llvm-project/clang/lib/Sema/AnalysisBasedWarnings.cpp

1520 lines
54 KiB
C++

//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines analysis_warnings::[Policy,Executor].
// Together they are used by Sema to issue warnings based on inexpensive
// static analysis algorithms in libAnalysis.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/AnalysisBasedWarnings.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/Analyses/ReachableCode.h"
#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
#include "clang/Analysis/CFGStmtMap.h"
#include "clang/Analysis/Analyses/UninitializedValues.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <vector>
using namespace clang;
//===----------------------------------------------------------------------===//
// Unreachable code analysis.
//===----------------------------------------------------------------------===//
namespace {
class UnreachableCodeHandler : public reachable_code::Callback {
Sema &S;
public:
UnreachableCodeHandler(Sema &s) : S(s) {}
void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
S.Diag(L, diag::warn_unreachable) << R1 << R2;
}
};
}
/// CheckUnreachable - Check for unreachable code.
static void CheckUnreachable(Sema &S, AnalysisContext &AC) {
UnreachableCodeHandler UC(S);
reachable_code::FindUnreachableCode(AC, UC);
}
//===----------------------------------------------------------------------===//
// Check for missing return value.
//===----------------------------------------------------------------------===//
enum ControlFlowKind {
UnknownFallThrough,
NeverFallThrough,
MaybeFallThrough,
AlwaysFallThrough,
NeverFallThroughOrReturn
};
/// CheckFallThrough - Check that we don't fall off the end of a
/// Statement that should return a value.
///
/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
/// MaybeFallThrough iff we might or might not fall off the end,
/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
/// return. We assume NeverFallThrough iff we never fall off the end of the
/// statement but we may return. We assume that functions not marked noreturn
/// will return.
static ControlFlowKind CheckFallThrough(AnalysisContext &AC) {
CFG *cfg = AC.getCFG();
if (cfg == 0) return UnknownFallThrough;
// The CFG leaves in dead things, and we don't want the dead code paths to
// confuse us, so we mark all live things first.
llvm::BitVector live(cfg->getNumBlockIDs());
unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
live);
bool AddEHEdges = AC.getAddEHEdges();
if (!AddEHEdges && count != cfg->getNumBlockIDs())
// When there are things remaining dead, and we didn't add EH edges
// from CallExprs to the catch clauses, we have to go back and
// mark them as live.
for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
CFGBlock &b = **I;
if (!live[b.getBlockID()]) {
if (b.pred_begin() == b.pred_end()) {
if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
// When not adding EH edges from calls, catch clauses
// can otherwise seem dead. Avoid noting them as dead.
count += reachable_code::ScanReachableFromBlock(&b, live);
continue;
}
}
}
// Now we know what is live, we check the live precessors of the exit block
// and look for fall through paths, being careful to ignore normal returns,
// and exceptional paths.
bool HasLiveReturn = false;
bool HasFakeEdge = false;
bool HasPlainEdge = false;
bool HasAbnormalEdge = false;
// Ignore default cases that aren't likely to be reachable because all
// enums in a switch(X) have explicit case statements.
CFGBlock::FilterOptions FO;
FO.IgnoreDefaultsWithCoveredEnums = 1;
for (CFGBlock::filtered_pred_iterator
I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
const CFGBlock& B = **I;
if (!live[B.getBlockID()])
continue;
// Destructors can appear after the 'return' in the CFG. This is
// normal. We need to look pass the destructors for the return
// statement (if it exists).
CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
bool hasNoReturnDtor = false;
for ( ; ri != re ; ++ri) {
CFGElement CE = *ri;
// FIXME: The right solution is to just sever the edges in the
// CFG itself.
if (const CFGImplicitDtor *iDtor = ri->getAs<CFGImplicitDtor>())
if (iDtor->isNoReturn(AC.getASTContext())) {
hasNoReturnDtor = true;
HasFakeEdge = true;
break;
}
if (isa<CFGStmt>(CE))
break;
}
if (hasNoReturnDtor)
continue;
// No more CFGElements in the block?
if (ri == re) {
if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
HasAbnormalEdge = true;
continue;
}
// A labeled empty statement, or the entry block...
HasPlainEdge = true;
continue;
}
CFGStmt CS = cast<CFGStmt>(*ri);
const Stmt *S = CS.getStmt();
if (isa<ReturnStmt>(S)) {
HasLiveReturn = true;
continue;
}
if (isa<ObjCAtThrowStmt>(S)) {
HasFakeEdge = true;
continue;
}
if (isa<CXXThrowExpr>(S)) {
HasFakeEdge = true;
continue;
}
if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
if (AS->isMSAsm()) {
HasFakeEdge = true;
HasLiveReturn = true;
continue;
}
}
if (isa<CXXTryStmt>(S)) {
HasAbnormalEdge = true;
continue;
}
bool NoReturnEdge = false;
if (const CallExpr *C = dyn_cast<CallExpr>(S)) {
if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
== B.succ_end()) {
HasAbnormalEdge = true;
continue;
}
const Expr *CEE = C->getCallee()->IgnoreParenCasts();
QualType calleeType = CEE->getType();
if (calleeType == AC.getASTContext().BoundMemberTy) {
calleeType = Expr::findBoundMemberType(CEE);
assert(!calleeType.isNull() && "analyzing unresolved call?");
}
if (getFunctionExtInfo(calleeType).getNoReturn()) {
NoReturnEdge = true;
HasFakeEdge = true;
} else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
const ValueDecl *VD = DRE->getDecl();
if (VD->hasAttr<NoReturnAttr>()) {
NoReturnEdge = true;
HasFakeEdge = true;
}
}
}
// FIXME: Add noreturn message sends.
if (NoReturnEdge == false)
HasPlainEdge = true;
}
if (!HasPlainEdge) {
if (HasLiveReturn)
return NeverFallThrough;
return NeverFallThroughOrReturn;
}
if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
return MaybeFallThrough;
// This says AlwaysFallThrough for calls to functions that are not marked
// noreturn, that don't return. If people would like this warning to be more
// accurate, such functions should be marked as noreturn.
