llvm-project/mlir/lib/IR/AffineExpr.cpp

1416 lines
57 KiB
C++

//===- AffineExpr.cpp - MLIR Affine Expr Classes --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <utility>
#include "mlir/IR/AffineExpr.h"
#include "AffineExprDetail.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Support/TypeID.h"
#include "llvm/ADT/STLExtras.h"
using namespace mlir;
using namespace mlir::detail;
MLIRContext *AffineExpr::getContext() const { return expr->context; }
AffineExprKind AffineExpr::getKind() const { return expr->kind; }
/// Walk all of the AffineExprs in this subgraph in postorder.
void AffineExpr::walk(std::function<void(AffineExpr)> callback) const {
struct AffineExprWalker : public AffineExprVisitor<AffineExprWalker> {
std::function<void(AffineExpr)> callback;
AffineExprWalker(std::function<void(AffineExpr)> callback)
: callback(std::move(callback)) {}
void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { callback(expr); }
void visitConstantExpr(AffineConstantExpr expr) { callback(expr); }
void visitDimExpr(AffineDimExpr expr) { callback(expr); }
void visitSymbolExpr(AffineSymbolExpr expr) { callback(expr); }
};
AffineExprWalker(std::move(callback)).walkPostOrder(*this);
}
// Dispatch affine expression construction based on kind.
AffineExpr mlir::getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs,
AffineExpr rhs) {
if (kind == AffineExprKind::Add)
return lhs + rhs;
if (kind == AffineExprKind::Mul)
return lhs * rhs;
if (kind == AffineExprKind::FloorDiv)
return lhs.floorDiv(rhs);
if (kind == AffineExprKind::CeilDiv)
return lhs.ceilDiv(rhs);
if (kind == AffineExprKind::Mod)
return lhs % rhs;
llvm_unreachable("unknown binary operation on affine expressions");
}
/// This method substitutes any uses of dimensions and symbols (e.g.
/// dim#0 with dimReplacements[0]) and returns the modified expression tree.
AffineExpr
AffineExpr::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements,
ArrayRef<AffineExpr> symReplacements) const {
switch (getKind()) {
case AffineExprKind::Constant:
return *this;
case AffineExprKind::DimId: {
unsigned dimId = cast<AffineDimExpr>().getPosition();
if (dimId >= dimReplacements.size())
return *this;
return dimReplacements[dimId];
}
case AffineExprKind::SymbolId: {
unsigned symId = cast<AffineSymbolExpr>().getPosition();
if (symId >= symReplacements.size())
return *this;
return symReplacements[symId];
}
case AffineExprKind::Add:
case AffineExprKind::Mul:
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv:
case AffineExprKind::Mod:
auto binOp = cast<AffineBinaryOpExpr>();
auto lhs = binOp.getLHS(), rhs = binOp.getRHS();
auto newLHS = lhs.replaceDimsAndSymbols(dimReplacements, symReplacements);
auto newRHS = rhs.replaceDimsAndSymbols(dimReplacements, symReplacements);
if (newLHS == lhs && newRHS == rhs)
return *this;
return getAffineBinaryOpExpr(getKind(), newLHS, newRHS);
}
llvm_unreachable("Unknown AffineExpr");
}
AffineExpr AffineExpr::replaceDims(ArrayRef<AffineExpr> dimReplacements) const {
return replaceDimsAndSymbols(dimReplacements, {});
}
AffineExpr
AffineExpr::replaceSymbols(ArrayRef<AffineExpr> symReplacements) const {
return replaceDimsAndSymbols({}, symReplacements);
}
/// Replace dims[offset ... numDims)
/// by dims[offset + shift ... shift + numDims).
AffineExpr AffineExpr::shiftDims(unsigned numDims, unsigned shift,
unsigned offset) const {
SmallVector<AffineExpr, 4> dims;
for (unsigned idx = 0; idx < offset; ++idx)
dims.push_back(getAffineDimExpr(idx, getContext()));
for (unsigned idx = offset; idx < numDims; ++idx)
dims.push_back(getAffineDimExpr(idx + shift, getContext()));
return replaceDimsAndSymbols(dims, {});
}
/// Replace symbols[offset ... numSymbols)
/// by symbols[offset + shift ... shift + numSymbols).
AffineExpr AffineExpr::shiftSymbols(unsigned numSymbols, unsigned shift,
unsigned offset) const {
SmallVector<AffineExpr, 4> symbols;
for (unsigned idx = 0; idx < offset; ++idx)
symbols.push_back(getAffineSymbolExpr(idx, getContext()));
for (unsigned idx = offset; idx < numSymbols; ++idx)
symbols.push_back(getAffineSymbolExpr(idx + shift, getContext()));
return replaceDimsAndSymbols({}, symbols);
}
/// Sparse replace method. Return the modified expression tree.
AffineExpr
AffineExpr::replace(const DenseMap<AffineExpr, AffineExpr> &map) const {
auto it = map.find(*this);
if (it != map.end())
return it->second;
switch (getKind()) {
default:
return *this;
case AffineExprKind::Add:
case AffineExprKind::Mul:
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv:
case AffineExprKind::Mod:
auto binOp = cast<AffineBinaryOpExpr>();
auto lhs = binOp.getLHS(), rhs = binOp.getRHS();
auto newLHS = lhs.replace(map);
auto newRHS = rhs.replace(map);
if (newLHS == lhs && newRHS == rhs)
return *this;
return getAffineBinaryOpExpr(getKind(), newLHS, newRHS);
}
llvm_unreachable("Unknown AffineExpr");
}
/// Sparse replace method. Return the modified expression tree.
AffineExpr AffineExpr::replace(AffineExpr expr, AffineExpr replacement) const {
DenseMap<AffineExpr, AffineExpr> map;
map.insert(std::make_pair(expr, replacement));
return replace(map);
}
/// Returns true if this expression is made out of only symbols and
/// constants (no dimensional identifiers).
bool AffineExpr::isSymbolicOrConstant() const {
switch (getKind()) {
case AffineExprKind::Constant:
return true;
case AffineExprKind::DimId:
return false;
case AffineExprKind::SymbolId:
return true;
case AffineExprKind::Add:
case AffineExprKind::Mul:
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv:
case AffineExprKind::Mod: {
auto expr = this->cast<AffineBinaryOpExpr>();
return expr.getLHS().isSymbolicOrConstant() &&
expr.getRHS().isSymbolicOrConstant();
}
}
llvm_unreachable("Unknown AffineExpr");
}
/// Returns true if this is a pure affine expression, i.e., multiplication,
/// floordiv, ceildiv, and mod is only allowed w.r.t constants.
bool AffineExpr::isPureAffine() const {
switch (getKind()) {
case AffineExprKind::SymbolId:
case AffineExprKind::DimId:
case AffineExprKind::Constant:
return true;
case AffineExprKind::Add: {
auto op = cast<AffineBinaryOpExpr>();
return op.getLHS().isPureAffine() && op.getRHS().isPureAffine();
}
case AffineExprKind::Mul: {
// TODO: Canonicalize the constants in binary operators to the RHS when
// possible, allowing this to merge into the next case.
