llvm-project/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp

889 lines
31 KiB
C++

//===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a TargetTransformInfo analysis pass specific to the
// SystemZ target machine. It uses the target's detailed information to provide
// more precise answers to certain TTI queries, while letting the target
// independent and default TTI implementations handle the rest.
//
//===----------------------------------------------------------------------===//
#include "SystemZTargetTransformInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/CostTable.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;
#define DEBUG_TYPE "systemztti"
//===----------------------------------------------------------------------===//
//
// SystemZ cost model.
//
//===----------------------------------------------------------------------===//
int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
// There is no cost model for constants with a bit size of 0. Return TCC_Free
// here, so that constant hoisting will ignore this constant.
if (BitSize == 0)
return TTI::TCC_Free;
// No cost model for operations on integers larger than 64 bit implemented yet.
if (BitSize > 64)
return TTI::TCC_Free;
if (Imm == 0)
return TTI::TCC_Free;
if (Imm.getBitWidth() <= 64) {
// Constants loaded via lgfi.
if (isInt<32>(Imm.getSExtValue()))
return TTI::TCC_Basic;
// Constants loaded via llilf.
if (isUInt<32>(Imm.getZExtValue()))
return TTI::TCC_Basic;
// Constants loaded via llihf:
if ((Imm.getZExtValue() & 0xffffffff) == 0)
return TTI::TCC_Basic;
return 2 * TTI::TCC_Basic;
}
return 4 * TTI::TCC_Basic;
}
int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty) {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
// There is no cost model for constants with a bit size of 0. Return TCC_Free
// here, so that constant hoisting will ignore this constant.
if (BitSize == 0)
return TTI::TCC_Free;
// No cost model for operations on integers larger than 64 bit implemented yet.
if (BitSize > 64)
return TTI::TCC_Free;
switch (Opcode) {
default:
return TTI::TCC_Free;
case Instruction::GetElementPtr:
// Always hoist the base address of a GetElementPtr. This prevents the
// creation of new constants for every base constant that gets constant
// folded with the offset.
if (Idx == 0)
return 2 * TTI::TCC_Basic;
return TTI::TCC_Free;
case Instruction::Store:
if (Idx == 0 && Imm.getBitWidth() <= 64) {
// Any 8-bit immediate store can by implemented via mvi.
if (BitSize == 8)
return TTI::TCC_Free;
// 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
if (isInt<16>(Imm.getSExtValue()))
return TTI::TCC_Free;
}
break;
case Instruction::ICmp:
if (Idx == 1 && Imm.getBitWidth() <= 64) {
// Comparisons against signed 32-bit immediates implemented via cgfi.
if (isInt<32>(Imm.getSExtValue()))
return TTI::TCC_Free;
// Comparisons against unsigned 32-bit immediates implemented via clgfi.
if (isUInt<32>(Imm.getZExtValue()))
return TTI::TCC_Free;
}
break;
case Instruction::Add:
case Instruction::Sub:
if (Idx == 1 && Imm.getBitWidth() <= 64) {
// We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
if (isUInt<32>(Imm.getZExtValue()))
return TTI::TCC_Free;
// Or their negation, by swapping addition vs. subtraction.
if (isUInt<32>(-Imm.getSExtValue()))
return TTI::TCC_Free;
}
break;
case Instruction::Mul:
if (Idx == 1 && Imm.getBitWidth() <= 64) {
// We use msgfi to multiply by 32-bit signed immediates.
if (isInt<32>(Imm.getSExtValue()))
return TTI::TCC_Free;
}
break;
case Instruction::Or:
case Instruction::Xor:
if (Idx == 1 && Imm.getBitWidth() <= 64) {
// Masks supported by oilf/xilf.
if (isUInt<32>(Imm.getZExtValue()))
return TTI::TCC_Free;
// Masks supported by oihf/xihf.
if ((Imm.getZExtValue() & 0xffffffff) == 0)
return TTI::TCC_Free;
}
break;
case Instruction::And:
if (Idx == 1 && Imm.getBitWidth() <= 64) {
// Any 32-bit AND operation can by implemented via nilf.
if (BitSize <= 32)
return TTI::TCC_Free;
// 64-bit masks supported by nilf.
if (isUInt<32>(~Imm.getZExtValue()))
return TTI::TCC_Free;
// 64-bit masks supported by nilh.
if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
return TTI::TCC_Free;
// Some 64-bit AND operations can be implemented via risbg.
const SystemZInstrInfo *TII = ST->getInstrInfo();
unsigned Start, End;
if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
return TTI::TCC_Free;
}
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
// Always return TCC_Free for the shift value of a shift instruction.