return AlwaysFallThrough;
}
namespace {
struct CheckFallThroughDiagnostics {
unsigned diag_MaybeFallThrough_HasNoReturn;
unsigned diag_MaybeFallThrough_ReturnsNonVoid;
unsigned diag_AlwaysFallThrough_HasNoReturn;
unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
unsigned diag_NeverFallThroughOrReturn;
bool funMode;
SourceLocation FuncLoc;
static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
CheckFallThroughDiagnostics D;
D.FuncLoc = Func->getLocation();
D.diag_MaybeFallThrough_HasNoReturn =
diag::warn_falloff_noreturn_function;
D.diag_MaybeFallThrough_ReturnsNonVoid =
diag::warn_maybe_falloff_nonvoid_function;
D.diag_AlwaysFallThrough_HasNoReturn =
diag::warn_falloff_noreturn_function;
D.diag_AlwaysFallThrough_ReturnsNonVoid =
diag::warn_falloff_nonvoid_function;
// Don't suggest that virtual functions be marked "noreturn", since they
// might be overridden by non-noreturn functions.
bool isVirtualMethod = false;
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
isVirtualMethod = Method->isVirtual();
if (!isVirtualMethod)
D.diag_NeverFallThroughOrReturn =
diag::warn_suggest_noreturn_function;
else
D.diag_NeverFallThroughOrReturn = 0;
D.funMode = true;
return D;
}
static CheckFallThroughDiagnostics MakeForBlock() {
CheckFallThroughDiagnostics D;
D.diag_MaybeFallThrough_HasNoReturn =
diag::err_noreturn_block_has_return_expr;
D.diag_MaybeFallThrough_ReturnsNonVoid =
diag::err_maybe_falloff_nonvoid_block;
D.diag_AlwaysFallThrough_HasNoReturn =
diag::err_noreturn_block_has_return_expr;
D.diag_AlwaysFallThrough_ReturnsNonVoid =
diag::err_falloff_nonvoid_block;
D.diag_NeverFallThroughOrReturn =
diag::warn_suggest_noreturn_block;
D.funMode = false;
return D;
}
bool checkDiagnostics(Diagnostic &D, bool ReturnsVoid,
bool HasNoReturn) const {
if (funMode) {
return (ReturnsVoid ||
D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function,
FuncLoc) == Diagnostic::Ignored)
&& (!HasNoReturn ||
D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr,
FuncLoc) == Diagnostic::Ignored)
&& (!ReturnsVoid ||
D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
== Diagnostic::Ignored);
}
// For blocks.
return ReturnsVoid && !HasNoReturn
&& (!ReturnsVoid ||
D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
== Diagnostic::Ignored);
}
};
}
/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
/// function that should return a value. Check that we don't fall off the end
/// of a noreturn function. We assume that functions and blocks not marked
/// noreturn will return.
static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
const BlockExpr *blkExpr,
const CheckFallThroughDiagnostics& CD,
AnalysisContext &AC) {
bool ReturnsVoid = false;
bool HasNoReturn = false;
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
ReturnsVoid = FD->getResultType()->isVoidType();
HasNoReturn = FD->hasAttr<NoReturnAttr>() ||
FD->getType()->getAs<FunctionType>()->getNoReturnAttr();
}
else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
ReturnsVoid = MD->getResultType()->isVoidType();
HasNoReturn = MD->hasAttr<NoReturnAttr>();
}
else if (isa<BlockDecl>(D)) {
QualType BlockTy = blkExpr->getType();
if (const FunctionType *FT =
BlockTy->getPointeeType()->getAs<FunctionType>()) {
if (FT->getResultType()->isVoidType())
ReturnsVoid = true;
if (FT->getNoReturnAttr())
HasNoReturn = true;
}
}
Diagnostic &Diags = S.getDiagnostics();
// Short circuit for compilation speed.
if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
return;
// FIXME: Function try block
if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
switch (CheckFallThrough(AC)) {
case UnknownFallThrough:
break;
case MaybeFallThrough:
if (HasNoReturn)
S.Diag(Compound->getRBracLoc(),
CD.diag_MaybeFallThrough_HasNoReturn);
else if (!ReturnsVoid)
S.Diag(Compound->getRBracLoc(),
CD.diag_MaybeFallThrough_ReturnsNonVoid);
break;
case AlwaysFallThrough:
if (HasNoReturn)
S.Diag(Compound->getRBracLoc(),
CD.diag_AlwaysFallThrough_HasNoReturn);
else if (!ReturnsVoid)
S.Diag(Compound->getRBracLoc(),
CD.diag_AlwaysFallThrough_ReturnsNonVoid);
break;
case NeverFallThroughOrReturn:
if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
<< FD;
} else {
S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn);
}
}
break;
case NeverFallThrough:
break;
}
}
}
//===----------------------------------------------------------------------===//
// -Wuninitialized
//===----------------------------------------------------------------------===//
namespace {
/// ContainsReference - A visitor class to search for references to
/// a particular declaration (the needle) within any evaluated component of an
/// expression (recursively).
class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
bool FoundReference;
const DeclRefExpr *Needle;
public:
ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
: EvaluatedExprVisitor<ContainsReference>(Context),
FoundReference(false), Needle(Needle) {}
void VisitExpr(Expr *E) {
// Stop evaluating if we already have a reference.
if (FoundReference)
return;
EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
}
void VisitDeclRefExpr(DeclRefExpr *E) {
if (E == Needle)
FoundReference = true;
else
EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
}
bool doesContainReference() const { return FoundReference; }
};
}
/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
/// uninitialized variable. This manages the different forms of diagnostic
/// emitted for particular types of uses. Returns true if the use was diagnosed
/// as a warning. If a pariticular use is one we omit warnings for, returns
/// false.
static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
const Expr *E, bool isAlwaysUninit) {
bool isSelfInit = false;
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
if (isAlwaysUninit) {
// Inspect the initializer of the variable declaration which is
// being referenced prior to its initialization. We emit
// specialized diagnostics for self-initialization, and we
// specifically avoid warning about self references which take the
// form of:
//
// int x = x;
//
// This is used to indicate to GCC that 'x' is intentionally left
// uninitialized. Proven code paths which access 'x' in
// an uninitialized state after this will still warn.
