression Elimination ------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This transformation pass performs a simple common sub-expression elimination
|
|
// algorithm on operations within a region.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/IR/Dominance.h"
|
|
#include "mlir/Interfaces/SideEffectInterfaces.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/ADT/ScopedHashTable.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/RecyclingAllocator.h"
|
|
#include <deque>
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
struct SimpleOperationInfo : public llvm::DenseMapInfo<Operation *> {
|
|
static unsigned getHashValue(const Operation *opC) {
|
|
return OperationEquivalence::computeHash(
|
|
const_cast<Operation *>(opC),
|
|
/*hashOperands=*/OperationEquivalence::directHashValue,
|
|
/*hashResults=*/OperationEquivalence::ignoreHashValue,
|
|
OperationEquivalence::IgnoreLocations);
|
|
}
|
|
static bool isEqual(const Operation *lhsC, const Operation *rhsC) {
|
|
auto *lhs = const_cast<Operation *>(lhsC);
|
|
auto *rhs = const_cast<Operation *>(rhsC);
|
|
if (lhs == rhs)
|
|
return true;
|
|
if (lhs == getTombstoneKey() || lhs == getEmptyKey() ||
|
|
rhs == getTombstoneKey() || rhs == getEmptyKey())
|
|
return false;
|
|
return OperationEquivalence::isEquivalentTo(
|
|
const_cast<Operation *>(lhsC), const_cast<Operation *>(rhsC),
|
|
/*mapOperands=*/OperationEquivalence::exactValueMatch,
|
|
/*mapResults=*/OperationEquivalence::ignoreValueEquivalence,
|
|
OperationEquivalence::IgnoreLocations);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
/// Simple common sub-expression elimination.
|
|
struct CSE : public CSEBase<CSE> {
|
|
/// Shared implementation of operation elimination and scoped map definitions.
|
|
using AllocatorTy = llvm::RecyclingAllocator<
|
|
llvm::BumpPtrAllocator,
|
|
llvm::ScopedHashTableVal<Operation *, Operation *>>;
|
|
using ScopedMapTy = llvm::ScopedHashTable<Operation *, Operation *,
|
|
SimpleOperationInfo, AllocatorTy>;
|
|
|
|
/// Cache holding MemoryEffects information between two operations. The first
|
|
/// operation is stored has the key. The second operation is stored inside a
|
|
/// pair in the value. The pair also hold the MemoryEffects between those
|
|
/// two operations. If the MemoryEffects is nullptr then we assume there is
|
|
/// no operation with MemoryEffects::Write between the two operations.
|
|
using MemEffectsCache =
|
|
DenseMap<Operation *, std::pair<Operation *, MemoryEffects::Effect *>>;
|
|
|
|
/// Represents a single entry in the depth first traversal of a CFG.
|
|
struct CFGStackNode {
|
|
CFGStackNode(ScopedMapTy &knownValues, DominanceInfoNode *node)
|
|
: scope(knownValues), node(node), childIterator(node->begin()) {}
|
|
|
|
/// Scope for the known values.
|
|
ScopedMapTy::ScopeTy scope;
|
|
|
|
DominanceInfoNode *node;
|
|
DominanceInfoNode::const_iterator childIterator;
|
|
|
|
/// If this node has been fully processed yet or not.
|
|
bool processed = false;
|
|
};
|
|
|
|
/// Attempt to eliminate a redundant operation. Returns success if the
|
|
/// operation was marked for removal, failure otherwise.
|
|
LogicalResult simplifyOperation(ScopedMapTy &knownValues, Operation *op,
|
|
bool hasSSADominance);
|
|
void simplifyBlock(ScopedMapTy &knownValues, Block *bb, bool hasSSADominance);
|
|
void simplifyRegion(ScopedMapTy &knownValues, Region ®ion);
|
|
|
|
void runOnOperation() override;
|
|
|
|
private:
|
|
void replaceUsesAndDelete(ScopedMapTy &knownValues, Operation *op,
|
|
Operation *existing, bool hasSSADominance);
|
|
|
|
/// Check if there is side-effecting operations other than the given effect
|
|
/// between the two operations.
|
|
bool hasOtherSideEffectingOpInBetween(Operation *fromOp, Operation *toOp);
|
|
|
|
/// Operations marked as dead and to be erased.
|
|
std::vector<Operation *> opsToErase;
|
|
DominanceInfo *domInfo = nullptr;
|
|
MemEffectsCache memEffectsCache;
|
|
};
|
|
} // namespace
|
|
|
|
void CSE::replaceUsesAndDelete(ScopedMapTy &knownValues, Operation *op,
|
|
Operation *existing, bool hasSSADominance) {
|
|
// If we find one then replace all uses of the current operation with the
|
|
// existing one and mark it for deletion. We can only replace an operand in
|
|
// an operation if it has not been visited yet.
|
|
if (hasSSADominance) {
|
|
// If the region has SSA dominance, then we are guaranteed to have not
|
|
// visited any use of the current operation.
