forked from OSchip/llvm-project
1520 lines
54 KiB
C++
1520 lines
54 KiB
C++
//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines analysis_warnings::[Policy,Executor].
|
|
// Together they are used by Sema to issue warnings based on inexpensive
|
|
// static analysis algorithms in libAnalysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/AnalysisBasedWarnings.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/AST/EvaluatedExprVisitor.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Analysis/AnalysisContext.h"
|
|
#include "clang/Analysis/CFG.h"
|
|
#include "clang/Analysis/Analyses/ReachableCode.h"
|
|
#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
|
|
#include "clang/Analysis/CFGStmtMap.h"
|
|
#include "clang/Analysis/Analyses/UninitializedValues.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/ImmutableMap.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Unreachable code analysis.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class UnreachableCodeHandler : public reachable_code::Callback {
|
|
Sema &S;
|
|
public:
|
|
UnreachableCodeHandler(Sema &s) : S(s) {}
|
|
|
|
void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
|
|
S.Diag(L, diag::warn_unreachable) << R1 << R2;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// CheckUnreachable - Check for unreachable code.
|
|
static void CheckUnreachable(Sema &S, AnalysisContext &AC) {
|
|
UnreachableCodeHandler UC(S);
|
|
reachable_code::FindUnreachableCode(AC, UC);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Check for missing return value.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
enum ControlFlowKind {
|
|
UnknownFallThrough,
|
|
NeverFallThrough,
|
|
MaybeFallThrough,
|
|
AlwaysFallThrough,
|
|
NeverFallThroughOrReturn
|
|
};
|
|
|
|
/// CheckFallThrough - Check that we don't fall off the end of a
|
|
/// Statement that should return a value.
|
|
///
|
|
/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
|
|
/// MaybeFallThrough iff we might or might not fall off the end,
|
|
/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
|
|
/// return. We assume NeverFallThrough iff we never fall off the end of the
|
|
/// statement but we may return. We assume that functions not marked noreturn
|
|
/// will return.
|
|
static ControlFlowKind CheckFallThrough(AnalysisContext &AC) {
|
|
CFG *cfg = AC.getCFG();
|
|
if (cfg == 0) return UnknownFallThrough;
|
|
|
|
// The CFG leaves in dead things, and we don't want the dead code paths to
|
|
// confuse us, so we mark all live things first.
|
|
llvm::BitVector live(cfg->getNumBlockIDs());
|
|
unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
|
|
live);
|
|
|
|
bool AddEHEdges = AC.getAddEHEdges();
|
|
if (!AddEHEdges && count != cfg->getNumBlockIDs())
|
|
// When there are things remaining dead, and we didn't add EH edges
|
|
// from CallExprs to the catch clauses, we have to go back and
|
|
// mark them as live.
|
|
for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
|
|
CFGBlock &b = **I;
|
|
if (!live[b.getBlockID()]) {
|
|
if (b.pred_begin() == b.pred_end()) {
|
|
if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
|
|
// When not adding EH edges from calls, catch clauses
|
|
// can otherwise seem dead. Avoid noting them as dead.
|
|
count += reachable_code::ScanReachableFromBlock(&b, live);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now we know what is live, we check the live precessors of the exit block
|
|
// and look for fall through paths, being careful to ignore normal returns,
|
|
// and exceptional paths.
|
|
bool HasLiveReturn = false;
|
|
bool HasFakeEdge = false;
|
|
bool HasPlainEdge = false;
|
|
bool HasAbnormalEdge = false;
|
|
|
|
// Ignore default cases that aren't likely to be reachable because all
|
|
// enums in a switch(X) have explicit case statements.
|
|
CFGBlock::FilterOptions FO;
|
|
FO.IgnoreDefaultsWithCoveredEnums = 1;
|
|
|
|
for (CFGBlock::filtered_pred_iterator
|
|
I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
|
|
const CFGBlock& B = **I;
|
|
if (!live[B.getBlockID()])
|
|
continue;
|
|
|
|
// Destructors can appear after the 'return' in the CFG. This is
|
|
// normal. We need to look pass the destructors for the return
|
|
// statement (if it exists).
|
|
CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
|
|
bool hasNoReturnDtor = false;
|
|
|
|
for ( ; ri != re ; ++ri) {
|
|
CFGElement CE = *ri;
|
|
|
|
// FIXME: The right solution is to just sever the edges in the
|
|
// CFG itself.
|
|
if (const CFGImplicitDtor *iDtor = ri->getAs<CFGImplicitDtor>())
|
|
if (iDtor->isNoReturn(AC.getASTContext())) {
|
|
hasNoReturnDtor = true;
|
|
HasFakeEdge = true;
|
|
break;
|
|
}
|
|
|
|
if (isa<CFGStmt>(CE))
|
|
break;
|
|
}
|
|
|
|
if (hasNoReturnDtor)
|
|
continue;
|
|
|
|
// No more CFGElements in the block?
|
|
if (ri == re) {
|
|
if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
|
|
HasAbnormalEdge = true;
|
|
continue;
|
|
}
|
|
// A labeled empty statement, or the entry block...
|
|
HasPlainEdge = true;
|
|
continue;
|
|
}
|
|
|
|
CFGStmt CS = cast<CFGStmt>(*ri);
|
|
const Stmt *S = CS.getStmt();
|
|
if (isa<ReturnStmt>(S)) {
|
|
HasLiveReturn = true;
|
|
continue;
|
|
}
|
|
if (isa<ObjCAtThrowStmt>(S)) {
|
|
HasFakeEdge = true;
|
|
continue;
|
|
}
|
|
if (isa<CXXThrowExpr>(S)) {
|
|
HasFakeEdge = true;
|
|
continue;
|
|
}
|
|
if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
|
|
if (AS->isMSAsm()) {
|
|
HasFakeEdge = true;
|
|
HasLiveReturn = true;
|
|
continue;
|
|
}
|
|
}
|
|
if (isa<CXXTryStmt>(S)) {
|
|
HasAbnormalEdge = true;
|
|
continue;
|
|
}
|
|
|
|
bool NoReturnEdge = false;
|
|
if (const CallExpr *C = dyn_cast<CallExpr>(S)) {
|
|
if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
|
|
== B.succ_end()) {
|
|
HasAbnormalEdge = true;
|
|
continue;
|
|
}
|
|
const Expr *CEE = C->getCallee()->IgnoreParenCasts();
|
|
QualType calleeType = CEE->getType();
|
|
if (calleeType == AC.getASTContext().BoundMemberTy) {
|
|
calleeType = Expr::findBoundMemberType(CEE);
|
|
assert(!calleeType.isNull() && "analyzing unresolved call?");
|
|
}
|
|
if (getFunctionExtInfo(calleeType).getNoReturn()) {
|
|
NoReturnEdge = true;
|
|
HasFakeEdge = true;
|
|
} else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
|
|
const ValueDecl *VD = DRE->getDecl();
|
|
if (VD->hasAttr<NoReturnAttr>()) {
|
|
NoReturnEdge = true;
|
|
HasFakeEdge = true;
|
|
}
|
|
}
|
|
}
|
|
// FIXME: Add noreturn message sends.
|
|
if (NoReturnEdge == false)
|
|
HasPlainEdge = true;
|
|
}
|
|
if (!HasPlainEdge) {
|
|
if (HasLiveReturn)
|
|
return NeverFallThrough;
|
|
return NeverFallThroughOrReturn;
|
|
}
|
|
if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
|
|
return MaybeFallThrough;
|
|
// This says AlwaysFallThrough for calls to functions that are not marked
|
|
// noreturn, that don't return. If people would like this warning to be more
|
|
// accurate, such functions should be marked as noreturn.