//
// TODO: Should we suppress maybe-uninitialized warnings for
// variables initialized in this way?
if (const Expr *Initializer = VD->getInit()) {
if (DRE == Initializer->IgnoreParenImpCasts())
return false;
ContainsReference CR(S.Context, DRE);
CR.Visit(const_cast<Expr*>(Initializer));
isSelfInit = CR.doesContainReference();
}
if (isSelfInit) {
S.Diag(DRE->getLocStart(),
diag::warn_uninit_self_reference_in_init)
<< VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
} else {
S.Diag(DRE->getLocStart(), diag::warn_uninit_var)
<< VD->getDeclName() << DRE->getSourceRange();
}
} else {
S.Diag(DRE->getLocStart(), diag::warn_maybe_uninit_var)
<< VD->getDeclName() << DRE->getSourceRange();
}
} else {
const BlockExpr *BE = cast<BlockExpr>(E);
S.Diag(BE->getLocStart(),
isAlwaysUninit ? diag::warn_uninit_var_captured_by_block
: diag::warn_maybe_uninit_var_captured_by_block)
<< VD->getDeclName();
}
// Report where the variable was declared when the use wasn't within
// the initializer of that declaration.
if (!isSelfInit)
S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
<< VD->getDeclName();
return true;
}
static void SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
// Don't issue a fixit if there is already an initializer.
if (VD->getInit())
return;
// Suggest possible initialization (if any).
const char *initialization = 0;
QualType VariableTy = VD->getType().getCanonicalType();
if (VariableTy->isObjCObjectPointerType() ||
VariableTy->isBlockPointerType()) {
// Check if 'nil' is defined.
if (S.PP.getMacroInfo(&S.getASTContext().Idents.get("nil")))
initialization = " = nil";
else
initialization = " = 0";
}
else if (VariableTy->isRealFloatingType())
initialization = " = 0.0";
else if (VariableTy->isBooleanType() && S.Context.getLangOptions().CPlusPlus)
initialization = " = false";
else if (VariableTy->isEnumeralType())
return;
else if (VariableTy->isPointerType() || VariableTy->isMemberPointerType()) {
if (S.Context.getLangOptions().CPlusPlus0x)
initialization = " = nullptr";
// Check if 'NULL' is defined.
else if (S.PP.getMacroInfo(&S.getASTContext().Idents.get("NULL")))
initialization = " = NULL";
else
initialization = " = 0";
}
else if (VariableTy->isScalarType())
initialization = " = 0";
if (initialization) {
SourceLocation loc = S.PP.getLocForEndOfToken(VD->getLocEnd());
S.Diag(loc, diag::note_var_fixit_add_initialization)
<< FixItHint::CreateInsertion(loc, initialization);
}
}
typedef std::pair<const Expr*, bool> UninitUse;
namespace {
struct SLocSort {
bool operator()(const UninitUse &a, const UninitUse &b) {
SourceLocation aLoc = a.first->getLocStart();
SourceLocation bLoc = b.first->getLocStart();
return aLoc.getRawEncoding() < bLoc.getRawEncoding();
}
};
class UninitValsDiagReporter : public UninitVariablesHandler {
Sema &S;
typedef SmallVector<UninitUse, 2> UsesVec;
typedef llvm::DenseMap<const VarDecl *, UsesVec*> UsesMap;
UsesMap *uses;
public:
UninitValsDiagReporter(Sema &S) : S(S), uses(0) {}
~UninitValsDiagReporter() {
flushDiagnostics();
}
void handleUseOfUninitVariable(const Expr *ex, const VarDecl *vd,
bool isAlwaysUninit) {
if (!uses)
uses = new UsesMap();
UsesVec *&vec = (*uses)[vd];
if (!vec)
vec = new UsesVec();
vec->push_back(std::make_pair(ex, isAlwaysUninit));
}
void flushDiagnostics() {
if (!uses)
return;
for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) {
const VarDecl *vd = i->first;
UsesVec *vec = i->second;
// Sort the uses by their SourceLocations. While not strictly
// guaranteed to produce them in line/column order, this will provide
// a stable ordering.
std::sort(vec->begin(), vec->end(), SLocSort());
for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve;
++vi) {
if (!DiagnoseUninitializedUse(S, vd, vi->first,
/*isAlwaysUninit=*/vi->second))
continue;
SuggestInitializationFixit(S, vd);
// Skip further diagnostics for this variable. We try to warn only on
// the first point at which a variable is used uninitialized.
break;
}
delete vec;
}
delete uses;
}
};
}
//===----------------------------------------------------------------------===//
// -Wthread-safety
//===----------------------------------------------------------------------===//
namespace {
/// \brief Implements a set of CFGBlocks using a BitVector.
///
/// This class contains a minimal interface, primarily dictated by the SetType
/// template parameter of the llvm::po_iterator template, as used with external
/// storage. We also use this set to keep track of which CFGBlocks we visit
/// during the analysis.
class CFGBlockSet {
llvm::BitVector VisitedBlockIDs;
public:
// po_iterator requires this iterator, but the only interface needed is the
// value_type typedef.
struct iterator {
typedef const CFGBlock *value_type;
};
CFGBlockSet() {}
CFGBlockSet(const CFG *G) : VisitedBlockIDs(G->getNumBlockIDs(), false) {}
/// \brief Set the bit associated with a particular CFGBlock.
/// This is the important method for the SetType template parameter.
bool insert(const CFGBlock *Block) {
// Note that insert() is called by po_iterator, which doesn't check to make
// sure that Block is non-null. Moreover, the CFGBlock iterator will
// occasionally hand out null pointers for pruned edges, so we catch those
// here.
if (Block == 0)
return false; // if an edge is trivially false.
if (VisitedBlockIDs.test(Block->getBlockID()))
return false;
VisitedBlockIDs.set(Block->getBlockID());
return true;
}
/// \brief Check if the bit for a CFGBlock has been already set.