if (Idx == 1)
return TTI::TCC_Free;
break;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::IntToPtr:
case Instruction::PtrToInt:
case Instruction::BitCast:
case Instruction::PHI:
case Instruction::Call:
case Instruction::Select:
case Instruction::Ret:
case Instruction::Load:
break;
}
return SystemZTTIImpl::getIntImmCost(Imm, Ty);
}
int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty) {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
// There is no cost model for constants with a bit size of 0. Return TCC_Free
// here, so that constant hoisting will ignore this constant.
if (BitSize == 0)
return TTI::TCC_Free;
// No cost model for operations on integers larger than 64 bit implemented yet.
if (BitSize > 64)
return TTI::TCC_Free;
switch (IID) {
default:
return TTI::TCC_Free;
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
// These get expanded to include a normal addition/subtraction.
if (Idx == 1 && Imm.getBitWidth() <= 64) {
if (isUInt<32>(Imm.getZExtValue()))
return TTI::TCC_Free;
if (isUInt<32>(-Imm.getSExtValue()))
return TTI::TCC_Free;
}
break;
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
// These get expanded to include a normal multiplication.
if (Idx == 1 && Imm.getBitWidth() <= 64) {
if (isInt<32>(Imm.getSExtValue()))
return TTI::TCC_Free;
}
break;
case Intrinsic::experimental_stackmap:
if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TTI::TCC_Free;
break;
case Intrinsic::experimental_patchpoint_void:
case Intrinsic::experimental_patchpoint_i64:
if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TTI::TCC_Free;
break;
}
return SystemZTTIImpl::getIntImmCost(Imm, Ty);
}
TargetTransformInfo::PopcntSupportKind
SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
if (ST->hasPopulationCount() && TyWidth <= 64)
return TTI::PSK_FastHardware;
return TTI::PSK_Software;
}
void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP) {
// Find out if L contains a call, what the machine instruction count
// estimate is, and how many stores there are.
bool HasCall = false;
unsigned NumStores = 0;
for (auto &BB : L->blocks())
for (auto &I : *BB) {
if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
ImmutableCallSite CS(&I);
if (const Function *F = CS.getCalledFunction()) {
if (isLoweredToCall(F))
HasCall = true;
if (F->getIntrinsicID() == Intrinsic::memcpy ||
F->getIntrinsicID() == Intrinsic::memset)
NumStores++;
} else { // indirect call.
HasCall = true;
}
}
if (isa<StoreInst>(&I)) {
Type *MemAccessTy = I.getOperand(0)->getType();
NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0);
}
}
// The z13 processor will run out of store tags if too many stores
// are fed into it too quickly. Therefore make sure there are not
// too many stores in the resulting unrolled loop.
unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX);
if (HasCall) {
// Only allow full unrolling if loop has any calls.
UP.FullUnrollMaxCount = Max;
UP.MaxCount = 1;
return;
}
UP.MaxCount = Max;
if (UP.MaxCount <= 1)
return;
// Allow partial and runtime trip count unrolling.
UP.Partial = UP.Runtime = true;
UP.PartialThreshold = 75;
UP.DefaultUnrollRuntimeCount = 4;
// Allow expensive instructions in the pre-header of the loop.
UP.AllowExpensiveTripCount = true;
UP.Force = true;
}
unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) {
if (!Vector)
// Discount the stack pointer. Also leave out %r0, since it can't
// be used in an address.
return 14;
if (ST->hasVector())
return 32;
return 0;
}
unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
if (!Vector)
return 64;
if (ST->hasVector())
return 128;
return 0;
}
int SystemZTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty,
TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
TTI::OperandValueProperties Opd1PropInfo,
TTI::OperandValueProperties Opd2PropInfo,
ArrayRef<const Value *> Args) {
// TODO: return a good value for BB-VECTORIZER that includes the
// immediate loads, which we do not want to count for the loop
// vectorizer, since they are hopefully hoisted out of the loop. This
// would require a new parameter 'InLoop', but not sure if constant
// args are common enough to motivate this.
unsigned ScalarBits = Ty->getScalarSizeInBits();
// Div with a constant which is a power of 2 will be converted by
// DAGCombiner to use shifts. With vector shift-element instructions, a
// vector sdiv costs about as much as a scalar one.
const unsigned SDivCostEstimate = 4;
bool SDivPow2 = false;
bool UDivPow2 = false;
if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv) &&
Args.size() == 2) {
const ConstantInt *CI = nullptr;
if (const Constant *C = dyn_cast<Constant>(Args[1])) {
if (C->getType()->isVectorTy())
CI = dyn_cast_or_null<const ConstantInt>(C->getSplatValue());
else
CI = dyn_cast<const ConstantInt>(C);
}
if (CI != nullptr &&
(CI->getValue().isPowerOf2() || (-CI->getValue()).isPowerOf2())) {
if (Opcode == Instruction::SDiv)
SDivPow2 = true;
else
UDivPow2 = true;
}
}
if (Ty->isVectorTy()) {
assert (ST->hasVector() && "getArithmeticInstrCost() called with vector type.");
unsigned VF = Ty->getVectorNumElements();
unsigned NumVectors = getNumberOfParts(Ty);
// These vector operations are custom handled, but are still supported
// with one instruction per vector, regardless of element size.