|
|
return AlwaysFallThrough;
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct CheckFallThroughDiagnostics {
|
|
unsigned diag_MaybeFallThrough_HasNoReturn;
|
|
unsigned diag_MaybeFallThrough_ReturnsNonVoid;
|
|
unsigned diag_AlwaysFallThrough_HasNoReturn;
|
|
unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
|
|
unsigned diag_NeverFallThroughOrReturn;
|
|
bool funMode;
|
|
SourceLocation FuncLoc;
|
|
|
|
static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
|
|
CheckFallThroughDiagnostics D;
|
|
D.FuncLoc = Func->getLocation();
|
|
D.diag_MaybeFallThrough_HasNoReturn =
|
|
diag::warn_falloff_noreturn_function;
|
|
D.diag_MaybeFallThrough_ReturnsNonVoid =
|
|
diag::warn_maybe_falloff_nonvoid_function;
|
|
D.diag_AlwaysFallThrough_HasNoReturn =
|
|
diag::warn_falloff_noreturn_function;
|
|
D.diag_AlwaysFallThrough_ReturnsNonVoid =
|
|
diag::warn_falloff_nonvoid_function;
|
|
|
|
// Don't suggest that virtual functions be marked "noreturn", since they
|
|
// might be overridden by non-noreturn functions.
|
|
bool isVirtualMethod = false;
|
|
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
|
|
isVirtualMethod = Method->isVirtual();
|
|
|
|
if (!isVirtualMethod)
|
|
D.diag_NeverFallThroughOrReturn =
|
|
diag::warn_suggest_noreturn_function;
|
|
else
|
|
D.diag_NeverFallThroughOrReturn = 0;
|
|
|
|
D.funMode = true;
|
|
return D;
|
|
}
|
|
|
|
static CheckFallThroughDiagnostics MakeForBlock() {
|
|
CheckFallThroughDiagnostics D;
|
|
D.diag_MaybeFallThrough_HasNoReturn =
|
|
diag::err_noreturn_block_has_return_expr;
|
|
D.diag_MaybeFallThrough_ReturnsNonVoid =
|
|
diag::err_maybe_falloff_nonvoid_block;
|
|
D.diag_AlwaysFallThrough_HasNoReturn =
|
|
diag::err_noreturn_block_has_return_expr;
|
|
D.diag_AlwaysFallThrough_ReturnsNonVoid =
|
|
diag::err_falloff_nonvoid_block;
|
|
D.diag_NeverFallThroughOrReturn =
|
|
diag::warn_suggest_noreturn_block;
|
|
D.funMode = false;
|
|
return D;
|
|
}
|
|
|
|
bool checkDiagnostics(Diagnostic &D, bool ReturnsVoid,
|
|
bool HasNoReturn) const {
|
|
if (funMode) {
|
|
return (ReturnsVoid ||
|
|
D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function,
|
|
FuncLoc) == Diagnostic::Ignored)
|
|
&& (!HasNoReturn ||
|
|
D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr,
|
|
FuncLoc) == Diagnostic::Ignored)
|
|
&& (!ReturnsVoid ||
|
|
D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
|
|
== Diagnostic::Ignored);
|
|
}
|
|
|
|
// For blocks.
|
|
return ReturnsVoid && !HasNoReturn
|
|
&& (!ReturnsVoid ||
|
|
D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
|
|
== Diagnostic::Ignored);
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
|
|
/// function that should return a value. Check that we don't fall off the end
|
|
/// of a noreturn function. We assume that functions and blocks not marked
|
|
/// noreturn will return.
|
|
static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
|
|
const BlockExpr *blkExpr,
|
|
const CheckFallThroughDiagnostics& CD,
|
|
AnalysisContext &AC) {
|
|
|
|
bool ReturnsVoid = false;
|
|
bool HasNoReturn = false;
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
ReturnsVoid = FD->getResultType()->isVoidType();
|
|
HasNoReturn = FD->hasAttr<NoReturnAttr>() ||
|
|
FD->getType()->getAs<FunctionType>()->getNoReturnAttr();
|
|
}
|
|
else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
|
ReturnsVoid = MD->getResultType()->isVoidType();
|
|
HasNoReturn = MD->hasAttr<NoReturnAttr>();
|
|
}
|
|
else if (isa<BlockDecl>(D)) {
|
|
QualType BlockTy = blkExpr->getType();
|
|
if (const FunctionType *FT =
|
|
BlockTy->getPointeeType()->getAs<FunctionType>()) {
|
|
if (FT->getResultType()->isVoidType())
|
|
ReturnsVoid = true;
|
|
if (FT->getNoReturnAttr())
|
|
HasNoReturn = true;
|
|
}
|
|
}
|
|
|
|
Diagnostic &Diags = S.getDiagnostics();
|
|
|
|
// Short circuit for compilation speed.
|
|
if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
|
|
return;
|
|
|
|
// FIXME: Function try block
|
|
if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
|
|
switch (CheckFallThrough(AC)) {
|
|
case UnknownFallThrough:
|
|
break;
|
|
|
|
case MaybeFallThrough:
|
|
if (HasNoReturn)
|
|
S.Diag(Compound->getRBracLoc(),
|
|
CD.diag_MaybeFallThrough_HasNoReturn);
|
|
else if (!ReturnsVoid)
|
|
S.Diag(Compound->getRBracLoc(),
|
|
CD.diag_MaybeFallThrough_ReturnsNonVoid);
|
|
break;
|
|
case AlwaysFallThrough:
|
|
if (HasNoReturn)
|
|
S.Diag(Compound->getRBracLoc(),
|
|
CD.diag_AlwaysFallThrough_HasNoReturn);
|
|
else if (!ReturnsVoid)
|
|
S.Diag(Compound->getRBracLoc(),
|
|
CD.diag_AlwaysFallThrough_ReturnsNonVoid);
|
|
break;
|
|
case NeverFallThroughOrReturn:
|
|
if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
|
|
<< FD;
|
|
} else {
|
|
S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn);
|
|
}
|
|
}
|
|
break;
|
|
case NeverFallThrough:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// -Wuninitialized
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// ContainsReference - A visitor class to search for references to
|
|
/// a particular declaration (the needle) within any evaluated component of an
|
|
/// expression (recursively).
|
|
class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
|
|
bool FoundReference;
|
|
const DeclRefExpr *Needle;
|
|
|
|
public:
|
|
ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
|
|
: EvaluatedExprVisitor<ContainsReference>(Context),
|
|
FoundReference(false), Needle(Needle) {}
|
|
|
|
void VisitExpr(Expr *E) {
|
|
// Stop evaluating if we already have a reference.
|
|
if (FoundReference)
|
|
return;
|
|
|
|
EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
|
|
}
|
|
|
|
void VisitDeclRefExpr(DeclRefExpr *E) {
|
|
if (E == Needle)
|
|
FoundReference = true;
|
|
else
|
|
EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
|
|
}
|
|
|
|
bool doesContainReference() const { return FoundReference; }
|
|
};
|
|
}
|
|
|
|
/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
|
|
/// uninitialized variable. This manages the different forms of diagnostic
|
|
/// emitted for particular types of uses. Returns true if the use was diagnosed
|
|
/// as a warning. If a pariticular use is one we omit warnings for, returns
|
|
/// false.