/// This method is for tracking visited blocks in the main threadsafety loop.
/// Block must not be null.
bool alreadySet(const CFGBlock *Block) {
return VisitedBlockIDs.test(Block->getBlockID());
}
};
/// \brief We create a helper class which we use to iterate through CFGBlocks in
/// the topological order.
class TopologicallySortedCFG {
typedef llvm::po_iterator<const CFG*, CFGBlockSet, true> po_iterator;
std::vector<const CFGBlock*> Blocks;
public:
typedef std::vector<const CFGBlock*>::reverse_iterator iterator;
TopologicallySortedCFG(const CFG *CFGraph) {
Blocks.reserve(CFGraph->getNumBlockIDs());
CFGBlockSet BSet(CFGraph);
for (po_iterator I = po_iterator::begin(CFGraph, BSet),
E = po_iterator::end(CFGraph, BSet); I != E; ++I) {
Blocks.push_back(*I);
}
}
iterator begin() {
return Blocks.rbegin();
}
iterator end() {
return Blocks.rend();
}
};
/// \brief A LockID object uniquely identifies a particular lock acquired, and
/// is built from an Expr* (i.e. calling a lock function).
///
/// Thread-safety analysis works by comparing lock expressions. Within the
/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
/// a particular lock object at run-time. Subsequent occurrences of the same
/// expression (where "same" means syntactic equality) will refer to the same
/// run-time object if three conditions hold:
/// (1) Local variables in the expression, such as "x" have not changed.
/// (2) Values on the heap that affect the expression have not changed.
/// (3) The expression involves only pure function calls.
/// The current implementation assumes, but does not verify, that multiple uses
/// of the same lock expression satisfies these criteria.
///
/// Clang introduces an additional wrinkle, which is that it is difficult to
/// derive canonical expressions, or compare expressions directly for equality.
/// Thus, we identify a lock not by an Expr, but by the set of named
/// declarations that are referenced by the Expr. In other words,
/// x->foo->bar.mu will be a four element vector with the Decls for
/// mu, bar, and foo, and x. The vector will uniquely identify the expression
/// for all practical purposes.
///
/// Note we will need to perform substitution on "this" and function parameter
/// names when constructing a lock expression.
///
/// For example:
/// class C { Mutex Mu; void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
/// void myFunc(C *X) { ... X->lock() ... }
/// The original expression for the lock acquired by myFunc is "this->Mu", but
/// "X" is substituted for "this" so we get X->Mu();
///
/// For another example:
/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
/// MyList *MyL;
/// foo(MyL); // requires lock MyL->Mu to be held
///
/// FIXME: In C++0x Mutexes are the objects that control access to shared
/// variables, while Locks are the objects that acquire and release Mutexes. We
/// may want to switch to this new terminology soon, in which case we should
/// rename this class "Mutex" and rename "LockId" to "MutexId", as well as
/// making sure that the terms Lock and Mutex throughout this code are
/// consistent with C++0x
///
/// FIXME: We should also pick one and canonicalize all usage of lock vs acquire
/// and unlock vs release as verbs.
class LockID {
SmallVector<NamedDecl*, 2> DeclSeq;
/// Build a Decl sequence representing the lock from the given expression.
/// Recursive function that bottoms out when the final DeclRefExpr is reached.
void buildLock(Expr *Exp) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
DeclSeq.push_back(ND);
} else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
NamedDecl *ND = ME->getMemberDecl();
DeclSeq.push_back(ND);
buildLock(ME->getBase());
} else {
// FIXME: add diagnostic
llvm::report_fatal_error("Expected lock expression!");
}
}
public:
LockID(Expr *LExpr) {
buildLock(LExpr);
assert(!DeclSeq.empty());
}
bool operator==(const LockID &other) const {
return DeclSeq == other.DeclSeq;
}
bool operator!=(const LockID &other) const {
return !(*this == other);
}
// SmallVector overloads Operator< to do lexicographic ordering. Note that
// we use pointer equality (and <) to compare NamedDecls. This means the order
// of LockIDs in a lockset is nondeterministic. In order to output
// diagnostics in a deterministic ordering, we must order all diagnostics to
// output by SourceLocation when iterating through this lockset.
bool operator<(const LockID &other) const {
return DeclSeq < other.DeclSeq;
}
/// \brief Returns the name of the first Decl in the list for a given LockID;
/// e.g. the lock expression foo.bar() has name "bar".
/// The caret will point unambiguously to the lock expression, so using this
/// name in diagnostics is a way to get simple, and consistent, lock names.
/// We do not want to output the entire expression text for security reasons.
StringRef getName() const {
return DeclSeq.front()->getName();
}
void Profile(llvm::FoldingSetNodeID &ID) const {
for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
E = DeclSeq.end(); I != E; ++I) {
ID.AddPointer(*I);
}
}
};
/// \brief This is a helper class that stores info about the most recent
/// accquire of a Lock.
///
/// The main body of the analysis maps LockIDs to LockDatas.
struct LockData {
SourceLocation AcquireLoc;
LockData(SourceLocation Loc) : AcquireLoc(Loc) {}
bool operator==(const LockData &other) const {
return AcquireLoc == other.AcquireLoc;
}
bool operator!=(const LockData &other) const {
return !(*this == other);
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(AcquireLoc.getRawEncoding());
}
};
/// A Lockset maps each LockID (defined above) to information about how it has
/// been locked.
typedef llvm::ImmutableMap<LockID, LockData> Lockset;
/// \brief We use this class to visit different types of expressions in
/// CFGBlocks, and build up the lockset.
/// An expression may cause us to add or remove locks from the lockset, or else
/// output error messages related to missing locks.