auto op = cast<AffineBinaryOpExpr>();
return op.getLHS().isPureAffine() && op.getRHS().isPureAffine() &&
(op.getLHS().template isa<AffineConstantExpr>() ||
op.getRHS().template isa<AffineConstantExpr>());
}
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv:
case AffineExprKind::Mod: {
auto op = cast<AffineBinaryOpExpr>();
return op.getLHS().isPureAffine() &&
op.getRHS().template isa<AffineConstantExpr>();
}
}
llvm_unreachable("Unknown AffineExpr");
}
// Returns the greatest known integral divisor of this affine expression.
int64_t AffineExpr::getLargestKnownDivisor() const {
AffineBinaryOpExpr binExpr(nullptr);
switch (getKind()) {
case AffineExprKind::CeilDiv:
LLVM_FALLTHROUGH;
case AffineExprKind::DimId:
case AffineExprKind::FloorDiv:
case AffineExprKind::SymbolId:
return 1;
case AffineExprKind::Constant:
return std::abs(this->cast<AffineConstantExpr>().getValue());
case AffineExprKind::Mul: {
binExpr = this->cast<AffineBinaryOpExpr>();
return binExpr.getLHS().getLargestKnownDivisor() *
binExpr.getRHS().getLargestKnownDivisor();
}
case AffineExprKind::Add:
LLVM_FALLTHROUGH;
case AffineExprKind::Mod: {
binExpr = cast<AffineBinaryOpExpr>();
return llvm::GreatestCommonDivisor64(
binExpr.getLHS().getLargestKnownDivisor(),
binExpr.getRHS().getLargestKnownDivisor());
}
}
llvm_unreachable("Unknown AffineExpr");
}
bool AffineExpr::isMultipleOf(int64_t factor) const {
AffineBinaryOpExpr binExpr(nullptr);
uint64_t l, u;
switch (getKind()) {
case AffineExprKind::SymbolId:
LLVM_FALLTHROUGH;
case AffineExprKind::DimId:
return factor * factor == 1;
case AffineExprKind::Constant:
return cast<AffineConstantExpr>().getValue() % factor == 0;
case AffineExprKind::Mul: {
binExpr = cast<AffineBinaryOpExpr>();
// It's probably not worth optimizing this further (to not traverse the
// whole sub-tree under - it that would require a version of isMultipleOf
// that on a 'false' return also returns the largest known divisor).
return (l = binExpr.getLHS().getLargestKnownDivisor()) % factor == 0 ||
(u = binExpr.getRHS().getLargestKnownDivisor()) % factor == 0 ||
(l * u) % factor == 0;
}
case AffineExprKind::Add:
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv:
case AffineExprKind::Mod: {
binExpr = cast<AffineBinaryOpExpr>();
return llvm::GreatestCommonDivisor64(
binExpr.getLHS().getLargestKnownDivisor(),
binExpr.getRHS().getLargestKnownDivisor()) %
factor ==
0;
}
}
llvm_unreachable("Unknown AffineExpr");
}
bool AffineExpr::isFunctionOfDim(unsigned position) const {
if (getKind() == AffineExprKind::DimId) {
return *this == mlir::getAffineDimExpr(position, getContext());
}
if (auto expr = this->dyn_cast<AffineBinaryOpExpr>()) {
return expr.getLHS().isFunctionOfDim(position) ||
expr.getRHS().isFunctionOfDim(position);
}
return false;
}
bool AffineExpr::isFunctionOfSymbol(unsigned position) const {
if (getKind() == AffineExprKind::SymbolId) {
return *this == mlir::getAffineSymbolExpr(position, getContext());
}
if (auto expr = this->dyn_cast<AffineBinaryOpExpr>()) {
return expr.getLHS().isFunctionOfSymbol(position) ||
expr.getRHS().isFunctionOfSymbol(position);
}
return false;
}
AffineBinaryOpExpr::AffineBinaryOpExpr(AffineExpr::ImplType *ptr)
: AffineExpr(ptr) {}
AffineExpr AffineBinaryOpExpr::getLHS() const {
return static_cast<ImplType *>(expr)->lhs;
}
AffineExpr AffineBinaryOpExpr::getRHS() const {
return static_cast<ImplType *>(expr)->rhs;
}
AffineDimExpr::AffineDimExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {}
unsigned AffineDimExpr::getPosition() const {
return static_cast<ImplType *>(expr)->position;
}
/// Returns true if the expression is divisible by the given symbol with
/// position `symbolPos`. The argument `opKind` specifies here what kind of
/// division or mod operation called this division. It helps in implementing the
/// commutative property of the floordiv and ceildiv operations. If the argument
///`exprKind` is floordiv and `expr` is also a binary expression of a floordiv
/// operation, then the commutative property can be used otherwise, the floordiv
/// operation is not divisible. The same argument holds for ceildiv operation.
static bool isDivisibleBySymbol(AffineExpr expr, unsigned symbolPos,
AffineExprKind opKind) {
// The argument `opKind` can either be Modulo, Floordiv or Ceildiv only.
assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv ||
opKind == AffineExprKind::CeilDiv) &&
"unexpected opKind");
switch (expr.getKind()) {
case AffineExprKind::Constant:
return expr.cast<AffineConstantExpr>().getValue() == 0;
case AffineExprKind::DimId:
return false;
case AffineExprKind::SymbolId:
return (expr.cast<AffineSymbolExpr>().getPosition() == symbolPos);
// Checks divisibility by the given symbol for both operands.
case AffineExprKind::Add: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind) &&
isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos, opKind);
}
// Checks divisibility by the given symbol for both operands. Consider the
// expression `(((s1*s0) floordiv w) mod ((s1 * s2) floordiv p)) floordiv s1`,
// this is a division by s1 and both the operands of modulo are divisible by
// s1 but it is not divisible by s1 always. The third argument is
// `AffineExprKind::Mod` for this reason.
case AffineExprKind::Mod: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos,
AffineExprKind::Mod) &&
isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos,
AffineExprKind::Mod);
}
// Checks if any of the operand divisible by the given symbol.
case AffineExprKind::Mul: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind) ||
isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos, opKind);
}
// Floordiv and ceildiv are divisible by the given symbol when the first
// operand is divisible, and the affine expression kind of the argument expr
// is same as the argument `opKind`. This can be inferred from commutative
// property of floordiv and ceildiv operations and are as follow:
// (exp1 floordiv exp2) floordiv exp3 = (exp1 floordiv exp3) floordiv exp2
// (exp1 ceildiv exp2) ceildiv exp3 = (exp1 ceildiv exp3) ceildiv expr2
// It will fail if operations are not same. For example:
// (exps1 ceildiv exp2) floordiv exp3 can not be simplified.