|
|
op->replaceAllUsesWith(existing);
|
|
opsToErase.push_back(op);
|
|
} else {
|
|
// When the region does not have SSA dominance, we need to check if we
|
|
// have visited a use before replacing any use.
|
|
for (auto it : llvm::zip(op->getResults(), existing->getResults())) {
|
|
std::get<0>(it).replaceUsesWithIf(
|
|
std::get<1>(it), [&](OpOperand &operand) {
|
|
return !knownValues.count(operand.getOwner());
|
|
});
|
|
}
|
|
|
|
// There may be some remaining uses of the operation.
|
|
if (op->use_empty())
|
|
opsToErase.push_back(op);
|
|
}
|
|
|
|
// If the existing operation has an unknown location and the current
|
|
// operation doesn't, then set the existing op's location to that of the
|
|
// current op.
|
|
if (existing->getLoc().isa<UnknownLoc>() && !op->getLoc().isa<UnknownLoc>())
|
|
existing->setLoc(op->getLoc());
|
|
|
|
++numCSE;
|
|
}
|
|
|
|
bool CSE::hasOtherSideEffectingOpInBetween(Operation *fromOp, Operation *toOp) {
|
|
assert(fromOp->getBlock() == toOp->getBlock());
|
|
assert(
|
|
isa<MemoryEffectOpInterface>(fromOp) &&
|
|
cast<MemoryEffectOpInterface>(fromOp).hasEffect<MemoryEffects::Read>() &&
|
|
isa<MemoryEffectOpInterface>(toOp) &&
|
|
cast<MemoryEffectOpInterface>(toOp).hasEffect<MemoryEffects::Read>());
|
|
Operation *nextOp = fromOp->getNextNode();
|
|
auto result =
|
|
memEffectsCache.try_emplace(fromOp, std::make_pair(fromOp, nullptr));
|
|
if (result.second) {
|
|
auto memEffectsCachePair = result.first->second;
|
|
if (memEffectsCachePair.second == nullptr) {
|
|
// No MemoryEffects::Write has been detected until the cached operation.
|
|
// Continue looking from the cached operation to toOp.
|
|
nextOp = memEffectsCachePair.first;
|
|
} else {
|
|
// MemoryEffects::Write has been detected before so there is no need to
|
|
// check further.
|
|
return true;
|
|
}
|
|
}
|
|
while (nextOp && nextOp != toOp) {
|
|
auto nextOpMemEffects = dyn_cast<MemoryEffectOpInterface>(nextOp);
|
|
// TODO: Do we need to handle other effects generically?
|
|
// If the operation does not implement the MemoryEffectOpInterface we
|
|
// conservatively assumes it writes.
|
|
if ((nextOpMemEffects &&
|
|
nextOpMemEffects.hasEffect<MemoryEffects::Write>()) ||
|
|
!nextOpMemEffects) {
|
|
result.first->second =
|
|
std::make_pair(nextOp, MemoryEffects::Write::get());
|
|
return true;
|
|
}
|
|
nextOp = nextOp->getNextNode();
|
|
}
|
|
result.first->second = std::make_pair(toOp, nullptr);
|
|
return false;
|
|
}
|
|
|
|
/// Attempt to eliminate a redundant operation.
|
|
LogicalResult CSE::simplifyOperation(ScopedMapTy &knownValues, Operation *op,
|
|
bool hasSSADominance) {
|
|
// Don't simplify terminator operations.
|
|
if (op->hasTrait<OpTrait::IsTerminator>())
|
|
return failure();
|
|
|
|
// If the operation is already trivially dead just add it to the erase list.
|
|
if (isOpTriviallyDead(op)) {
|
|
opsToErase.push_back(op);
|
|
++numDCE;
|
|
return success();
|
|
}
|
|
|
|
// Don't simplify operations with nested blocks. We don't currently model
|
|
// equality comparisons correctly among other things. It is also unclear
|
|
// whether we would want to CSE such operations.
|
|
if (op->getNumRegions() != 0)
|
|
return failure();
|
|
|
|
// Some simple use case of operation with memory side-effect are dealt with
|
|
// here. Operations with no side-effect are done after.
|
|
if (!MemoryEffectOpInterface::hasNoEffect(op)) {
|
|
auto memEffects = dyn_cast<MemoryEffectOpInterface>(op);
|
|
// TODO: Only basic use case for operations with MemoryEffects::Read can be
|
|
// eleminated now. More work needs to be done for more complicated patterns
|
|
// and other side-effects.
|
|
if (!memEffects || !memEffects.onlyHasEffect<MemoryEffects::Read>())
|
|
return failure();
|
|
|
|
// Look for an existing definition for the operation.
|
|
if (auto *existing = knownValues.lookup(op)) {
|
|
if (existing->getBlock() == op->getBlock() &&
|
|
!hasOtherSideEffectingOpInBetween(existing, op)) {
|
|
// The operation that can be deleted has been reach with no
|
|
// side-effecting operations in between the existing operation and
|
|
// this one so we can remove the duplicate.