/// FIXME: In future, we may be able to not inherit from a visitor.
class BuildLockset : public StmtVisitor<BuildLockset> {
Sema &S;
Lockset LSet;
Lockset::Factory &LocksetFactory;
// Helper functions
void removeLock(SourceLocation UnlockLoc, Expr *LockExp);
void addLock(SourceLocation LockLoc, Expr *LockExp);
const ValueDecl *getValueDecl(Expr *Exp);
void checkAccess(Expr *Exp);
void checkDereference(Expr *Exp);
public:
BuildLockset(Sema &S, Lockset LS, Lockset::Factory &F)
: StmtVisitor<BuildLockset>(), S(S), LSet(LS),
LocksetFactory(F) {}
Lockset getLockset() {
return LSet;
}
void VisitUnaryOperator(UnaryOperator *UO);
void VisitBinaryOperator(BinaryOperator *BO);
void VisitCastExpr(CastExpr *CE);
void VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp);
};
/// \brief Add a new lock to the lockset, warning if the lock is already there.
/// \param LockLoc The source location of the acquire
/// \param LockExp The lock expression corresponding to the lock to be added
void BuildLockset::addLock(SourceLocation LockLoc, Expr *LockExp) {
LockID Lock(LockExp);
LockData NewLockData(LockLoc);
if (LSet.contains(Lock))
S.Diag(LockLoc, diag::warn_double_lock) << Lock.getName();
LSet = LocksetFactory.add(LSet, Lock, NewLockData);
}
/// \brief Remove a lock from the lockset, warning if the lock is not there.
/// \param LockExp The lock expression corresponding to the lock to be removed
/// \param UnlockLoc The source location of the unlock (only used in error msg)
void BuildLockset::removeLock(SourceLocation UnlockLoc, Expr *LockExp) {
LockID Lock(LockExp);
Lockset NewLSet = LocksetFactory.remove(LSet, Lock);
if(NewLSet == LSet)
S.Diag(UnlockLoc, diag::warn_unlock_but_no_acquire) << Lock.getName();
LSet = NewLSet;
}
/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
return DR->getDecl();
if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
return ME->getMemberDecl();
return 0;
}
/// \brief This method identifies variable dereferences and checks pt_guarded_by
/// and pt_guarded_var annotations. Note that we only check these annotations
/// at the time a pointer is dereferenced.
/// FIXME: We need to check for other types of pointer dereferences
/// (e.g. [], ->) and deal with them here.
/// \param Exp An expression that has been read or written.
void BuildLockset::checkDereference(Expr *Exp) {
UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
if (!UO || UO->getOpcode() != clang::UO_Deref)
return;
Exp = UO->getSubExpr()->IgnoreParenCasts();
const ValueDecl *D = getValueDecl(Exp);
if(!D || !D->hasAttrs())
return;
if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
S.Diag(Exp->getExprLoc(), diag::warn_var_deref_requires_any_lock)
<< D->getName();
const AttrVec &ArgAttrs = D->getAttrs();
for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i) {
if (ArgAttrs[i]->getKind() != attr::PtGuardedBy)
continue;
PtGuardedByAttr *PGBAttr = cast<PtGuardedByAttr>(ArgAttrs[i]);
LockID Lock(PGBAttr->getArg());
if (!LSet.contains(Lock))
S.Diag(Exp->getExprLoc(), diag::warn_var_deref_requires_lock)
<< D->getName() << Lock.getName();
}
}
/// \brief Checks guarded_by and guarded_var attributes.
/// Whenever we identify an access (read or write) of a DeclRefExpr or
/// MemberExpr, we need to check whether there are any guarded_by or
/// guarded_var attributes, and make sure we hold the appropriate locks.
void BuildLockset::checkAccess(Expr *Exp) {
const ValueDecl *D = getValueDecl(Exp);
if(!D || !D->hasAttrs())
return;
if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
S.Diag(Exp->getExprLoc(), diag::warn_variable_requires_any_lock)
<< D->getName();
const AttrVec &ArgAttrs = D->getAttrs();
for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i) {
if (ArgAttrs[i]->getKind() != attr::GuardedBy)
continue;
GuardedByAttr *GBAttr = cast<GuardedByAttr>(ArgAttrs[i]);
LockID Lock(GBAttr->getArg());
if (!LSet.contains(Lock))
S.Diag(Exp->getExprLoc(), diag::warn_variable_requires_lock)
<< D->getName() << Lock.getName();
}
}
/// \brief For unary operations which read and write a variable, we need to
/// check whether we hold any required locks. Reads are checked in
/// VisitCastExpr.
void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
switch (UO->getOpcode()) {
case clang::UO_PostDec:
case clang::UO_PostInc:
case clang::UO_PreDec:
case clang::UO_PreInc: {
Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
checkAccess(SubExp);
checkDereference(SubExp);
break;
}
default:
break;
}
}
/// For binary operations which assign to a variable (writes), we need to check
/// whether we hold any required locks.
/// FIXME: Deal with non-primitive types.
void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
if (!BO->isAssignmentOp())
return;
Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
checkAccess(LHSExp);
checkDereference(LHSExp);
}
/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
/// need to ensure we hold any required locks.
/// FIXME: Deal with non-primitive types.
void BuildLockset::VisitCastExpr(CastExpr *CE) {
if (CE->getCastKind() != CK_LValueToRValue)
return;
Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
checkAccess(SubExp);
checkDereference(SubExp);
}
/// \brief When visiting CXXMemberCallExprs we need to examine the attributes on
/// the method that is being called and add, remove or check locks in the
/// lockset accordingly.