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
if (opKind != expr.getKind())
return false;
return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, expr.getKind());
}
}
llvm_unreachable("Unknown AffineExpr");
}
/// Divides the given expression by the given symbol at position `symbolPos`. It
/// considers the divisibility condition is checked before calling itself. A
/// null expression is returned whenever the divisibility condition fails.
static AffineExpr symbolicDivide(AffineExpr expr, unsigned symbolPos,
AffineExprKind opKind) {
// THe argument `opKind` can either be Modulo, Floordiv or Ceildiv only.
assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv ||
opKind == AffineExprKind::CeilDiv) &&
"unexpected opKind");
switch (expr.getKind()) {
case AffineExprKind::Constant:
if (expr.cast<AffineConstantExpr>().getValue() != 0)
return nullptr;
return getAffineConstantExpr(0, expr.getContext());
case AffineExprKind::DimId:
return nullptr;
case AffineExprKind::SymbolId:
return getAffineConstantExpr(1, expr.getContext());
// Dividing both operands by the given symbol.
case AffineExprKind::Add: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
return getAffineBinaryOpExpr(
expr.getKind(), symbolicDivide(binaryExpr.getLHS(), symbolPos, opKind),
symbolicDivide(binaryExpr.getRHS(), symbolPos, opKind));
}
// Dividing both operands by the given symbol.
case AffineExprKind::Mod: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
return getAffineBinaryOpExpr(
expr.getKind(),
symbolicDivide(binaryExpr.getLHS(), symbolPos, expr.getKind()),
symbolicDivide(binaryExpr.getRHS(), symbolPos, expr.getKind()));
}
// Dividing any of the operand by the given symbol.
case AffineExprKind::Mul: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
if (!isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind))
return binaryExpr.getLHS() *
symbolicDivide(binaryExpr.getRHS(), symbolPos, opKind);
return symbolicDivide(binaryExpr.getLHS(), symbolPos, opKind) *
binaryExpr.getRHS();
}
// Dividing first operand only by the given symbol.
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
return getAffineBinaryOpExpr(
expr.getKind(),
symbolicDivide(binaryExpr.getLHS(), symbolPos, expr.getKind()),
binaryExpr.getRHS());
}
}
llvm_unreachable("Unknown AffineExpr");
}
/// Simplify a semi-affine expression by handling modulo, floordiv, or ceildiv
/// operations when the second operand simplifies to a symbol and the first
/// operand is divisible by that symbol. It can be applied to any semi-affine
/// expression. Returned expression can either be a semi-affine or pure affine
/// expression.
static AffineExpr simplifySemiAffine(AffineExpr expr) {
switch (expr.getKind()) {
case AffineExprKind::Constant:
case AffineExprKind::DimId:
case AffineExprKind::SymbolId:
return expr;
case AffineExprKind::Add:
case AffineExprKind::Mul: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
return getAffineBinaryOpExpr(expr.getKind(),
simplifySemiAffine(binaryExpr.getLHS()),
simplifySemiAffine(binaryExpr.getRHS()));
}
// Check if the simplification of the second operand is a symbol, and the
// first operand is divisible by it. If the operation is a modulo, a constant
// zero expression is returned. In the case of floordiv and ceildiv, the
// symbol from the simplification of the second operand divides the first
// operand. Otherwise, simplification is not possible.
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv:
case AffineExprKind::Mod: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
AffineExpr sLHS = simplifySemiAffine(binaryExpr.getLHS());
AffineExpr sRHS = simplifySemiAffine(binaryExpr.getRHS());
AffineSymbolExpr symbolExpr =
simplifySemiAffine(binaryExpr.getRHS()).dyn_cast<AffineSymbolExpr>();
if (!symbolExpr)
return getAffineBinaryOpExpr(expr.getKind(), sLHS, sRHS);
unsigned symbolPos = symbolExpr.getPosition();
if (!isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, expr.getKind()))
return getAffineBinaryOpExpr(expr.getKind(), sLHS, sRHS);
if (expr.getKind() == AffineExprKind::Mod)
return getAffineConstantExpr(0, expr.getContext());
return symbolicDivide(sLHS, symbolPos, expr.getKind());
}
}
llvm_unreachable("Unknown AffineExpr");
}
static AffineExpr getAffineDimOrSymbol(AffineExprKind kind, unsigned position,
MLIRContext *context) {
auto assignCtx = [context](AffineDimExprStorage *storage) {
storage->context = context;
};
StorageUniquer &uniquer = context->getAffineUniquer();
return uniquer.get<AffineDimExprStorage>(
assignCtx, static_cast<unsigned>(kind), position);
}
AffineExpr mlir::getAffineDimExpr(unsigned position, MLIRContext *context) {
return getAffineDimOrSymbol(AffineExprKind::DimId, position, context);
}
AffineSymbolExpr::AffineSymbolExpr(AffineExpr::ImplType *ptr)
: AffineExpr(ptr) {}
unsigned AffineSymbolExpr::getPosition() const {
return static_cast<ImplType *>(expr)->position;
}
AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) {
return getAffineDimOrSymbol(AffineExprKind::SymbolId, position, context);
;
}
AffineConstantExpr::AffineConstantExpr(AffineExpr::ImplType *ptr)
: AffineExpr(ptr) {}
int64_t AffineConstantExpr::getValue() const {
return static_cast<ImplType *>(expr)->constant;
}
bool AffineExpr::operator==(int64_t v) const {
return *this == getAffineConstantExpr(v, getContext());
}
AffineExpr mlir::getAffineConstantExpr(int64_t constant, MLIRContext *context) {
auto assignCtx = [context](AffineConstantExprStorage *storage) {
storage->context = context;
};
StorageUniquer &uniquer = context->getAffineUniquer();
return uniquer.get<AffineConstantExprStorage>(assignCtx, constant);
}
/// Simplify add expression. Return nullptr if it can't be simplified.
static AffineExpr simplifyAdd(AffineExpr lhs, AffineExpr rhs) {
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
// Fold if both LHS, RHS are a constant.
if (lhsConst && rhsConst)
return getAffineConstantExpr(lhsConst.getValue() + rhsConst.getValue(),
lhs.getContext());
// Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4).
// If only one of them is a symbolic expressions, make it the RHS.
if (lhs.isa<AffineConstantExpr>() ||
(lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())) {
return rhs + lhs;
}
// At this point, if there was a constant, it would be on the right.
// Addition with a zero is a noop, return the other input.
if (rhsConst) {
if (rhsConst.getValue() == 0)
return lhs;
}
// Fold successive additions like (d0 + 2) + 3 into d0 + 5.
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Add) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
return lBin.getLHS() + (lrhs.getValue() + rhsConst.getValue());
}
// Detect "c1 * expr + c_2 * expr" as "(c1 + c2) * expr".
// c1 is rRhsConst, c2 is rLhsConst; firstExpr, secondExpr are their
// respective multiplicands.