if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
Opcode == Instruction::AShr || UDivPow2) {
return NumVectors;
}
if (SDivPow2)
return (NumVectors * SDivCostEstimate);
// These FP operations are supported with a single vector instruction for
// double (base implementation assumes float generally costs 2). For
// FP128, the scalar cost is 1, and there is no overhead since the values
// are already in scalar registers.
if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
switch (ScalarBits) {
case 32: {
// Return the cost of multiple scalar invocation plus the cost of
// inserting and extracting the values.
unsigned ScalarCost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args);
// FIXME: VF 2 for these FP operations are currently just as
// expensive as for VF 4.
if (VF == 2)
Cost *= 2;
return Cost;
}
case 64:
case 128:
return NumVectors;
default:
break;
}
}
// There is no native support for FRem.
if (Opcode == Instruction::FRem) {
unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args);
// FIXME: VF 2 for float is currently just as expensive as for VF 4.
if (VF == 2 && ScalarBits == 32)
Cost *= 2;
return Cost;
}
}
else { // Scalar:
// These FP operations are supported with a dedicated instruction for
// float, double and fp128 (base implementation assumes float generally
// costs 2).
if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
return 1;
// There is no native support for FRem.
if (Opcode == Instruction::FRem)
return LIBCALL_COST;
if (Opcode == Instruction::LShr || Opcode == Instruction::AShr)
return (ScalarBits >= 32 ? 1 : 2 /*ext*/);
// Or requires one instruction, although it has custom handling for i64.
if (Opcode == Instruction::Or)
return 1;
if (Opcode == Instruction::Xor && ScalarBits == 1)
// 2 * ipm sequences ; xor ; shift ; compare
return 7;
if (UDivPow2)
return 1;
if (SDivPow2)
return SDivCostEstimate;
// An extra extension for narrow types is needed.
if ((Opcode == Instruction::SDiv || Opcode == Instruction::SRem))
// sext of op(s) for narrow types
return (ScalarBits < 32 ? 4 : (ScalarBits == 32 ? 2 : 1));
if (Opcode == Instruction::UDiv || Opcode == Instruction::URem)
// Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r
return (ScalarBits < 32 ? 4 : 2);
}
// Fallback to the default implementation.
return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
Opd1PropInfo, Opd2PropInfo, Args);
}
int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
Type *SubTp) {
assert (Tp->isVectorTy());
assert (ST->hasVector() && "getShuffleCost() called.");
unsigned NumVectors = getNumberOfParts(Tp);
// TODO: Since fp32 is expanded, the shuffle cost should always be 0.
// FP128 values are always in scalar registers, so there is no work
// involved with a shuffle, except for broadcast. In that case register
// moves are done with a single instruction per element.
if (Tp->getScalarType()->isFP128Ty())
return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
switch (Kind) {
case TargetTransformInfo::SK_ExtractSubvector:
// ExtractSubvector Index indicates start offset.
// Extracting a subvector from first index is a noop.
return (Index == 0 ? 0 : NumVectors);
case TargetTransformInfo::SK_Broadcast:
// Loop vectorizer calls here to figure out the extra cost of
// broadcasting a loaded value to all elements of a vector. Since vlrep
// loads and replicates with a single instruction, adjust the returned
// value.
return NumVectors - 1;
default:
// SystemZ supports single instruction permutation / replication.
return NumVectors;
}
return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
}
// Return the log2 difference of the element sizes of the two vector types.
static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
unsigned Bits0 = Ty0->getScalarSizeInBits();
unsigned Bits1 = Ty1->getScalarSizeInBits();
if (Bits1 > Bits0)
return (Log2_32(Bits1) - Log2_32(Bits0));
return (Log2_32(Bits0) - Log2_32(Bits1));
}
// Return the number of instructions needed to truncate SrcTy to DstTy.
unsigned SystemZTTIImpl::
getVectorTruncCost(Type *SrcTy, Type *DstTy) {
assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
"Packing must reduce size of vector type.");
assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() &&
"Packing should not change number of elements.");
// TODO: Since fp32 is expanded, the extract cost should always be 0.
unsigned NumParts = getNumberOfParts(SrcTy);
if (NumParts <= 2)
// Up to 2 vector registers can be truncated efficiently with pack or
// permute. The latter requires an immediate mask to be loaded, which
// typically gets hoisted out of a loop. TODO: return a good value for
// BB-VECTORIZER that includes the immediate loads, which we do not want
// to count for the loop vectorizer.