///
/// FIXME: For classes annotated with one of the guarded annotations, we need
/// to treat const method calls as reads and non-const method calls as writes,
/// and check that the appropriate locks are held. Non-const method calls with
/// the same signature as const method calls can be also treated as reads.
void BuildLockset::VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp) {
NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
SourceLocation ExpLocation = Exp->getExprLoc();
Expr *Parent = Exp->getImplicitObjectArgument();
if(!D || !D->hasAttrs())
return;
AttrVec &ArgAttrs = D->getAttrs();
for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
Attr *Attr = ArgAttrs[i];
switch (Attr->getKind()) {
// When we encounter an exclusive lock function, we need to add the lock
// to our lockset.
case attr::ExclusiveLockFunction: {
ExclusiveLockFunctionAttr *ELFAttr =
cast<ExclusiveLockFunctionAttr>(Attr);
if (ELFAttr->args_size() == 0) {// The lock held is the "this" object.
addLock(ExpLocation, Parent);
break;
}
for (ExclusiveLockFunctionAttr::args_iterator I = ELFAttr->args_begin(),
E = ELFAttr->args_end(); I != E; ++I)
addLock(ExpLocation, *I);
// FIXME: acquired_after/acquired_before annotations
break;
}
// When we encounter an unlock function, we need to remove unlocked locks
// from the lockset, and flag a warning if they are not there.
case attr::UnlockFunction: {
UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
if (UFAttr->args_size() == 0) { // The lock held is the "this" object.
removeLock(ExpLocation, Parent);
break;
}
for (UnlockFunctionAttr::args_iterator I = UFAttr->args_begin(),
E = UFAttr->args_end(); I != E; ++I)
removeLock(ExpLocation, *I);
break;
}
// Ignore other (non thread-safety) attributes
default:
break;
}
}
}
typedef std::pair<SourceLocation, PartialDiagnostic> DelayedDiag;
typedef llvm::SmallVector<DelayedDiag, 4> DiagList;
struct SortDiagBySourceLocation {
Sema &S;
SortDiagBySourceLocation(Sema &S) : S(S) {}
bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
// Although this call will be slow, this is only called when outputting
// multiple warnings.
return S.getSourceManager().isBeforeInTranslationUnit(left.first,
right.first);
}
};
} // end anonymous namespace
/// \brief Emit all buffered diagnostics in order of sourcelocation.
/// We need to output diagnostics produced while iterating through
/// the lockset in deterministic order, so this function orders diagnostics
/// and outputs them.
static void EmitDiagnostics(Sema &S, DiagList &D) {
SortDiagBySourceLocation SortDiagBySL(S);
sort(D.begin(), D.end(), SortDiagBySL);
for (DiagList::iterator I = D.begin(), E = D.end(); I != E; ++I)
S.Diag(I->first, I->second);
}
/// \brief Compute the intersection of two locksets and issue warnings for any
/// locks in the symmetric difference.
///
/// This function is used at a merge point in the CFG when comparing the lockset
/// of each branch being merged. For example, given the following sequence:
/// A; if () then B; else C; D; we need to check that the lockset after B and C
/// are the same. In the event of a difference, we use the intersection of these
/// two locksets at the start of D.
static Lockset intersectAndWarn(Sema &S, Lockset LSet1, Lockset LSet2,
Lockset::Factory &Fact) {
Lockset Intersection = LSet1;
DiagList Warnings;
for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
if (!LSet1.contains(I.getKey())) {
const LockID &MissingLock = I.getKey();
const LockData &MissingLockData = I.getData();
PartialDiagnostic Warning =
S.PDiag(diag::warn_lock_not_released_in_scope) << MissingLock.getName();
Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
}
}
for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
if (!LSet2.contains(I.getKey())) {
const LockID &MissingLock = I.getKey();
const LockData &MissingLockData = I.getData();
PartialDiagnostic Warning =
S.PDiag(diag::warn_lock_not_released_in_scope) << MissingLock.getName();
Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
Intersection = Fact.remove(Intersection, MissingLock);
}
}
EmitDiagnostics(S, Warnings);
return Intersection;
}
/// \brief Returns the location of the first Stmt in a Block.
static SourceLocation getFirstStmtLocation(CFGBlock *Block) {
SourceLocation Loc;
for (CFGBlock::const_iterator BI = Block->begin(), BE = Block->end();
BI != BE; ++BI) {
if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&(*BI))) {
Loc = CfgStmt->getStmt()->getLocStart();
if (Loc.isValid()) return Loc;
}
}
if (Stmt *S = Block->getTerminator().getStmt()) {
Loc = S->getLocStart();
if (Loc.isValid()) return Loc;
}
return Loc;
}
/// \brief Warn about different locksets along backedges of loops.
/// This function is called when we encounter a back edge. At that point,
/// we need to verify that the lockset before taking the backedge is the
/// same as the lockset before entering the loop.
///
/// \param LoopEntrySet Locks held before starting the loop
/// \param LoopReentrySet Locks held in the last CFG block of the loop
static void warnBackEdgeUnequalLocksets(Sema &S, const Lockset LoopReentrySet,
const Lockset LoopEntrySet,
SourceLocation FirstLocInLoop) {
assert(FirstLocInLoop.isValid());
DiagList Warnings;
// Warn for locks held at the start of the loop, but not the end.
for (Lockset::iterator I = LoopEntrySet.begin(), E = LoopEntrySet.end();
I != E; ++I) {
if (!LoopReentrySet.contains(I.getKey())) {
const LockID &MissingLock = I.getKey();
// We report this error at the location of the first statement in a loop
PartialDiagnostic Warning =
S.PDiag(diag::warn_expecting_lock_held_on_loop)
<< MissingLock.getName();
Warnings.push_back(DelayedDiag(FirstLocInLoop, Warning));
}
}
// Warn for locks held at the end of the loop, but not at the start.
for (Lockset::iterator I = LoopReentrySet.begin(), E = LoopReentrySet.end();
I != E; ++I) {
if (!LoopEntrySet.contains(I.getKey())) {
const LockID &MissingLock = I.getKey();
const LockData &MissingLockData = I.getData();
PartialDiagnostic Warning =
S.PDiag(diag::warn_lock_not_released_in_scope) << MissingLock.getName();
Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
}
}
EmitDiagnostics(S, Warnings);
}
/// \brief Check a function's CFG for thread-safety violations.
///
/// We traverse the blocks in the CFG, compute the set of locks that are held
/// at the end of each block, and issue warnings for thread safety violations.