Optional<int64_t> rLhsConst, rRhsConst;
AffineExpr firstExpr, secondExpr;
AffineConstantExpr rLhsConstExpr;
auto lBinOpExpr = lhs.dyn_cast<AffineBinaryOpExpr>();
if (lBinOpExpr && lBinOpExpr.getKind() == AffineExprKind::Mul &&
(rLhsConstExpr = lBinOpExpr.getRHS().dyn_cast<AffineConstantExpr>())) {
rLhsConst = rLhsConstExpr.getValue();
firstExpr = lBinOpExpr.getLHS();
} else {
rLhsConst = 1;
firstExpr = lhs;
}
auto rBinOpExpr = rhs.dyn_cast<AffineBinaryOpExpr>();
AffineConstantExpr rRhsConstExpr;
if (rBinOpExpr && rBinOpExpr.getKind() == AffineExprKind::Mul &&
(rRhsConstExpr = rBinOpExpr.getRHS().dyn_cast<AffineConstantExpr>())) {
rRhsConst = rRhsConstExpr.getValue();
secondExpr = rBinOpExpr.getLHS();
} else {
rRhsConst = 1;
secondExpr = rhs;
}
if (rLhsConst && rRhsConst && firstExpr == secondExpr)
return getAffineBinaryOpExpr(
AffineExprKind::Mul, firstExpr,
getAffineConstantExpr(rLhsConst.getValue() + rRhsConst.getValue(),
lhs.getContext()));
// When doing successive additions, bring constant to the right: turn (d0 + 2)
// + d1 into (d0 + d1) + 2.
if (lBin && lBin.getKind() == AffineExprKind::Add) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
return lBin.getLHS() + rhs + lrhs;
}
}
// Detect and transform "expr - q * (expr floordiv q)" to "expr mod q", where
// q may be a constant or symbolic expression. This leads to a much more
// efficient form when 'c' is a power of two, and in general a more compact
// and readable form.
// Process '(expr floordiv c) * (-c)'.
if (!rBinOpExpr)
return nullptr;
auto lrhs = rBinOpExpr.getLHS();
auto rrhs = rBinOpExpr.getRHS();
AffineExpr llrhs, rlrhs;
// Check if lrhsBinOpExpr is of the form (expr floordiv q) * q, where q is a
// symbolic expression.
auto lrhsBinOpExpr = lrhs.dyn_cast<AffineBinaryOpExpr>();
// Check rrhsConstOpExpr = -1.
auto rrhsConstOpExpr = rrhs.dyn_cast<AffineConstantExpr>();
if (rrhsConstOpExpr && rrhsConstOpExpr.getValue() == -1 && lrhsBinOpExpr &&
lrhsBinOpExpr.getKind() == AffineExprKind::Mul) {
// Check llrhs = expr floordiv q.
llrhs = lrhsBinOpExpr.getLHS();
// Check rlrhs = q.
rlrhs = lrhsBinOpExpr.getRHS();
auto llrhsBinOpExpr = llrhs.dyn_cast<AffineBinaryOpExpr>();
if (!llrhsBinOpExpr || llrhsBinOpExpr.getKind() != AffineExprKind::FloorDiv)
return nullptr;
if (llrhsBinOpExpr.getRHS() == rlrhs && lhs == llrhsBinOpExpr.getLHS())
return lhs % rlrhs;
}
// Process lrhs, which is 'expr floordiv c'.
AffineBinaryOpExpr lrBinOpExpr = lrhs.dyn_cast<AffineBinaryOpExpr>();
if (!lrBinOpExpr || lrBinOpExpr.getKind() != AffineExprKind::FloorDiv)
return nullptr;
llrhs = lrBinOpExpr.getLHS();
rlrhs = lrBinOpExpr.getRHS();
if (lhs == llrhs && rlrhs == -rrhs) {
return lhs % rlrhs;
}
return nullptr;
}
AffineExpr AffineExpr::operator+(int64_t v) const {
return *this + getAffineConstantExpr(v, getContext());
}
AffineExpr AffineExpr::operator+(AffineExpr other) const {
if (auto simplified = simplifyAdd(*this, other))
return simplified;
StorageUniquer &uniquer = getContext()->getAffineUniquer();
return uniquer.get<AffineBinaryOpExprStorage>(
/*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Add), *this, other);
}
/// Simplify a multiply expression. Return nullptr if it can't be simplified.
static AffineExpr simplifyMul(AffineExpr lhs, AffineExpr rhs) {
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
if (lhsConst && rhsConst)
return getAffineConstantExpr(lhsConst.getValue() * rhsConst.getValue(),
lhs.getContext());
assert(lhs.isSymbolicOrConstant() || rhs.isSymbolicOrConstant());
// Canonicalize the mul expression so that the constant/symbolic term is the
// RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a
// constant. (Note that a constant is trivially symbolic).
if (!rhs.isSymbolicOrConstant() || lhs.isa<AffineConstantExpr>()) {
// At least one of them has to be symbolic.
return rhs * lhs;
}
// At this point, if there was a constant, it would be on the right.
// Multiplication with a one is a noop, return the other input.
if (rhsConst) {
if (rhsConst.getValue() == 1)
return lhs;
// Multiplication with zero.
if (rhsConst.getValue() == 0)
return rhsConst;
}
// Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6.
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Mul) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
return lBin.getLHS() * (lrhs.getValue() * rhsConst.getValue());
}
// When doing successive multiplication, bring constant to the right: turn (d0
// * 2) * d1 into (d0 * d1) * 2.
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
return (lBin.getLHS() * rhs) * lrhs;
}
}
return nullptr;
}
AffineExpr AffineExpr::operator*(int64_t v) const {
return *this * getAffineConstantExpr(v, getContext());
}
AffineExpr AffineExpr::operator*(AffineExpr other) const {
if (auto simplified = simplifyMul(*this, other))
return simplified;
StorageUniquer &uniquer = getContext()->getAffineUniquer();
return uniquer.get<AffineBinaryOpExprStorage>(
/*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Mul), *this, other);
}
// Unary minus, delegate to operator*.
AffineExpr AffineExpr::operator-() const {
return *this * getAffineConstantExpr(-1, getContext());
}
// Delegate to operator+.
AffineExpr AffineExpr::operator-(int64_t v) const { return *this + (-v); }
AffineExpr AffineExpr::operator-(AffineExpr other) const {
return *this + (-other);
}
static AffineExpr simplifyFloorDiv(AffineExpr lhs, AffineExpr rhs) {
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
// mlir floordiv by zero or negative numbers is undefined and preserved as is.
if (!rhsConst || rhsConst.getValue() < 1)
return nullptr;
if (lhsConst)
return getAffineConstantExpr(
floorDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());
// Fold floordiv of a multiply with a constant that is a multiple of the
// divisor. Eg: (i * 128) floordiv 64 = i * 2.
if (rhsConst == 1)
return lhs;
// Simplify (expr * const) floordiv divConst when expr is known to be a
// multiple of divConst.