|
|
static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
|
|
const Expr *E, bool isAlwaysUninit) {
|
|
bool isSelfInit = false;
|
|
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
if (isAlwaysUninit) {
|
|
// Inspect the initializer of the variable declaration which is
|
|
// being referenced prior to its initialization. We emit
|
|
// specialized diagnostics for self-initialization, and we
|
|
// specifically avoid warning about self references which take the
|
|
// form of:
|
|
//
|
|
// int x = x;
|
|
//
|
|
// This is used to indicate to GCC that 'x' is intentionally left
|
|
// uninitialized. Proven code paths which access 'x' in
|
|
// an uninitialized state after this will still warn.
|
|
//
|
|
// TODO: Should we suppress maybe-uninitialized warnings for
|
|
// variables initialized in this way?
|
|
if (const Expr *Initializer = VD->getInit()) {
|
|
if (DRE == Initializer->IgnoreParenImpCasts())
|
|
return false;
|
|
|
|
ContainsReference CR(S.Context, DRE);
|
|
CR.Visit(const_cast<Expr*>(Initializer));
|
|
isSelfInit = CR.doesContainReference();
|
|
}
|
|
if (isSelfInit) {
|
|
S.Diag(DRE->getLocStart(),
|
|
diag::warn_uninit_self_reference_in_init)
|
|
<< VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
|
|
} else {
|
|
S.Diag(DRE->getLocStart(), diag::warn_uninit_var)
|
|
<< VD->getDeclName() << DRE->getSourceRange();
|
|
}
|
|
} else {
|
|
S.Diag(DRE->getLocStart(), diag::warn_maybe_uninit_var)
|
|
<< VD->getDeclName() << DRE->getSourceRange();
|
|
}
|
|
} else {
|
|
const BlockExpr *BE = cast<BlockExpr>(E);
|
|
S.Diag(BE->getLocStart(),
|
|
isAlwaysUninit ? diag::warn_uninit_var_captured_by_block
|
|
: diag::warn_maybe_uninit_var_captured_by_block)
|
|
<< VD->getDeclName();
|
|
}
|
|
|
|
// Report where the variable was declared when the use wasn't within
|
|
// the initializer of that declaration.
|
|
if (!isSelfInit)
|
|
S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
|
|
<< VD->getDeclName();
|
|
|
|
return true;
|
|
}
|
|
|
|
static void SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
|
|
// Don't issue a fixit if there is already an initializer.
|
|
if (VD->getInit())
|
|
return;
|
|
|
|
// Suggest possible initialization (if any).
|
|
const char *initialization = 0;
|
|
QualType VariableTy = VD->getType().getCanonicalType();
|
|
|
|
if (VariableTy->isObjCObjectPointerType() ||
|
|
VariableTy->isBlockPointerType()) {
|
|
// Check if 'nil' is defined.
|
|
if (S.PP.getMacroInfo(&S.getASTContext().Idents.get("nil")))
|
|
initialization = " = nil";
|
|
else
|
|
initialization = " = 0";
|
|
}
|
|
else if (VariableTy->isRealFloatingType())
|
|
initialization = " = 0.0";
|
|
else if (VariableTy->isBooleanType() && S.Context.getLangOptions().CPlusPlus)
|
|
initialization = " = false";
|
|
else if (VariableTy->isEnumeralType())
|
|
return;
|
|
else if (VariableTy->isPointerType() || VariableTy->isMemberPointerType()) {
|
|
if (S.Context.getLangOptions().CPlusPlus0x)
|
|
initialization = " = nullptr";
|
|
// Check if 'NULL' is defined.
|
|
else if (S.PP.getMacroInfo(&S.getASTContext().Idents.get("NULL")))
|
|
initialization = " = NULL";
|
|
else
|
|
initialization = " = 0";
|
|
}
|
|
else if (VariableTy->isScalarType())
|
|
initialization = " = 0";
|
|
|
|
if (initialization) {
|
|
SourceLocation loc = S.PP.getLocForEndOfToken(VD->getLocEnd());
|
|
S.Diag(loc, diag::note_var_fixit_add_initialization)
|
|
<< FixItHint::CreateInsertion(loc, initialization);
|
|
}
|
|
}
|
|
|
|
typedef std::pair<const Expr*, bool> UninitUse;
|
|
|
|
namespace {
|
|
struct SLocSort {
|
|
bool operator()(const UninitUse &a, const UninitUse &b) {
|
|
SourceLocation aLoc = a.first->getLocStart();
|
|
SourceLocation bLoc = b.first->getLocStart();
|
|
return aLoc.getRawEncoding() < bLoc.getRawEncoding();
|
|
}
|
|
};
|
|
|
|
class UninitValsDiagReporter : public UninitVariablesHandler {
|
|
Sema &S;
|
|
typedef SmallVector<UninitUse, 2> UsesVec;
|
|
typedef llvm::DenseMap<const VarDecl *, UsesVec*> UsesMap;
|
|
UsesMap *uses;
|
|
|
|
public:
|
|
UninitValsDiagReporter(Sema &S) : S(S), uses(0) {}
|
|
~UninitValsDiagReporter() {
|
|
flushDiagnostics();
|
|
}
|
|
|
|
void handleUseOfUninitVariable(const Expr *ex, const VarDecl *vd,
|
|
bool isAlwaysUninit) {
|
|
if (!uses)
|
|
uses = new UsesMap();
|
|
|
|
UsesVec *&vec = (*uses)[vd];
|
|
if (!vec)
|
|
vec = new UsesVec();
|
|
|
|
vec->push_back(std::make_pair(ex, isAlwaysUninit));
|
|
}
|
|
|
|
void flushDiagnostics() {
|
|
if (!uses)
|
|
return;
|
|
|
|
for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) {
|
|
const VarDecl *vd = i->first;
|
|
UsesVec *vec = i->second;
|
|
|
|
// Sort the uses by their SourceLocations. While not strictly
|
|
// guaranteed to produce them in line/column order, this will provide
|
|
// a stable ordering.
|
|
std::sort(vec->begin(), vec->end(), SLocSort());
|
|
|
|
for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve;
|
|
++vi) {
|
|
if (!DiagnoseUninitializedUse(S, vd, vi->first,
|
|
/*isAlwaysUninit=*/vi->second))
|
|
continue;
|
|
|
|
SuggestInitializationFixit(S, vd);
|
|
|
|
// Skip further diagnostics for this variable. We try to warn only on
|
|
// the first point at which a variable is used uninitialized.
|
|
break;
|
|
}
|
|
|
|
delete vec;
|
|
}
|
|
delete uses;
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// -Wthread-safety
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// \brief Implements a set of CFGBlocks using a BitVector.
|
|
///
|
|
/// This class contains a minimal interface, primarily dictated by the SetType
|
|
/// template parameter of the llvm::po_iterator template, as used with external
|
|
/// storage. We also use this set to keep track of which CFGBlocks we visit
|
|
/// during the analysis.
|
|
class CFGBlockSet {
|
|
llvm::BitVector VisitedBlockIDs;
|
|
|
|
public:
|
|
// po_iterator requires this iterator, but the only interface needed is the
|
|
// value_type typedef.
|
|
struct iterator {
|
|
typedef const CFGBlock *value_type;
|
|
};
|
|
|
|
CFGBlockSet() {}
|
|
CFGBlockSet(const CFG *G) : VisitedBlockIDs(G->getNumBlockIDs(), false) {}
|
|
|
|
/// \brief Set the bit associated with a particular CFGBlock.
|
|
/// This is the important method for the SetType template parameter.
|
|
bool insert(const CFGBlock *Block) {
|
|
// Note that insert() is called by po_iterator, which doesn't check to make
|
|
// sure that Block is non-null. Moreover, the CFGBlock iterator will
|
|
// occasionally hand out null pointers for pruned edges, so we catch those
|
|
// here.