/// Each block in the CFG is traversed exactly once.
static void checkThreadSafety(Sema &S, AnalysisContext &AC) {
CFG *CFGraph = AC.getCFG();
if (!CFGraph) return;
Lockset::Factory LocksetFactory;
// FIXME: Swith to SmallVector? Otherwise improve performance impact?
std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
LocksetFactory.getEmptyMap());
std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
LocksetFactory.getEmptyMap());
// We need to explore the CFG via a "topological" ordering.
// That way, we will be guaranteed to have information about required
// predecessor locksets when exploring a new block.
TopologicallySortedCFG SortedGraph(CFGraph);
CFGBlockSet VisitedBlocks(CFGraph);
for (TopologicallySortedCFG::iterator I = SortedGraph.begin(),
E = SortedGraph.end(); I!= E; ++I) {
const CFGBlock *CurrBlock = *I;
int CurrBlockID = CurrBlock->getBlockID();
VisitedBlocks.insert(CurrBlock);
// Use the default initial lockset in case there are no predecessors.
Lockset &Entryset = EntryLocksets[CurrBlockID];
Lockset &Exitset = ExitLocksets[CurrBlockID];
// Iterate through the predecessor blocks and warn if the lockset for all
// predecessors is not the same. We take the entry lockset of the current
// block to be the intersection of all previous locksets.
// FIXME: By keeping the intersection, we may output more errors in future
// for a lock which is not in the intersection, but was in the union. We
// may want to also keep the union in future. As an example, let's say
// the intersection contains Lock L, and the union contains L and M.
// Later we unlock M. At this point, we would output an error because we
// never locked M; although the real error is probably that we forgot to
// lock M on all code paths. Conversely, let's say that later we lock M.
// In this case, we should compare against the intersection instead of the
// union because the real error is probably that we forgot to unlock M on
// all code paths.
bool LocksetInitialized = false;
for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
PE = CurrBlock->pred_end(); PI != PE; ++PI) {
// if *PI -> CurrBlock is a back edge
if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
continue;
int PrevBlockID = (*PI)->getBlockID();
if (!LocksetInitialized) {
Entryset = ExitLocksets[PrevBlockID];
LocksetInitialized = true;
} else {
Entryset = intersectAndWarn(S, Entryset, ExitLocksets[PrevBlockID],
LocksetFactory);
}
}
BuildLockset LocksetBuilder(S, Entryset, LocksetFactory);
for (CFGBlock::const_iterator BI = CurrBlock->begin(),
BE = CurrBlock->end(); BI != BE; ++BI) {
if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&*BI))
LocksetBuilder.Visit(const_cast<Stmt*>(CfgStmt->getStmt()));
}
Exitset = LocksetBuilder.getLockset();
// For every back edge from CurrBlock (the end of the loop) to another block
// (FirstLoopBlock) we need to check that the Lockset of Block is equal to
// the one held at the beginning of FirstLoopBlock. We can look up the
// Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
SE = CurrBlock->succ_end(); SI != SE; ++SI) {
// if CurrBlock -> *SI is *not* a back edge
if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
continue;
CFGBlock *FirstLoopBlock = *SI;
SourceLocation FirstLoopLocation = getFirstStmtLocation(FirstLoopBlock);
assert(FirstLoopLocation.isValid());
// Fail gracefully in release code.
if (!FirstLoopLocation.isValid())
continue;
Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
Lockset LoopEnd = ExitLocksets[CurrBlockID];
warnBackEdgeUnequalLocksets(S, LoopEnd, PreLoop, FirstLoopLocation);
}
}
Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
if (!FinalLockset.isEmpty()) {
DiagList Warnings;
for (Lockset::iterator I=FinalLockset.begin(), E=FinalLockset.end();
I != E; ++I) {
const LockID &MissingLock = I.getKey();
const LockData &MissingLockData = I.getData();
std::string FunName = "<unknown>";
if (const NamedDecl *ContextDecl = dyn_cast<NamedDecl>(AC.getDecl())) {
FunName = ContextDecl->getDeclName().getAsString();
}
PartialDiagnostic Warning =
S.PDiag(diag::warn_locks_not_released)
<< MissingLock.getName() << FunName;
Warnings.push_back(DelayedDiag(MissingLockData.AcquireLoc, Warning));
}
EmitDiagnostics(S, Warnings);
}
}
//===----------------------------------------------------------------------===//
// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
// warnings on a function, method, or block.
//===----------------------------------------------------------------------===//
clang::sema::AnalysisBasedWarnings::Policy::Policy() {
enableCheckFallThrough = 1;
enableCheckUnreachable = 0;
enableThreadSafetyAnalysis = 0;
}
clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
: S(s),
NumFunctionsAnalyzed(0),
NumFunctionsWithBadCFGs(0),
NumCFGBlocks(0),
MaxCFGBlocksPerFunction(0),
NumUninitAnalysisFunctions(0),
NumUninitAnalysisVariables(0),
MaxUninitAnalysisVariablesPerFunction(0),
NumUninitAnalysisBlockVisits(0),
MaxUninitAnalysisBlockVisitsPerFunction(0) {
Diagnostic &D = S.getDiagnostics();
DefaultPolicy.enableCheckUnreachable = (unsigned)
(D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) !=
Diagnostic::Ignored);
DefaultPolicy.enableThreadSafetyAnalysis = (unsigned)
(D.getDiagnosticLevel(diag::warn_double_lock, SourceLocation()) !=
Diagnostic::Ignored);
}
static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) {
for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
i = fscope->PossiblyUnreachableDiags.begin(),
e = fscope->PossiblyUnreachableDiags.end();
i != e; ++i) {
const sema::PossiblyUnreachableDiag &D = *i;
S.Diag(D.Loc, D.PD);
}
}
void clang::sema::
AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
sema::FunctionScopeInfo *fscope,
const Decl *D, const BlockExpr *blkExpr) {
// We avoid doing analysis-based warnings when there are errors for
// two reasons:
// (1) The CFGs often can't be constructed (if the body is invalid), so
// don't bother trying.
// (2) The code already has problems; running the analysis just takes more
// time.