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
// rhsConst is known to be a positive constant.
if (lrhs.getValue() % rhsConst.getValue() == 0)
return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
}
}
// Simplify (expr1 + expr2) floordiv divConst when either expr1 or expr2 is
// known to be a multiple of divConst.
if (lBin && lBin.getKind() == AffineExprKind::Add) {
int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor();
int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor();
// rhsConst is known to be a positive constant.
if (llhsDiv % rhsConst.getValue() == 0 ||
lrhsDiv % rhsConst.getValue() == 0)
return lBin.getLHS().floorDiv(rhsConst.getValue()) +
lBin.getRHS().floorDiv(rhsConst.getValue());
}
return nullptr;
}
AffineExpr AffineExpr::floorDiv(uint64_t v) const {
return floorDiv(getAffineConstantExpr(v, getContext()));
}
AffineExpr AffineExpr::floorDiv(AffineExpr other) const {
if (auto simplified = simplifyFloorDiv(*this, other))
return simplified;
StorageUniquer &uniquer = getContext()->getAffineUniquer();
return uniquer.get<AffineBinaryOpExprStorage>(
/*initFn=*/{}, static_cast<unsigned>(AffineExprKind::FloorDiv), *this,
other);
}
static AffineExpr simplifyCeilDiv(AffineExpr lhs, AffineExpr rhs) {
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
if (!rhsConst || rhsConst.getValue() < 1)
return nullptr;
if (lhsConst)
return getAffineConstantExpr(
ceilDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());
// Fold ceildiv of a multiply with a constant that is a multiple of the
// divisor. Eg: (i * 128) ceildiv 64 = i * 2.
if (rhsConst.getValue() == 1)
return lhs;
// Simplify (expr * const) ceildiv divConst when const is known to be a
// multiple of divConst.
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
// rhsConst is known to be a positive constant.
if (lrhs.getValue() % rhsConst.getValue() == 0)
return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
}
}
return nullptr;
}
AffineExpr AffineExpr::ceilDiv(uint64_t v) const {
return ceilDiv(getAffineConstantExpr(v, getContext()));
}
AffineExpr AffineExpr::ceilDiv(AffineExpr other) const {
if (auto simplified = simplifyCeilDiv(*this, other))
return simplified;
StorageUniquer &uniquer = getContext()->getAffineUniquer();
return uniquer.get<AffineBinaryOpExprStorage>(
/*initFn=*/{}, static_cast<unsigned>(AffineExprKind::CeilDiv), *this,
other);
}
static AffineExpr simplifyMod(AffineExpr lhs, AffineExpr rhs) {
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
// mod w.r.t zero or negative numbers is undefined and preserved as is.
if (!rhsConst || rhsConst.getValue() < 1)
return nullptr;
if (lhsConst)
return getAffineConstantExpr(mod(lhsConst.getValue(), rhsConst.getValue()),
lhs.getContext());
// Fold modulo of an expression that is known to be a multiple of a constant
// to zero if that constant is a multiple of the modulo factor. Eg: (i * 128)
// mod 64 is folded to 0, and less trivially, (i*(j*4*(k*32))) mod 128 = 0.
if (lhs.getLargestKnownDivisor() % rhsConst.getValue() == 0)
return getAffineConstantExpr(0, lhs.getContext());
// Simplify (expr1 + expr2) mod divConst when either expr1 or expr2 is
// known to be a multiple of divConst.
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
if (lBin && lBin.getKind() == AffineExprKind::Add) {
int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor();
int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor();
// rhsConst is known to be a positive constant.
if (llhsDiv % rhsConst.getValue() == 0)
return lBin.getRHS() % rhsConst.getValue();
if (lrhsDiv % rhsConst.getValue() == 0)
return lBin.getLHS() % rhsConst.getValue();
}
// Simplify (e % a) % b to e % b when b evenly divides a
if (lBin && lBin.getKind() == AffineExprKind::Mod) {
auto intermediate = lBin.getRHS().dyn_cast<AffineConstantExpr>();
if (intermediate && intermediate.getValue() >= 1 &&
mod(intermediate.getValue(), rhsConst.getValue()) == 0) {
return lBin.getLHS() % rhsConst.getValue();
}
}
return nullptr;
}
AffineExpr AffineExpr::operator%(uint64_t v) const {
return *this % getAffineConstantExpr(v, getContext());
}
AffineExpr AffineExpr::operator%(AffineExpr other) const {
if (auto simplified = simplifyMod(*this, other))
return simplified;
StorageUniquer &uniquer = getContext()->getAffineUniquer();
return uniquer.get<AffineBinaryOpExprStorage>(
/*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Mod), *this, other);
}
AffineExpr AffineExpr::compose(AffineMap map) const {
SmallVector<AffineExpr, 8> dimReplacements(map.getResults().begin(),
map.getResults().end());
return replaceDimsAndSymbols(dimReplacements, {});
}
raw_ostream &mlir::operator<<(raw_ostream &os, AffineExpr expr) {
expr.print(os);
return os;
}
/// Constructs an affine expression from a flat ArrayRef. If there are local
/// identifiers (neither dimensional nor symbolic) that appear in the sum of
/// products expression, `localExprs` is expected to have the AffineExpr
/// for it, and is substituted into. The ArrayRef `flatExprs` is expected to be
/// in the format [dims, symbols, locals, constant term].
AffineExpr mlir::getAffineExprFromFlatForm(ArrayRef<int64_t> flatExprs,
unsigned numDims,
unsigned numSymbols,
ArrayRef<AffineExpr> localExprs,
MLIRContext *context) {
// Assert expected numLocals = flatExprs.size() - numDims - numSymbols - 1.
assert(flatExprs.size() - numDims - numSymbols - 1 == localExprs.size() &&
"unexpected number of local expressions");
auto expr = getAffineConstantExpr(0, context);
// Dimensions and symbols.
for (unsigned j = 0; j < numDims + numSymbols; j++) {
if (flatExprs[j] == 0)
continue;
auto id = j < numDims ? getAffineDimExpr(j, context)
: getAffineSymbolExpr(j - numDims, context);
expr = expr + id * flatExprs[j];
}
// Local identifiers.
for (unsigned j = numDims + numSymbols, e = flatExprs.size() - 1; j < e;
j++) {
if (flatExprs[j] == 0)
continue;
auto term = localExprs[j - numDims - numSymbols] * flatExprs[j];
expr = expr + term;
}
// Constant term.
int64_t constTerm = flatExprs[flatExprs.size() - 1];
if (constTerm != 0)
expr = expr + constTerm;
return expr;
}
/// Constructs a semi-affine expression from a flat ArrayRef. If there are
/// local identifiers (neither dimensional nor symbolic) that appear in the sum
/// of products expression, `localExprs` is expected to have the AffineExprs for
/// it, and is substituted into. The ArrayRef `flatExprs` is expected to be in
/// the format [dims, symbols, locals, constant term]. The semi-affine
/// expression is constructed in the sorted order of dimension and symbol
/// position numbers. Note: local expressions/ids are used for mod, div as well
/// as symbolic RHS terms for terms that are not pure affine.
static AffineExpr getSemiAffineExprFromFlatForm(ArrayRef<int64_t> flatExprs,
unsigned numDims,
unsigned numSymbols,
ArrayRef<AffineExpr> localExprs,
MLIRContext *context) {
assert(!flatExprs.empty() && "flatExprs cannot be empty");
// Assert expected numLocals = flatExprs.size() - numDims - numSymbols - 1.
assert(flatExprs.size() - numDims - numSymbols - 1 == localExprs.size() &&
"unexpected number of local expressions");
AffineExpr expr = getAffineConstantExpr(0, context);
// We design indices as a pair which help us present the semi-affine map as
// sum of product where terms are sorted based on dimension or symbol
// position: <keyA, keyB> for expressions of the form dimension * symbol,
// where keyA is the position number of the dimension and keyB is the
// position number of the symbol. For dimensional expressions we set the index
// as (position number of the dimension, -1), as we want dimensional
// expressions to appear before symbolic and product of dimensional and
// symbolic expressions having the dimension with the same position number.