|
|
if (Block == 0)
|
|
return false; // if an edge is trivially false.
|
|
if (VisitedBlockIDs.test(Block->getBlockID()))
|
|
return false;
|
|
VisitedBlockIDs.set(Block->getBlockID());
|
|
return true;
|
|
}
|
|
|
|
/// \brief Check if the bit for a CFGBlock has been already set.
|
|
/// This method is for tracking visited blocks in the main threadsafety loop.
|
|
/// Block must not be null.
|
|
bool alreadySet(const CFGBlock *Block) {
|
|
return VisitedBlockIDs.test(Block->getBlockID());
|
|
}
|
|
};
|
|
|
|
/// \brief We create a helper class which we use to iterate through CFGBlocks in
|
|
/// the topological order.
|
|
class TopologicallySortedCFG {
|
|
typedef llvm::po_iterator<const CFG*, CFGBlockSet, true> po_iterator;
|
|
|
|
std::vector<const CFGBlock*> Blocks;
|
|
|
|
public:
|
|
typedef std::vector<const CFGBlock*>::reverse_iterator iterator;
|
|
|
|
TopologicallySortedCFG(const CFG *CFGraph) {
|
|
Blocks.reserve(CFGraph->getNumBlockIDs());
|
|
CFGBlockSet BSet(CFGraph);
|
|
|
|
for (po_iterator I = po_iterator::begin(CFGraph, BSet),
|
|
E = po_iterator::end(CFGraph, BSet); I != E; ++I) {
|
|
Blocks.push_back(*I);
|
|
}
|
|
}
|
|
|
|
iterator begin() {
|
|
return Blocks.rbegin();
|
|
}
|
|
|
|
iterator end() {
|
|
return Blocks.rend();
|
|
}
|
|
};
|
|
|
|
/// \brief A LockID object uniquely identifies a particular lock acquired, and
|
|
/// is built from an Expr* (i.e. calling a lock function).
|
|
///
|
|
/// Thread-safety analysis works by comparing lock expressions. Within the
|
|
/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
|
|
/// a particular lock object at run-time. Subsequent occurrences of the same
|
|
/// expression (where "same" means syntactic equality) will refer to the same
|
|
/// run-time object if three conditions hold:
|
|
/// (1) Local variables in the expression, such as "x" have not changed.
|
|
/// (2) Values on the heap that affect the expression have not changed.
|
|
/// (3) The expression involves only pure function calls.
|
|
/// The current implementation assumes, but does not verify, that multiple uses
|
|
/// of the same lock expression satisfies these criteria.
|
|
///
|
|
/// Clang introduces an additional wrinkle, which is that it is difficult to
|
|
/// derive canonical expressions, or compare expressions directly for equality.
|
|
/// Thus, we identify a lock not by an Expr, but by the set of named
|
|
/// declarations that are referenced by the Expr. In other words,
|
|
/// x->foo->bar.mu will be a four element vector with the Decls for
|
|
/// mu, bar, and foo, and x. The vector will uniquely identify the expression
|
|
/// for all practical purposes.
|
|
///
|
|
/// Note we will need to perform substitution on "this" and function parameter
|
|
/// names when constructing a lock expression.
|
|
///
|
|
/// For example:
|
|
/// class C { Mutex Mu; void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
|
|
/// void myFunc(C *X) { ... X->lock() ... }
|
|
/// The original expression for the lock acquired by myFunc is "this->Mu", but
|
|
/// "X" is substituted for "this" so we get X->Mu();
|
|
///
|
|
/// For another example:
|
|
/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
|
|
/// MyList *MyL;
|
|
/// foo(MyL); // requires lock MyL->Mu to be held
|
|
///
|
|
/// FIXME: In C++0x Mutexes are the objects that control access to shared
|
|
/// variables, while Locks are the objects that acquire and release Mutexes. We
|
|
/// may want to switch to this new terminology soon, in which case we should
|
|
/// rename this class "Mutex" and rename "LockId" to "MutexId", as well as
|
|
/// making sure that the terms Lock and Mutex throughout this code are
|
|
/// consistent with C++0x
|
|
///
|
|
/// FIXME: We should also pick one and canonicalize all usage of lock vs acquire
|
|
/// and unlock vs release as verbs.
|
|
class LockID {
|
|
SmallVector<NamedDecl*, 2> DeclSeq;
|
|
|
|
/// Build a Decl sequence representing the lock from the given expression.
|
|
/// Recursive function that bottoms out when the final DeclRefExpr is reached.
|
|
void buildLock(Expr *Exp) {
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
|
|
NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
|
|
DeclSeq.push_back(ND);
|
|
} else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
|
|
NamedDecl *ND = ME->getMemberDecl();
|
|
DeclSeq.push_back(ND);
|
|
buildLock(ME->getBase());
|
|
} else {
|
|
// FIXME: add diagnostic
|
|
llvm::report_fatal_error("Expected lock expression!");
|
|
}
|
|
}
|
|
|
|
public:
|
|
LockID(Expr *LExpr) {
|
|
buildLock(LExpr);
|
|
assert(!DeclSeq.empty());
|
|
}
|
|
|
|
bool operator==(const LockID &other) const {
|
|
return DeclSeq == other.DeclSeq;
|
|
}
|
|
|
|
bool operator!=(const LockID &other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
// SmallVector overloads Operator< to do lexicographic ordering. Note that
|
|
// we use pointer equality (and <) to compare NamedDecls. This means the order
|
|
// of LockIDs in a lockset is nondeterministic. In order to output
|
|
// diagnostics in a deterministic ordering, we must order all diagnostics to
|
|
// output by SourceLocation when iterating through this lockset.
|
|
bool operator<(const LockID &other) const {
|
|
return DeclSeq < other.DeclSeq;
|
|
}
|
|
|
|
/// \brief Returns the name of the first Decl in the list for a given LockID;
|
|
/// e.g. the lock expression foo.bar() has name "bar".
|
|
/// The caret will point unambiguously to the lock expression, so using this
|
|
/// name in diagnostics is a way to get simple, and consistent, lock names.
|
|
/// We do not want to output the entire expression text for security reasons.
|
|
StringRef getName() const {
|
|
return DeclSeq.front()->getName();
|
|
}
|
|
|
|
void Profile(llvm::FoldingSetNodeID &ID) const {
|
|
for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
|
|
E = DeclSeq.end(); I != E; ++I) {
|
|
ID.AddPointer(*I);
|
|
}
|
|
}
|
|
};
|
|
|
|
/// \brief This is a helper class that stores info about the most recent
|
|
/// accquire of a Lock.
|
|
///
|
|
/// The main body of the analysis maps LockIDs to LockDatas.
|
|
struct LockData {
|
|
SourceLocation AcquireLoc;
|
|
|
|
LockData(SourceLocation Loc) : AcquireLoc(Loc) {}
|
|
|
|
bool operator==(const LockData &other) const {
|
|
return AcquireLoc == other.AcquireLoc;
|
|
}
|
|
|
|
bool operator!=(const LockData &other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
void Profile(llvm::FoldingSetNodeID &ID) const {
|
|
ID.AddInteger(AcquireLoc.getRawEncoding());
|
|
}
|
|
};
|
|
|
|
/// A Lockset maps each LockID (defined above) to information about how it has
|
|
/// been locked.
|
|
typedef llvm::ImmutableMap<LockID, LockData> Lockset;
|
|
|
|
/// \brief We use this class to visit different types of expressions in
|
|
/// CFGBlocks, and build up the lockset.
|
|
/// An expression may cause us to add or remove locks from the lockset, or else
|
|
/// output error messages related to missing locks.