Diagnostic &Diags = S.getDiagnostics();
// Do not do any analysis for declarations in system headers if we are
// going to just ignore them.
if (Diags.getSuppressSystemWarnings() &&
S.SourceMgr.isInSystemHeader(D->getLocation()))
return;
// For code in dependent contexts, we'll do this at instantiation time.
if (cast<DeclContext>(D)->isDependentContext())
return;
if (Diags.hasErrorOccurred() || Diags.hasFatalErrorOccurred()) {
// Flush out any possibly unreachable diagnostics.
flushDiagnostics(S, fscope);
return;
}
const Stmt *Body = D->getBody();
assert(Body);
AnalysisContext AC(D, 0);
// Don't generate EH edges for CallExprs as we'd like to avoid the n^2
// explosion for destrutors that can result and the compile time hit.
AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
AC.getCFGBuildOptions().AddEHEdges = false;
AC.getCFGBuildOptions().AddInitializers = true;
AC.getCFGBuildOptions().AddImplicitDtors = true;
// Force that certain expressions appear as CFGElements in the CFG. This
// is used to speed up various analyses.
// FIXME: This isn't the right factoring. This is here for initial
// prototyping, but we need a way for analyses to say what expressions they
// expect to always be CFGElements and then fill in the BuildOptions
// appropriately. This is essentially a layering violation.
if (P.enableCheckUnreachable) {
// Unreachable code analysis requires a linearized CFG.
AC.getCFGBuildOptions().setAllAlwaysAdd();
}
else {
AC.getCFGBuildOptions()
.setAlwaysAdd(Stmt::BinaryOperatorClass)
.setAlwaysAdd(Stmt::BlockExprClass)
.setAlwaysAdd(Stmt::CStyleCastExprClass)
.setAlwaysAdd(Stmt::DeclRefExprClass)
.setAlwaysAdd(Stmt::ImplicitCastExprClass)
.setAlwaysAdd(Stmt::UnaryOperatorClass);
}
// Construct the analysis context with the specified CFG build options.
// Emit delayed diagnostics.
if (!fscope->PossiblyUnreachableDiags.empty()) {
bool analyzed = false;
// Register the expressions with the CFGBuilder.
for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
i = fscope->PossiblyUnreachableDiags.begin(),
e = fscope->PossiblyUnreachableDiags.end();
i != e; ++i) {
if (const Stmt *stmt = i->stmt)
AC.registerForcedBlockExpression(stmt);
}
if (AC.getCFG()) {
analyzed = true;
for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
i = fscope->PossiblyUnreachableDiags.begin(),
e = fscope->PossiblyUnreachableDiags.end();
i != e; ++i)
{
const sema::PossiblyUnreachableDiag &D = *i;
bool processed = false;
if (const Stmt *stmt = i->stmt) {
const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt);
assert(block);
if (CFGReverseBlockReachabilityAnalysis *cra = AC.getCFGReachablityAnalysis()) {
// Can this block be reached from the entrance?
if (cra->isReachable(&AC.getCFG()->getEntry(), block))
S.Diag(D.Loc, D.PD);
processed = true;
}
}
if (!processed) {
// Emit the warning anyway if we cannot map to a basic block.
S.Diag(D.Loc, D.PD);
}
}
}
if (!analyzed)
flushDiagnostics(S, fscope);
}
// Warning: check missing 'return'
if (P.enableCheckFallThrough) {
const CheckFallThroughDiagnostics &CD =
(isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
: CheckFallThroughDiagnostics::MakeForFunction(D));
CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
}
// Warning: check for unreachable code
if (P.enableCheckUnreachable)
CheckUnreachable(S, AC);
// Check for thread safety violations
if (P.enableThreadSafetyAnalysis)
checkThreadSafety(S, AC);
if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart())
!= Diagnostic::Ignored ||
Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart())
!= Diagnostic::Ignored) {
if (CFG *cfg = AC.getCFG()) {
UninitValsDiagReporter reporter(S);
UninitVariablesAnalysisStats stats;
std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
reporter, stats);
if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
++NumUninitAnalysisFunctions;
NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
MaxUninitAnalysisVariablesPerFunction =
std::max(MaxUninitAnalysisVariablesPerFunction,
stats.NumVariablesAnalyzed);
MaxUninitAnalysisBlockVisitsPerFunction =
std::max(MaxUninitAnalysisBlockVisitsPerFunction,
stats.NumBlockVisits);
}
}
}
// Collect statistics about the CFG if it was built.
if (S.CollectStats && AC.isCFGBuilt()) {
++NumFunctionsAnalyzed;
if (CFG *cfg = AC.getCFG()) {
// If we successfully built a CFG for this context, record some more
// detail information about it.
NumCFGBlocks += cfg->getNumBlockIDs();
MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
cfg->getNumBlockIDs());
} else {
++NumFunctionsWithBadCFGs;
}
}
}
void clang::sema::AnalysisBasedWarnings::PrintStats() const {
llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
unsigned AvgCFGBlocksPerFunction =
!NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
<< NumFunctionsWithBadCFGs << " w/o CFGs).\n"
<< " " << NumCFGBlocks << " CFG blocks built.\n"
<< " " << AvgCFGBlocksPerFunction
<< " average CFG blocks per function.\n"
<< " " << MaxCFGBlocksPerFunction
<< " max CFG blocks per function.\n";
unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
: NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
: NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
llvm::errs() << NumUninitAnalysisFunctions
<< " functions analyzed for uninitialiazed variables\n"
<< " " << NumUninitAnalysisVariables << " variables analyzed.\n"
<< " " << AvgUninitVariablesPerFunction
<< " average variables per function.\n"
<< " " << MaxUninitAnalysisVariablesPerFunction
<< " max variables per function.\n"
<< " " << NumUninitAnalysisBlockVisits << " block visits.\n"
<< " " << AvgUninitBlockVisitsPerFunction
<< " average block visits per function.\n"
<< " " << MaxUninitAnalysisBlockVisitsPerFunction
<< " max block visits per function.\n";
}