// For symbolic expression set the index as (position number of the symbol,
// maximum of last dimension and symbol position) number. For example, we want
// the expression we are constructing to look something like: d0 + d0 * s0 +
// s0 + d1*s1 + s1.
// Stores the affine expression corresponding to a given index.
DenseMap<std::pair<unsigned, signed>, AffineExpr> indexToExprMap;
// Stores the constant coefficient value corresponding to a given
// dimension, symbol or a non-pure affine expression stored in `localExprs`.
DenseMap<std::pair<unsigned, signed>, int64_t> coefficients;
// Stores the indices as defined above, and later sorted to produce
// the semi-affine expression in the desired form.
SmallVector<std::pair<unsigned, signed>, 8> indices;
// Example: expression = d0 + d0 * s0 + 2 * s0.
// indices = [{0,-1}, {0, 0}, {0, 1}]
// coefficients = [{{0, -1}, 1}, {{0, 0}, 1}, {{0, 1}, 2}]
// indexToExprMap = [{{0, -1}, d0}, {{0, 0}, d0 * s0}, {{0, 1}, s0}]
// Adds entries to `indexToExprMap`, `coefficients` and `indices`.
auto addEntry = [&](std::pair<unsigned, signed> index, int64_t coefficient,
AffineExpr expr) {
assert(std::find(indices.begin(), indices.end(), index) == indices.end() &&
"Key is already present in indices vector and overwriting will "
"happen in `indexToExprMap` and `coefficients`!");
indices.push_back(index);
coefficients.insert({index, coefficient});
indexToExprMap.insert({index, expr});
};
// Design indices for dimensional or symbolic terms, and store the indices,
// constant coefficient corresponding to the indices in `coefficients` map,
// and affine expression corresponding to indices in `indexToExprMap` map.
for (unsigned j = 0; j < numDims; ++j) {
if (flatExprs[j] == 0)
continue;
// For dimensional expressions we set the index as <position number of the
// dimension, 0>, as we want dimensional expressions to appear before
// symbolic ones and products of dimensional and symbolic expressions
// having the dimension with the same position number.
std::pair<unsigned, signed> indexEntry(j, -1);
addEntry(indexEntry, flatExprs[j], getAffineDimExpr(j, context));
}
for (unsigned j = numDims; j < numDims + numSymbols; ++j) {
if (flatExprs[j] == 0)
continue;
// For symbolic expression set the index as <position number
// of the symbol, max(dimCount, symCount)> number,
// as we want symbolic expressions with the same positional number to
// appear after dimensional expressions having the same positional number.
std::pair<unsigned, signed> indexEntry(j - numDims,
std::max(numDims, numSymbols));
addEntry(indexEntry, flatExprs[j],
getAffineSymbolExpr(j - numDims, context));
}
// Denotes semi-affine product, modulo or division terms, which has been added
// to the `indexToExpr` map.
SmallVector<bool, 4> addedToMap(flatExprs.size() - numDims - numSymbols - 1,
false);
unsigned lhsPos, rhsPos;
// Construct indices for product terms involving dimension, symbol or constant
// as lhs/rhs, and store the indices, constant coefficient corresponding to
// the indices in `coefficients` map, and affine expression corresponding to
// in indices in `indexToExprMap` map.
for (const auto &it : llvm::enumerate(localExprs)) {
AffineExpr expr = it.value();
if (flatExprs[numDims + numSymbols + it.index()] == 0)
continue;
AffineExpr lhs = expr.cast<AffineBinaryOpExpr>().getLHS();
AffineExpr rhs = expr.cast<AffineBinaryOpExpr>().getRHS();
if (!((lhs.isa<AffineDimExpr>() || lhs.isa<AffineSymbolExpr>()) &&
(rhs.isa<AffineDimExpr>() || rhs.isa<AffineSymbolExpr>() ||
rhs.isa<AffineConstantExpr>()))) {
continue;
}
if (rhs.isa<AffineConstantExpr>()) {
// For product/modulo/division expressions, when rhs of modulo/division
// expression is constant, we put 0 in place of keyB, because we want
// them to appear earlier in the semi-affine expression we are
// constructing. When rhs is constant, we place 0 in place of keyB.
if (lhs.isa<AffineDimExpr>()) {
lhsPos = lhs.cast<AffineDimExpr>().getPosition();
std::pair<unsigned, signed> indexEntry(lhsPos, -1);
addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()],
expr);
} else {
lhsPos = lhs.cast<AffineSymbolExpr>().getPosition();
std::pair<unsigned, signed> indexEntry(lhsPos,
std::max(numDims, numSymbols));
addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()],
expr);
}
} else if (lhs.isa<AffineDimExpr>()) {
// For product/modulo/division expressions having lhs as dimension and rhs
// as symbol, we order the terms in the semi-affine expression based on
// the pair: <keyA, keyB> for expressions of the form dimension * symbol,
// where keyA is the position number of the dimension and keyB is the
// position number of the symbol.
lhsPos = lhs.cast<AffineDimExpr>().getPosition();
rhsPos = rhs.cast<AffineSymbolExpr>().getPosition();
std::pair<unsigned, signed> indexEntry(lhsPos, rhsPos);
addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], expr);
} else {
// For product/modulo/division expressions having both lhs and rhs as
// symbol, we design indices as a pair: <keyA, keyB> for expressions
// of the form dimension * symbol, where keyA is the position number of
// the dimension and keyB is the position number of the symbol.
lhsPos = lhs.cast<AffineSymbolExpr>().getPosition();
rhsPos = rhs.cast<AffineSymbolExpr>().getPosition();
std::pair<unsigned, signed> indexEntry(lhsPos, rhsPos);
addEntry(indexEntry, flatExprs[numDims + numSymbols + it.index()], expr);
}
addedToMap[it.index()] = true;
}
// Constructing the simplified semi-affine sum of product/division/mod
// expression from the flattened form in the desired sorted order of indices
// of the various individual product/division/mod expressions.
std::sort(indices.begin(), indices.end());
for (const std::pair<unsigned, unsigned> index : indices) {
assert(indexToExprMap.lookup(index) &&
"cannot find key in `indexToExprMap` map");
expr = expr + indexToExprMap.lookup(index) * coefficients.lookup(index);
}
// Local identifiers.
for (unsigned j = numDims + numSymbols, e = flatExprs.size() - 1; j < e;
j++) {
// If the coefficient of the local expression is 0, continue as we need not
// add it in out final expression.
if (flatExprs[j] == 0 || addedToMap[j - numDims - numSymbols])
continue;
auto term = localExprs[j - numDims - numSymbols] * flatExprs[j];
expr = expr + term;
}
// Constant term.
int64_t constTerm = flatExprs.back();
if (constTerm != 0)
expr = expr + constTerm;
return expr;
}
SimpleAffineExprFlattener::SimpleAffineExprFlattener(unsigned numDims,
unsigned numSymbols)
: numDims(numDims), numSymbols(numSymbols), numLocals(0) {
operandExprStack.reserve(8);
}
// In pure affine t = expr * c, we multiply each coefficient of lhs with c.