|
|
/// FIXME: In future, we may be able to not inherit from a visitor.
|
|
class BuildLockset : public StmtVisitor<BuildLockset> {
|
|
Sema &S;
|
|
Lockset LSet;
|
|
Lockset::Factory &LocksetFactory;
|
|
|
|
// Helper functions
|
|
void removeLock(SourceLocation UnlockLoc, Expr *LockExp);
|
|
void addLock(SourceLocation LockLoc, Expr *LockExp);
|
|
const ValueDecl *getValueDecl(Expr *Exp);
|
|
void checkAccess(Expr *Exp);
|
|
void checkDereference(Expr *Exp);
|
|
|
|
public:
|
|
BuildLockset(Sema &S, Lockset LS, Lockset::Factory &F)
|
|
: StmtVisitor<BuildLockset>(), S(S), LSet(LS),
|
|
LocksetFactory(F) {}
|
|
|
|
Lockset getLockset() {
|
|
return LSet;
|
|
}
|
|
|
|
void VisitUnaryOperator(UnaryOperator *UO);
|
|
void VisitBinaryOperator(BinaryOperator *BO);
|
|
void VisitCastExpr(CastExpr *CE);
|
|
void VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp);
|
|
};
|
|
|
|
/// \brief Add a new lock to the lockset, warning if the lock is already there.
|
|
/// \param LockLoc The source location of the acquire
|
|
/// \param LockExp The lock expression corresponding to the lock to be added
|
|
void BuildLockset::addLock(SourceLocation LockLoc, Expr *LockExp) {
|
|
LockID Lock(LockExp);
|
|
LockData NewLockData(LockLoc);
|
|
|
|
if (LSet.contains(Lock))
|
|
S.Diag(LockLoc, diag::warn_double_lock) << Lock.getName();
|
|
|
|
LSet = LocksetFactory.add(LSet, Lock, NewLockData);
|
|
}
|
|
|
|
/// \brief Remove a lock from the lockset, warning if the lock is not there.
|
|
/// \param LockExp The lock expression corresponding to the lock to be removed
|
|
/// \param UnlockLoc The source location of the unlock (only used in error msg)
|
|
void BuildLockset::removeLock(SourceLocation UnlockLoc, Expr *LockExp) {
|
|
LockID Lock(LockExp);
|
|
|
|
Lockset NewLSet = LocksetFactory.remove(LSet, Lock);
|
|
if(NewLSet == LSet)
|
|
S.Diag(UnlockLoc, diag::warn_unlock_but_no_acquire) << Lock.getName();
|
|
|
|
LSet = NewLSet;
|
|
}
|
|
|
|
/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
|
|
const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
|
|
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
|
|
return DR->getDecl();
|
|
|
|
if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
|
|
return ME->getMemberDecl();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// \brief This method identifies variable dereferences and checks pt_guarded_by
|
|
/// and pt_guarded_var annotations. Note that we only check these annotations
|
|
/// at the time a pointer is dereferenced.
|
|
/// FIXME: We need to check for other types of pointer dereferences
|
|
/// (e.g. [], ->) and deal with them here.
|
|
/// \param Exp An expression that has been read or written.
|
|
void BuildLockset::checkDereference(Expr *Exp) {
|
|
UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
|
|
if (!UO || UO->getOpcode() != clang::UO_Deref)
|
|
return;
|
|
Exp = UO->getSubExpr()->IgnoreParenCasts();
|
|
|
|
const ValueDecl *D = getValueDecl(Exp);
|
|
if(!D || !D->hasAttrs())
|
|
return;
|
|
|
|
if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
|
|
S.Diag(Exp->getExprLoc(), diag::warn_var_deref_requires_any_lock)
|
|
<< D->getName();
|
|
|
|
const AttrVec &ArgAttrs = D->getAttrs();
|
|
for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i) {
|
|
if (ArgAttrs[i]->getKind() != attr::PtGuardedBy)
|
|
continue;
|
|
PtGuardedByAttr *PGBAttr = cast<PtGuardedByAttr>(ArgAttrs[i]);
|
|
LockID Lock(PGBAttr->getArg());
|
|
if (!LSet.contains(Lock))
|
|
S.Diag(Exp->getExprLoc(), diag::warn_var_deref_requires_lock)
|
|
<< D->getName() << Lock.getName();
|
|
}
|
|
}
|
|
|
|
/// \brief Checks guarded_by and guarded_var attributes.
|
|
/// Whenever we identify an access (read or write) of a DeclRefExpr or
|
|
/// MemberExpr, we need to check whether there are any guarded_by or
|
|
/// guarded_var attributes, and make sure we hold the appropriate locks.
|
|
void BuildLockset::checkAccess(Expr *Exp) {
|
|
const ValueDecl *D = getValueDecl(Exp);
|
|
if(!D || !D->hasAttrs())
|
|
return;
|
|
|
|
if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
|
|
S.Diag(Exp->getExprLoc(), diag::warn_variable_requires_any_lock)
|
|
<< D->getName();
|
|
|
|
const AttrVec &ArgAttrs = D->getAttrs();
|
|
for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i) {
|
|
if (ArgAttrs[i]->getKind() != attr::GuardedBy)
|
|
continue;
|
|
GuardedByAttr *GBAttr = cast<GuardedByAttr>(ArgAttrs[i]);
|
|
LockID Lock(GBAttr->getArg());
|
|
if (!LSet.contains(Lock))
|
|
S.Diag(Exp->getExprLoc(), diag::warn_variable_requires_lock)
|
|
<< D->getName() << Lock.getName();
|
|
}
|
|
}
|
|
|
|
/// \brief For unary operations which read and write a variable, we need to
|
|
/// check whether we hold any required locks. Reads are checked in
|
|
/// VisitCastExpr.
|
|
void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
|
|
switch (UO->getOpcode()) {
|
|
case clang::UO_PostDec:
|
|
case clang::UO_PostInc:
|
|
case clang::UO_PreDec:
|
|
case clang::UO_PreInc: {
|
|
Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
|
|
checkAccess(SubExp);
|
|
checkDereference(SubExp);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// For binary operations which assign to a variable (writes), we need to check
|
|
/// whether we hold any required locks.
|
|
/// FIXME: Deal with non-primitive types.
|
|
void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
|
|
if (!BO->isAssignmentOp())
|
|
return;
|
|
Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
|
|
checkAccess(LHSExp);
|
|
checkDereference(LHSExp);
|
|
}
|
|
|
|
/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
|
|
/// need to ensure we hold any required locks.
|
|
/// FIXME: Deal with non-primitive types.
|
|
void BuildLockset::VisitCastExpr(CastExpr *CE) {
|
|
if (CE->getCastKind() != CK_LValueToRValue)
|
|
return;
|
|
Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
|
|
checkAccess(SubExp);
|
|
checkDereference(SubExp);
|
|
}
|
|
|
|
|
|
/// \brief When visiting CXXMemberCallExprs we need to examine the attributes on
|
|
/// the method that is being called and add, remove or check locks in the
|
|
/// lockset accordingly.
|
|
///
|
|
/// FIXME: For classes annotated with one of the guarded annotations, we need
|
|
/// to treat const method calls as reads and non-const method calls as writes,
|
|
/// and check that the appropriate locks are held. Non-const method calls with
|
|
/// the same signature as const method calls can be also treated as reads.