|
|
replaceUsesAndDelete(knownValues, op, existing, hasSSADominance);
|
|
return success();
|
|
}
|
|
}
|
|
knownValues.insert(op, op);
|
|
return failure();
|
|
}
|
|
|
|
// Look for an existing definition for the operation.
|
|
if (auto *existing = knownValues.lookup(op)) {
|
|
replaceUsesAndDelete(knownValues, op, existing, hasSSADominance);
|
|
++numCSE;
|
|
return success();
|
|
}
|
|
|
|
// Otherwise, we add this operation to the known values map.
|
|
knownValues.insert(op, op);
|
|
return failure();
|
|
}
|
|
|
|
void CSE::simplifyBlock(ScopedMapTy &knownValues, Block *bb,
|
|
bool hasSSADominance) {
|
|
for (auto &op : *bb) {
|
|
// If the operation is simplified, we don't process any held regions.
|
|
if (succeeded(simplifyOperation(knownValues, &op, hasSSADominance)))
|
|
continue;
|
|
|
|
// Most operations don't have regions, so fast path that case.
|
|
if (op.getNumRegions() == 0)
|
|
continue;
|
|
|
|
// If this operation is isolated above, we can't process nested regions with
|
|
// the given 'knownValues' map. This would cause the insertion of implicit
|
|
// captures in explicit capture only regions.
|
|
if (op.mightHaveTrait<OpTrait::IsIsolatedFromAbove>()) {
|
|
ScopedMapTy nestedKnownValues;
|
|
for (auto ®ion : op.getRegions())
|
|
simplifyRegion(nestedKnownValues, region);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, process nested regions normally.
|
|
for (auto ®ion : op.getRegions())
|
|
simplifyRegion(knownValues, region);
|
|
}
|
|
// Clear the MemoryEffects cache since its usage is by block only.
|
|
memEffectsCache.clear();
|
|
}
|
|
|
|
void CSE::simplifyRegion(ScopedMapTy &knownValues, Region ®ion) {
|
|
// If the region is empty there is nothing to do.
|
|
if (region.empty())
|
|
return;
|
|
|
|
bool hasSSADominance = domInfo->hasSSADominance(®ion);
|
|
|
|
// If the region only contains one block, then simplify it directly.
|
|
if (region.hasOneBlock()) {
|
|
ScopedMapTy::ScopeTy scope(knownValues);
|
|
simplifyBlock(knownValues, ®ion.front(), hasSSADominance);
|
|
return;
|
|
}
|
|
|
|
// If the region does not have dominanceInfo, then skip it.
|
|
// TODO: Regions without SSA dominance should define a different
|
|
// traversal order which is appropriate and can be used here.
|
|
if (!hasSSADominance)
|
|
return;
|
|
|
|
// Note, deque is being used here because there was significant performance
|
|
// gains over vector when the container becomes very large due to the
|
|
// specific access patterns. If/when these performance issues are no
|
|
// longer a problem we can change this to vector. For more information see
|
|
// the llvm mailing list discussion on this:
|
|
// http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
|
|
std::deque<std::unique_ptr<CFGStackNode>> stack;
|
|
|
|
// Process the nodes of the dom tree for this region.
|
|
stack.emplace_back(std::make_unique<CFGStackNode>(
|
|
knownValues, domInfo->getRootNode(®ion)));
|
|
|
|
while (!stack.empty()) {
|
|
auto ¤tNode = stack.back();
|
|
|
|
// Check to see if we need to process this node.
|
|
if (!currentNode->processed) {
|
|
currentNode->processed = true;
|
|
simplifyBlock(knownValues, currentNode->node->getBlock(),
|
|
hasSSADominance);
|
|
}
|
|
|
|
// Otherwise, check to see if we need to process a child node.
|
|
if (currentNode->childIterator != currentNode->node->end()) {
|
|
auto *childNode = *(currentNode->childIterator++);
|
|
stack.emplace_back(
|
|
std::make_unique<CFGStackNode>(knownValues, childNode));
|
|
} else {
|
|
// Finally, if the node and all of its children have been processed
|
|
// then we delete the node.
|
|
stack.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
void CSE::runOnOperation() {
|
|
/// A scoped hash table of defining operations within a region.
|
|
ScopedMapTy knownValues;
|
|
|
|
domInfo = &getAnalysis<DominanceInfo>();
|
|
Operation *rootOp = getOperation();
|
|
|
|
for (auto ®ion : rootOp->getRegions())
|
|
simplifyRegion(knownValues, region);
|
|
|
|
// If no operations were erased, then we mark all analyses as preserved.
|
|
if (opsToErase.empty())
|
|
return markAllAnalysesPreserved();
|
|
|
|
/// Erase any operations that were marked as dead during simplification.
|
|
for (auto *op : opsToErase)
|
|
op->erase();
|
|
opsToErase.clear();
|
|
|
|
// We currently don't remove region operations, so mark dominance as
|
|
// preserved.
|
|
markAnalysesPreserved<DominanceInfo, PostDominanceInfo>();
|
|
domInfo = nullptr;
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createCSEPass() { return std::make_unique<CSE>(); }
|