//
// In case of semi affine multiplication expressions, t = expr * symbolic_expr,
// introduce a local variable p (= expr * symbolic_expr), and the affine
// expression expr * symbolic_expr is added to `localExprs`.
void SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) {
assert(operandExprStack.size() >= 2);
SmallVector<int64_t, 8> rhs = operandExprStack.back();
operandExprStack.pop_back();
SmallVector<int64_t, 8> &lhs = operandExprStack.back();
// Flatten semi-affine multiplication expressions by introducing a local
// variable in place of the product; the affine expression
// corresponding to the quantifier is added to `localExprs`.
if (!expr.getRHS().isa<AffineConstantExpr>()) {
MLIRContext *context = expr.getContext();
AffineExpr a = getAffineExprFromFlatForm(lhs, numDims, numSymbols,
localExprs, context);
AffineExpr b = getAffineExprFromFlatForm(rhs, numDims, numSymbols,
localExprs, context);
addLocalVariableSemiAffine(a * b, lhs, lhs.size());
return;
}
// Get the RHS constant.
auto rhsConst = rhs[getConstantIndex()];
for (unsigned i = 0, e = lhs.size(); i < e; i++) {
lhs[i] *= rhsConst;
}
}
void SimpleAffineExprFlattener::visitAddExpr(AffineBinaryOpExpr expr) {
assert(operandExprStack.size() >= 2);
const auto &rhs = operandExprStack.back();
auto &lhs = operandExprStack[operandExprStack.size() - 2];
assert(lhs.size() == rhs.size());
// Update the LHS in place.
for (unsigned i = 0, e = rhs.size(); i < e; i++) {
lhs[i] += rhs[i];
}
// Pop off the RHS.
operandExprStack.pop_back();
}
//
// t = expr mod c <=> t = expr - c*q and c*q <= expr <= c*q + c - 1
//
// A mod expression "expr mod c" is thus flattened by introducing a new local
// variable q (= expr floordiv c), such that expr mod c is replaced with
// 'expr - c * q' and c * q <= expr <= c * q + c - 1 are added to localVarCst.
//
// In case of semi-affine modulo expressions, t = expr mod symbolic_expr,
// introduce a local variable m (= expr mod symbolic_expr), and the affine
// expression expr mod symbolic_expr is added to `localExprs`.
void SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) {
assert(operandExprStack.size() >= 2);
SmallVector<int64_t, 8> rhs = operandExprStack.back();
operandExprStack.pop_back();
SmallVector<int64_t, 8> &lhs = operandExprStack.back();
MLIRContext *context = expr.getContext();
// Flatten semi affine modulo expressions by introducing a local
// variable in place of the modulo value, and the affine expression
// corresponding to the quantifier is added to `localExprs`.
if (!expr.getRHS().isa<AffineConstantExpr>()) {
AffineExpr dividendExpr = getAffineExprFromFlatForm(
lhs, numDims, numSymbols, localExprs, context);
AffineExpr divisorExpr = getAffineExprFromFlatForm(rhs, numDims, numSymbols,
localExprs, context);
AffineExpr modExpr = dividendExpr % divisorExpr;
addLocalVariableSemiAffine(modExpr, lhs, lhs.size());
return;
}
int64_t rhsConst = rhs[getConstantIndex()];
// TODO: handle modulo by zero case when this issue is fixed
// at the other places in the IR.
assert(rhsConst > 0 && "RHS constant has to be positive");
// Check if the LHS expression is a multiple of modulo factor.
unsigned i, e;
for (i = 0, e = lhs.size(); i < e; i++)
if (lhs[i] % rhsConst != 0)
break;
// If yes, modulo expression here simplifies to zero.
if (i == lhs.size()) {
std::fill(lhs.begin(), lhs.end(), 0);
return;
}
// Add a local variable for the quotient, i.e., expr % c is replaced by
// (expr - q * c) where q = expr floordiv c. Do this while canceling out
// the GCD of expr and c.
SmallVector<int64_t, 8> floorDividend(lhs);
uint64_t gcd = rhsConst;
for (unsigned i = 0, e = lhs.size(); i < e; i++)
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i]));
// Simplify the numerator and the denominator.
if (gcd != 1) {
for (unsigned i = 0, e = floorDividend.size(); i < e; i++)
floorDividend[i] = floorDividend[i] / static_cast<int64_t>(gcd);
}
int64_t floorDivisor = rhsConst / static_cast<int64_t>(gcd);
// Construct the AffineExpr form of the floordiv to store in localExprs.
AffineExpr dividendExpr = getAffineExprFromFlatForm(
floorDividend, numDims, numSymbols, localExprs, context);
AffineExpr divisorExpr = getAffineConstantExpr(floorDivisor, context);
AffineExpr floorDivExpr = dividendExpr.floorDiv(divisorExpr);
int loc;
if ((loc = findLocalId(floorDivExpr)) == -1) {
addLocalFloorDivId(floorDividend, floorDivisor, floorDivExpr);
// Set result at top of stack to "lhs - rhsConst * q".
lhs[getLocalVarStartIndex() + numLocals - 1] = -rhsConst;
} else {
// Reuse the existing local id.