|
|
void BuildLockset::VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp) {
|
|
NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
|
|
|
|
SourceLocation ExpLocation = Exp->getExprLoc();
|
|
Expr *Parent = Exp->getImplicitObjectArgument();
|
|
|
|
if(!D || !D->hasAttrs())
|
|
return;
|
|
|
|
AttrVec &ArgAttrs = D->getAttrs();
|
|
for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
|
|
Attr *Attr = ArgAttrs[i];
|
|
switch (Attr->getKind()) {
|
|
// When we encounter an exclusive lock function, we need to add the lock
|
|
// to our lockset.
|
|
case attr::ExclusiveLockFunction: {
|
|
ExclusiveLockFunctionAttr *ELFAttr =
|
|
cast<ExclusiveLockFunctionAttr>(Attr);
|
|
|
|
if (ELFAttr->args_size() == 0) {// The lock held is the "this" object.
|
|
addLock(ExpLocation, Parent);
|
|
break;
|
|
}
|
|
|
|
for (ExclusiveLockFunctionAttr::args_iterator I = ELFAttr->args_begin(),
|
|
E = ELFAttr->args_end(); I != E; ++I)
|
|
addLock(ExpLocation, *I);
|
|
// FIXME: acquired_after/acquired_before annotations
|
|
break;
|
|
}
|
|
|
|
// When we encounter an unlock function, we need to remove unlocked locks
|
|
// from the lockset, and flag a warning if they are not there.
|
|
case attr::UnlockFunction: {
|
|
UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
|
|
|
|
if (UFAttr->args_size() == 0) { // The lock held is the "this" object.
|
|
removeLock(ExpLocation, Parent);
|
|
break;
|
|
}
|
|
|
|
for (UnlockFunctionAttr::args_iterator I = UFAttr->args_begin(),
|
|
E = UFAttr->args_end(); I != E; ++I)
|
|
removeLock(ExpLocation, *I);
|
|
break;
|
|
}
|
|
|
|
// Ignore other (non thread-safety) attributes
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef std::pair<SourceLocation, PartialDiagnostic> DelayedDiag;
|
|
typedef llvm::SmallVector<DelayedDiag, 4> DiagList;
|
|
|
|
struct SortDiagBySourceLocation {
|
|
Sema &S;
|
|
|
|
SortDiagBySourceLocation(Sema &S) : S(S) {}
|
|
|
|
bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
|
|
// Although this call will be slow, this is only called when outputting
|
|
// multiple warnings.
|
|
return S.getSourceManager().isBeforeInTranslationUnit(left.first,
|
|
right.first);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// \brief Emit all buffered diagnostics in order of sourcelocation.
|
|
/// We need to output diagnostics produced while iterating through
|
|
/// the lockset in deterministic order, so this function orders diagnostics
|
|
/// and outputs them.
|
|
static void EmitDiagnostics(Sema &S, DiagList &D) {
|
|
SortDiagBySourceLocation SortDiagBySL(S);
|
|
sort(D.begin(), D.end(), SortDiagBySL);
|
|
for (DiagList::iterator I = D.begin(), E = D.end(); I != E; ++I)
|
|
S.Diag(I->first, I->second);
|
|
}
|
|
|
|
/// \brief Compute the intersection of two locksets and issue warnings for any
|
|
/// locks in the symmetric difference.
|
|
///
|
|
/// This function is used at a merge point in the CFG when comparing the lockset
|
|
/// of each branch being merged. For example, given the following sequence:
|
|
/// A; if () then B; else C; D; we need to check that the lockset after B and C
|
|
/// are the same. In the event of a difference, we use the intersection of these
|
|
/// two locksets at the start of D.
|
|
static Lockset intersectAndWarn(Sema &S, Lockset LSet1, Lockset LSet2,
|
|
Lockset::Factory &Fact) {
|
|
Lockset Intersection = LSet1;
|
|
DiagList Warnings;
|
|
|
|
for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
|
|
if (!LSet1.contains(I.getKey())) {
|
|
const LockID &MissingLock = I.getKey();
|
|
const LockData &MissingLockData = I.getData();
|
|
PartialDiagnostic Warning =
|
|
S.PDiag(diag::warn_lock_not_released_in_scope) << MissingLock.getName();
|
|
Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
|
|
}
|
|
}
|
|
|
|
for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
|
|
if (!LSet2.contains(I.getKey())) {
|
|
const LockID &MissingLock = I.getKey();
|
|
const LockData &MissingLockData = I.getData();
|
|
PartialDiagnostic Warning =
|
|
S.PDiag(diag::warn_lock_not_released_in_scope) << MissingLock.getName();
|
|
Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
|
|
Intersection = Fact.remove(Intersection, MissingLock);
|
|
}
|
|
}
|
|
|
|
EmitDiagnostics(S, Warnings);
|
|
return Intersection;
|
|
}
|
|
|
|
/// \brief Returns the location of the first Stmt in a Block.
|
|
static SourceLocation getFirstStmtLocation(CFGBlock *Block) {
|
|
SourceLocation Loc;
|
|
for (CFGBlock::const_iterator BI = Block->begin(), BE = Block->end();
|
|
BI != BE; ++BI) {
|
|
if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&(*BI))) {
|
|
Loc = CfgStmt->getStmt()->getLocStart();
|
|
if (Loc.isValid()) return Loc;
|
|
}
|
|
}
|
|
if (Stmt *S = Block->getTerminator().getStmt()) {
|
|
Loc = S->getLocStart();
|
|
if (Loc.isValid()) return Loc;
|
|
}
|
|
return Loc;
|
|
}
|
|
|
|
/// \brief Warn about different locksets along backedges of loops.
|
|
/// This function is called when we encounter a back edge. At that point,
|
|
/// we need to verify that the lockset before taking the backedge is the
|
|
/// same as the lockset before entering the loop.
|
|
///
|
|
/// \param LoopEntrySet Locks held before starting the loop
|
|
/// \param LoopReentrySet Locks held in the last CFG block of the loop
|
|
static void warnBackEdgeUnequalLocksets(Sema &S, const Lockset LoopReentrySet,
|
|
const Lockset LoopEntrySet,
|
|
SourceLocation FirstLocInLoop) {
|
|
assert(FirstLocInLoop.isValid());
|
|
DiagList Warnings;
|
|
|
|
// Warn for locks held at the start of the loop, but not the end.
|
|
for (Lockset::iterator I = LoopEntrySet.begin(), E = LoopEntrySet.end();
|
|
I != E; ++I) {
|
|
if (!LoopReentrySet.contains(I.getKey())) {
|
|
const LockID &MissingLock = I.getKey();
|
|
// We report this error at the location of the first statement in a loop
|
|
PartialDiagnostic Warning =
|
|
S.PDiag(diag::warn_expecting_lock_held_on_loop)
|
|
<< MissingLock.getName();
|
|
Warnings.push_back(DelayedDiag(FirstLocInLoop, Warning));
|
|
}
|
|
}
|
|
|
|
// Warn for locks held at the end of the loop, but not at the start.
|
|
for (Lockset::iterator I = LoopReentrySet.begin(), E = LoopReentrySet.end();
|
|
I != E; ++I) {
|
|
if (!LoopEntrySet.contains(I.getKey())) {
|
|
const LockID &MissingLock = I.getKey();
|
|
const LockData &MissingLockData = I.getData();
|
|
PartialDiagnostic Warning =
|
|
S.PDiag(diag::warn_lock_not_released_in_scope) << MissingLock.getName();
|
|
Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
|
|
}
|
|
}
|
|
|
|
EmitDiagnostics(S, Warnings);
|
|
}
|
|
|
|
/// \brief Check a function's CFG for thread-safety violations.
|
|
///
|
|
/// We traverse the blocks in the CFG, compute the set of locks that are held
|
|
/// at the end of each block, and issue warnings for thread safety violations.