lhs[getLocalVarStartIndex() + loc] = -rhsConst;
}
}
void SimpleAffineExprFlattener::visitCeilDivExpr(AffineBinaryOpExpr expr) {
visitDivExpr(expr, /*isCeil=*/true);
}
void SimpleAffineExprFlattener::visitFloorDivExpr(AffineBinaryOpExpr expr) {
visitDivExpr(expr, /*isCeil=*/false);
}
void SimpleAffineExprFlattener::visitDimExpr(AffineDimExpr expr) {
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
auto &eq = operandExprStack.back();
assert(expr.getPosition() < numDims && "Inconsistent number of dims");
eq[getDimStartIndex() + expr.getPosition()] = 1;
}
void SimpleAffineExprFlattener::visitSymbolExpr(AffineSymbolExpr expr) {
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
auto &eq = operandExprStack.back();
assert(expr.getPosition() < numSymbols && "inconsistent number of symbols");
eq[getSymbolStartIndex() + expr.getPosition()] = 1;
}
void SimpleAffineExprFlattener::visitConstantExpr(AffineConstantExpr expr) {
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
auto &eq = operandExprStack.back();
eq[getConstantIndex()] = expr.getValue();
}
void SimpleAffineExprFlattener::addLocalVariableSemiAffine(
AffineExpr expr, SmallVectorImpl<int64_t> &result,
unsigned long resultSize) {
assert(result.size() == resultSize &&
"`result` vector passed is not of correct size");
int loc;
if ((loc = findLocalId(expr)) == -1)
addLocalIdSemiAffine(expr);
std::fill(result.begin(), result.end(), 0);
if (loc == -1)
result[getLocalVarStartIndex() + numLocals - 1] = 1;
else
result[getLocalVarStartIndex() + loc] = 1;
}
// t = expr floordiv c <=> t = q, c * q <= expr <= c * q + c - 1
// A floordiv is thus flattened by introducing a new local variable q, and
// replacing that expression with 'q' while adding the constraints
// c * q <= expr <= c * q + c - 1 to localVarCst (done by
// FlatAffineConstraints::addLocalFloorDiv).
//
// A ceildiv is similarly flattened:
// t = expr ceildiv c <=> t = (expr + c - 1) floordiv c
//
// In case of semi affine division expressions, t = expr floordiv symbolic_expr
// or t = expr ceildiv symbolic_expr, introduce a local variable q (= expr
// floordiv/ceildiv symbolic_expr), and the affine floordiv/ceildiv is added to
// `localExprs`.
void SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr,
bool isCeil) {
assert(operandExprStack.size() >= 2);
MLIRContext *context = expr.getContext();
SmallVector<int64_t, 8> rhs = operandExprStack.back();
operandExprStack.pop_back();
SmallVector<int64_t, 8> &lhs = operandExprStack.back();
// Flatten semi affine division expressions by introducing a local
// variable in place of the quotient, and the affine expression corresponding
// to the quantifier is added to `localExprs`.
if (!expr.getRHS().isa<AffineConstantExpr>()) {
AffineExpr a = getAffineExprFromFlatForm(lhs, numDims, numSymbols,
localExprs, context);
AffineExpr b = getAffineExprFromFlatForm(rhs, numDims, numSymbols,
localExprs, context);
AffineExpr divExpr = isCeil ? a.ceilDiv(b) : a.floorDiv(b);
addLocalVariableSemiAffine(divExpr, lhs, lhs.size());
return;
}
// This is a pure affine expr; the RHS is a positive constant.
int64_t rhsConst = rhs[getConstantIndex()];
// TODO: handle division by zero at the same time the issue is
// fixed at other places.
assert(rhsConst > 0 && "RHS constant has to be positive");
// Simplify the floordiv, ceildiv if possible by canceling out the greatest
// common divisors of the numerator and denominator.
uint64_t gcd = std::abs(rhsConst);
for (unsigned i = 0, e = lhs.size(); i < e; i++)
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i]));
// Simplify the numerator and the denominator.
if (gcd != 1) {
for (unsigned i = 0, e = lhs.size(); i < e; i++)
lhs[i] = lhs[i] / static_cast<int64_t>(gcd);
}
int64_t divisor = rhsConst / static_cast<int64_t>(gcd);
// If the divisor becomes 1, the updated LHS is the result. (The
// divisor can't be negative since rhsConst is positive).
if (divisor == 1)
return;
// If the divisor cannot be simplified to one, we will have to retain
// the ceil/floor expr (simplified up until here). Add an existential
// quantifier to express its result, i.e., expr1 div expr2 is replaced
// by a new identifier, q.
AffineExpr a =
getAffineExprFromFlatForm(lhs, numDims, numSymbols, localExprs, context);
AffineExpr b = getAffineConstantExpr(divisor, context);
int loc;
AffineExpr divExpr = isCeil ? a.ceilDiv(b) : a.floorDiv(b);
if ((loc = findLocalId(divExpr)) == -1) {
if (!isCeil) {
SmallVector<int64_t, 8> dividend(lhs);
addLocalFloorDivId(dividend, divisor, divExpr);
} else {
// lhs ceildiv c <=> (lhs + c - 1) floordiv c
SmallVector<int64_t, 8> dividend(lhs);
dividend.back() += divisor - 1;
addLocalFloorDivId(dividend, divisor, divExpr);
}
}
// Set the expression on stack to the local var introduced to capture the
// result of the division (floor or ceil).
std::fill(lhs.begin(), lhs.end(), 0);
if (loc == -1)
lhs[getLocalVarStartIndex() + numLocals - 1] = 1;
else
lhs[getLocalVarStartIndex() + loc] = 1;
}
// Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr).
// The local identifier added is always a floordiv of a pure add/mul affine
// function of other identifiers, coefficients of which are specified in
// dividend and with respect to a positive constant divisor. localExpr is the
// simplified tree expression (AffineExpr) corresponding to the quantifier.
void SimpleAffineExprFlattener::addLocalFloorDivId(ArrayRef<int64_t> dividend,
int64_t divisor,
AffineExpr localExpr) {
assert(divisor > 0 && "positive constant divisor expected");
for (SmallVector<int64_t, 8> &subExpr : operandExprStack)
subExpr.insert(subExpr.begin() + getLocalVarStartIndex() + numLocals, 0);
localExprs.push_back(localExpr);
numLocals++;
// dividend and divisor are not used here; an override of this method uses it.
}
void SimpleAffineExprFlattener::addLocalIdSemiAffine(AffineExpr localExpr) {
for (SmallVector<int64_t, 8> &subExpr : operandExprStack)
subExpr.insert(subExpr.begin() + getLocalVarStartIndex() + numLocals, 0);
localExprs.push_back(localExpr);
++numLocals;
}
int SimpleAffineExprFlattener::findLocalId(AffineExpr localExpr) {
SmallVectorImpl<AffineExpr>::iterator it;
if ((it = llvm::find(localExprs, localExpr)) == localExprs.end())
return -1;
return it - localExprs.begin();
}
/// Simplify the affine expression by flattening it and reconstructing it.
AffineExpr mlir::simplifyAffineExpr(AffineExpr expr, unsigned numDims,
unsigned numSymbols) {
// Simplify semi-affine expressions separately.
if (!expr.isPureAffine())
expr = simplifySemiAffine(expr);
SimpleAffineExprFlattener flattener(numDims, numSymbols);
flattener.walkPostOrder(expr);
ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back();
if (!expr.isPureAffine() &&
expr == getAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols,
flattener.localExprs,
expr.getContext()))
return expr;
AffineExpr simplifiedExpr =
expr.isPureAffine()
? getAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols,
flattener.localExprs, expr.getContext())
: getSemiAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols,
flattener.localExprs,
expr.getContext());
flattener.operandExprStack.pop_back();
assert(flattener.operandExprStack.empty());
return simplifiedExpr;
}