|
|
/// Each block in the CFG is traversed exactly once.
|
|
static void checkThreadSafety(Sema &S, AnalysisContext &AC) {
|
|
CFG *CFGraph = AC.getCFG();
|
|
if (!CFGraph) return;
|
|
|
|
Lockset::Factory LocksetFactory;
|
|
|
|
// FIXME: Swith to SmallVector? Otherwise improve performance impact?
|
|
std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
|
|
LocksetFactory.getEmptyMap());
|
|
std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
|
|
LocksetFactory.getEmptyMap());
|
|
|
|
// We need to explore the CFG via a "topological" ordering.
|
|
// That way, we will be guaranteed to have information about required
|
|
// predecessor locksets when exploring a new block.
|
|
TopologicallySortedCFG SortedGraph(CFGraph);
|
|
CFGBlockSet VisitedBlocks(CFGraph);
|
|
|
|
for (TopologicallySortedCFG::iterator I = SortedGraph.begin(),
|
|
E = SortedGraph.end(); I!= E; ++I) {
|
|
const CFGBlock *CurrBlock = *I;
|
|
int CurrBlockID = CurrBlock->getBlockID();
|
|
|
|
VisitedBlocks.insert(CurrBlock);
|
|
|
|
// Use the default initial lockset in case there are no predecessors.
|
|
Lockset &Entryset = EntryLocksets[CurrBlockID];
|
|
Lockset &Exitset = ExitLocksets[CurrBlockID];
|
|
|
|
// Iterate through the predecessor blocks and warn if the lockset for all
|
|
// predecessors is not the same. We take the entry lockset of the current
|
|
// block to be the intersection of all previous locksets.
|
|
// FIXME: By keeping the intersection, we may output more errors in future
|
|
// for a lock which is not in the intersection, but was in the union. We
|
|
// may want to also keep the union in future. As an example, let's say
|
|
// the intersection contains Lock L, and the union contains L and M.
|
|
// Later we unlock M. At this point, we would output an error because we
|
|
// never locked M; although the real error is probably that we forgot to
|
|
// lock M on all code paths. Conversely, let's say that later we lock M.
|
|
// In this case, we should compare against the intersection instead of the
|
|
// union because the real error is probably that we forgot to unlock M on
|
|
// all code paths.
|
|
bool LocksetInitialized = false;
|
|
for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
|
|
PE = CurrBlock->pred_end(); PI != PE; ++PI) {
|
|
|
|
// if *PI -> CurrBlock is a back edge
|
|
if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
|
|
continue;
|
|
|
|
int PrevBlockID = (*PI)->getBlockID();
|
|
if (!LocksetInitialized) {
|
|
Entryset = ExitLocksets[PrevBlockID];
|
|
LocksetInitialized = true;
|
|
} else {
|
|
Entryset = intersectAndWarn(S, Entryset, ExitLocksets[PrevBlockID],
|
|
LocksetFactory);
|
|
}
|
|
}
|
|
|
|
BuildLockset LocksetBuilder(S, Entryset, LocksetFactory);
|
|
for (CFGBlock::const_iterator BI = CurrBlock->begin(),
|
|
BE = CurrBlock->end(); BI != BE; ++BI) {
|
|
if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&*BI))
|
|
LocksetBuilder.Visit(const_cast<Stmt*>(CfgStmt->getStmt()));
|
|
}
|
|
Exitset = LocksetBuilder.getLockset();
|
|
|
|
// For every back edge from CurrBlock (the end of the loop) to another block
|
|
// (FirstLoopBlock) we need to check that the Lockset of Block is equal to
|
|
// the one held at the beginning of FirstLoopBlock. We can look up the
|
|
// Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
|
|
for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
|
|
SE = CurrBlock->succ_end(); SI != SE; ++SI) {
|
|
|
|
// if CurrBlock -> *SI is *not* a back edge
|
|
if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
|
|
continue;
|
|
|
|
CFGBlock *FirstLoopBlock = *SI;
|
|
SourceLocation FirstLoopLocation = getFirstStmtLocation(FirstLoopBlock);
|
|
|
|
assert(FirstLoopLocation.isValid());
|
|
// Fail gracefully in release code.
|
|
if (!FirstLoopLocation.isValid())
|
|
continue;
|
|
|
|
Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
|
|
Lockset LoopEnd = ExitLocksets[CurrBlockID];
|
|
warnBackEdgeUnequalLocksets(S, LoopEnd, PreLoop, FirstLoopLocation);
|
|
}
|
|
}
|
|
|
|
Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
|
|
if (!FinalLockset.isEmpty()) {
|
|
DiagList Warnings;
|
|
for (Lockset::iterator I=FinalLockset.begin(), E=FinalLockset.end();
|
|
I != E; ++I) {
|
|
const LockID &MissingLock = I.getKey();
|
|
const LockData &MissingLockData = I.getData();
|
|
|
|
std::string FunName = "<unknown>";
|
|
if (const NamedDecl *ContextDecl = dyn_cast<NamedDecl>(AC.getDecl())) {
|
|
FunName = ContextDecl->getDeclName().getAsString();
|
|
}
|
|
|
|
PartialDiagnostic Warning =
|
|
S.PDiag(diag::warn_locks_not_released)
|
|
<< MissingLock.getName() << FunName;
|
|
Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
|
|
}
|
|
EmitDiagnostics(S, Warnings);
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
|
|
// warnings on a function, method, or block.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
clang::sema::AnalysisBasedWarnings::Policy::Policy() {
|
|
enableCheckFallThrough = 1;
|
|
enableCheckUnreachable = 0;
|
|
enableThreadSafetyAnalysis = 0;
|
|
}
|
|
|
|
clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
|
|
: S(s),
|
|
NumFunctionsAnalyzed(0),
|
|
NumFunctionsWithBadCFGs(0),
|
|
NumCFGBlocks(0),
|
|
MaxCFGBlocksPerFunction(0),
|
|
NumUninitAnalysisFunctions(0),
|
|
NumUninitAnalysisVariables(0),
|
|
MaxUninitAnalysisVariablesPerFunction(0),
|
|
NumUninitAnalysisBlockVisits(0),
|
|
MaxUninitAnalysisBlockVisitsPerFunction(0) {
|
|
Diagnostic &D = S.getDiagnostics();
|
|
DefaultPolicy.enableCheckUnreachable = (unsigned)
|
|
(D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) !=
|
|
Diagnostic::Ignored);
|
|
DefaultPolicy.enableThreadSafetyAnalysis = (unsigned)
|
|
(D.getDiagnosticLevel(diag::warn_double_lock, SourceLocation()) !=
|
|
Diagnostic::Ignored);
|
|
|
|
}
|
|
|
|
static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) {
|
|
for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
|
|
i = fscope->PossiblyUnreachableDiags.begin(),
|
|
e = fscope->PossiblyUnreachableDiags.end();
|
|
i != e; ++i) {
|
|
const sema::PossiblyUnreachableDiag &D = *i;
|
|
S.Diag(D.Loc, D.PD);
|
|
}
|
|
}
|
|
|
|
void clang::sema::
|
|
AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
|
|
sema::FunctionScopeInfo *fscope,
|
|
const Decl *D, const BlockExpr *blkExpr) {
|
|
|
|
// We avoid doing analysis-based warnings when there are errors for
|
|
// two reasons:
|
|
// (1) The CFGs often can't be constructed (if the body is invalid), so
|
|
// don't bother trying.
|
|
// (2) The code already has problems; running the analysis just takes more
|
|
// time.
|
|
Diagnostic &Diags = S.getDiagnostics();
|
|
|
|
// Do not do any analysis for declarations in system headers if we are
|
|
// going to just ignore them.
|
|
if (Diags.getSuppressSystemWarnings() &&
|
|
S.SourceMgr.isInSystemHeader(D->getLocation()))
|
|
return;
|
|
|
|
// For code in dependent contexts, we'll do this at instantiation time.
|
|
if (cast<DeclContext>(D)->isDependentContext())
|
|
return;
|
|
|
|
if (Diags.hasErrorOccurred() || Diags.hasFatalErrorOccurred()) {
|
|
// Flush out any possibly unreachable diagnostics.
|
|
flushDiagnostics(S, fscope);
|
|
return;
|
|
}
|
|
|
|
const Stmt *Body = D->getBody();
|
|
assert(Body);
|
|
|
|
AnalysisContext AC(D, 0);
|
|
|
|
// Don't generate EH edges for CallExprs as we'd like to avoid the n^2
|
|
// explosion for destrutors that can result and the compile time hit.
|
|
AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
|
|
AC.getCFGBuildOptions().AddEHEdges = false;
|
|
AC.getCFGBuildOptions().AddInitializers = true;
|
|
AC.getCFGBuildOptions().AddImplicitDtors = true;
|
|
|
|
// Force that certain expressions appear as CFGElements in the CFG. This
|
|
// is used to speed up various analyses.
|
|
// FIXME: This isn't the right factoring. This is here for initial
|
|
// prototyping, but we need a way for analyses to say what expressions they
|
|
// expect to always be CFGElements and then fill in the BuildOptions
|
|
// appropriately. This is essentially a layering violation.
|
|
if (P.enableCheckUnreachable) {
|
|
// Unreachable code analysis requires a linearized CFG.
|
|
AC.getCFGBuildOptions().setAllAlwaysAdd();
|
|
}
|
|
else {
|
|
AC.getCFGBuildOptions()
|
|
.setAlwaysAdd(Stmt::BinaryOperatorClass)
|
|
.setAlwaysAdd(Stmt::BlockExprClass)
|
|
.setAlwaysAdd(Stmt::CStyleCastExprClass)
|
|
.setAlwaysAdd(Stmt::DeclRefExprClass)
|
|
.setAlwaysAdd(Stmt::ImplicitCastExprClass)
|
|
.setAlwaysAdd(Stmt::UnaryOperatorClass);
|
|
}
|
|
|
|
// Construct the analysis context with the specified CFG build options.
|
|
|
|
// Emit delayed diagnostics.
|
|
if (!fscope->PossiblyUnreachableDiags.empty()) {
|
|
bool analyzed = false;
|
|
|
|
// Register the expressions with the CFGBuilder.
|
|
for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
|
|
i = fscope->PossiblyUnreachableDiags.begin(),
|
|
e = fscope->PossiblyUnreachableDiags.end();
|
|
i != e; ++i) {
|
|
if (const Stmt *stmt = i->stmt)
|
|
AC.registerForcedBlockExpression(stmt);
|
|
}
|
|
|
|
if (AC.getCFG()) {
|
|
analyzed = true;
|
|
for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
|
|
i = fscope->PossiblyUnreachableDiags.begin(),
|
|
e = fscope->PossiblyUnreachableDiags.end();
|
|
i != e; ++i)
|
|
{
|
|
const sema::PossiblyUnreachableDiag &D = *i;
|
|
bool processed = false;
|
|
if (const Stmt *stmt = i->stmt) {
|
|
const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt);
|
|
assert(block);
|
|
if (CFGReverseBlockReachabilityAnalysis *cra = AC.getCFGReachablityAnalysis()) {
|
|
// Can this block be reached from the entrance?
|
|
if (cra->isReachable(&AC.getCFG()->getEntry(), block))
|
|
S.Diag(D.Loc, D.PD);
|
|
processed = true;
|
|
}
|
|
}
|
|
if (!processed) {
|
|
// Emit the warning anyway if we cannot map to a basic block.
|
|
S.Diag(D.Loc, D.PD);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!analyzed)
|
|
flushDiagnostics(S, fscope);
|
|
}
|
|
|
|
|
|
// Warning: check missing 'return'
|
|
if (P.enableCheckFallThrough) {
|
|
const CheckFallThroughDiagnostics &CD =
|
|
(isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
|
|
: CheckFallThroughDiagnostics::MakeForFunction(D));
|
|
CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
|
|
}
|
|
|
|
// Warning: check for unreachable code
|
|
if (P.enableCheckUnreachable)
|
|
CheckUnreachable(S, AC);
|
|
|
|
// Check for thread safety violations
|
|
if (P.enableThreadSafetyAnalysis)
|
|
checkThreadSafety(S, AC);
|
|
|
|
if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart())
|
|
!= Diagnostic::Ignored ||
|
|
Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart())
|
|
!= Diagnostic::Ignored) {
|
|
if (CFG *cfg = AC.getCFG()) {
|
|
UninitValsDiagReporter reporter(S);
|
|
UninitVariablesAnalysisStats stats;
|
|
std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
|
|
runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
|
|
reporter, stats);
|
|
|
|
if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
|
|
++NumUninitAnalysisFunctions;
|
|
NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
|
|
NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
|
|
MaxUninitAnalysisVariablesPerFunction =
|
|
std::max(MaxUninitAnalysisVariablesPerFunction,
|
|
stats.NumVariablesAnalyzed);
|
|
MaxUninitAnalysisBlockVisitsPerFunction =
|
|
std::max(MaxUninitAnalysisBlockVisitsPerFunction,
|
|
stats.NumBlockVisits);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Collect statistics about the CFG if it was built.
|
|
if (S.CollectStats && AC.isCFGBuilt()) {
|
|
++NumFunctionsAnalyzed;
|
|
if (CFG *cfg = AC.getCFG()) {
|
|
// If we successfully built a CFG for this context, record some more
|
|
// detail information about it.
|
|
NumCFGBlocks += cfg->getNumBlockIDs();
|
|
MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
|
|
cfg->getNumBlockIDs());
|
|
} else {
|
|
++NumFunctionsWithBadCFGs;
|
|
}
|
|
}
|
|
}
|
|
|
|
void clang::sema::AnalysisBasedWarnings::PrintStats() const {
|
|
llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
|
|
|
|
unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
|
|
unsigned AvgCFGBlocksPerFunction =
|
|
!NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
|
|
llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
|
|
<< NumFunctionsWithBadCFGs << " w/o CFGs).\n"
|
|
<< " " << NumCFGBlocks << " CFG blocks built.\n"
|
|
<< " " << AvgCFGBlocksPerFunction
|
|
<< " average CFG blocks per function.\n"
|
|
<< " " << MaxCFGBlocksPerFunction
|
|
<< " max CFG blocks per function.\n";
|
|
|
|
unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
|
|
: NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
|
|
unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
|
|
: NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
|
|
llvm::errs() << NumUninitAnalysisFunctions
|
|
<< " functions analyzed for uninitialiazed variables\n"
|
|
<< " " << NumUninitAnalysisVariables << " variables analyzed.\n"
|
|
<< " " << AvgUninitVariablesPerFunction
|
|
<< " average variables per function.\n"
|
|
<< " " << MaxUninitAnalysisVariablesPerFunction
|
|
<< " max variables per function.\n"
|
|
<< " " << NumUninitAnalysisBlockVisits << " block visits.\n"
|
|
<< " " << AvgUninitBlockVisitsPerFunction
|
|
<< " average block visits per function.\n"
|
|
<< " " << MaxUninitAnalysisBlockVisitsPerFunction
|
|
<< " max block visits per function.\n";
|
|
}
|