return 1;
unsigned Cost = 0;
unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
unsigned VF = SrcTy->getVectorNumElements();
for (unsigned P = 0; P < Log2Diff; ++P) {
if (NumParts > 1)
NumParts /= 2;
Cost += NumParts;
}
// Currently, a general mix of permutes and pack instructions is output by
// isel, which follow the cost computation above except for this case which
// is one instruction less:
if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
DstTy->getScalarSizeInBits() == 8)
Cost--;
return Cost;
}
// Return the cost of converting a vector bitmask produced by a compare
// (SrcTy), to the type of the select or extend instruction (DstTy).
unsigned SystemZTTIImpl::
getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
"Should only be called with vector types.");
unsigned PackCost = 0;
unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
unsigned DstScalarBits = DstTy->getScalarSizeInBits();
unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
if (SrcScalarBits > DstScalarBits)
// The bitmask will be truncated.
PackCost = getVectorTruncCost(SrcTy, DstTy);
else if (SrcScalarBits < DstScalarBits) {
unsigned DstNumParts = getNumberOfParts(DstTy);
// Each vector select needs its part of the bitmask unpacked.
PackCost = Log2Diff * DstNumParts;
// Extra cost for moving part of mask before unpacking.
PackCost += DstNumParts - 1;
}
return PackCost;
}
// Return the type of the compared operands. This is needed to compute the
// cost for a Select / ZExt or SExt instruction.
static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
Type *OpTy = nullptr;
if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
OpTy = CI->getOperand(0)->getType();
else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
if (LogicI->getNumOperands() == 2)
if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
if (isa<CmpInst>(LogicI->getOperand(1)))
OpTy = CI0->getOperand(0)->getType();
if (OpTy != nullptr) {
if (VF == 1) {
assert (!OpTy->isVectorTy() && "Expected scalar type");
return OpTy;
}
// Return the potentially vectorized type based on 'I' and 'VF'. 'I' may
// be either scalar or already vectorized with a same or lesser VF.
Type *ElTy = OpTy->getScalarType();
return VectorType::get(ElTy, VF);
}
return nullptr;
}
int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
const Instruction *I) {
unsigned DstScalarBits = Dst->getScalarSizeInBits();
unsigned SrcScalarBits = Src->getScalarSizeInBits();
if (Src->isVectorTy()) {
assert (ST->hasVector() && "getCastInstrCost() called with vector type.");
assert (Dst->isVectorTy());
unsigned VF = Src->getVectorNumElements();
unsigned NumDstVectors = getNumberOfParts(Dst);
unsigned NumSrcVectors = getNumberOfParts(Src);
if (Opcode == Instruction::Trunc) {
if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
return 0; // Check for NOOP conversions.
return getVectorTruncCost(Src, Dst);
}
if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
if (SrcScalarBits >= 8) {
// ZExt/SExt will be handled with one unpack per doubling of width.
unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
// For types that spans multiple vector registers, some additional
// instructions are used to setup the unpacking.
unsigned NumSrcVectorOps =
(NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
: (NumDstVectors / 2));
return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
}
else if (SrcScalarBits == 1) {
// This should be extension of a compare i1 result.
// If we know what the widths of the compared operands, get the
// cost of converting it to Dst. Otherwise assume same widths.
unsigned Cost = 0;
Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
if (CmpOpTy != nullptr)
Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
if (Opcode == Instruction::ZExt)
// One 'vn' per dst vector with an immediate mask.
Cost += NumDstVectors;
return Cost;
}
}
if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
// TODO: Fix base implementation which could simplify things a bit here
// (seems to miss on differentiating on scalar/vector types).
// Only 64 bit vector conversions are natively supported.
if (SrcScalarBits == 64 && DstScalarBits == 64)
return NumDstVectors;
// Return the cost of multiple scalar invocation plus the cost of
// inserting and extracting the values. Base implementation does not
// realize float->int gets scalarized.
unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(),
Src->getScalarType());
unsigned TotCost = VF * ScalarCost;
bool NeedsInserts = true, NeedsExtracts = true;
// FP128 registers do not get inserted or extracted.
if (DstScalarBits == 128 &&
(Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
NeedsInserts = false;
if (SrcScalarBits == 128 &&
(Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
NeedsExtracts = false;
TotCost += getScalarizationOverhead(Dst, NeedsInserts, NeedsExtracts);
// FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
TotCost *= 2;
return TotCost;
}
if (Opcode == Instruction::FPTrunc) {
if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements.
return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false);
else // double -> float
return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
}
if (Opcode == Instruction::FPExt) {
if (SrcScalarBits == 32 && DstScalarBits == 64) {
// float -> double is very rare and currently unoptimized. Instead of
// using vldeb, which can do two at a time, all conversions are
// scalarized.
return VF * 2;
}
// -> fp128. VF * lxdb/lxeb + extraction of elements.
return VF + getScalarizationOverhead(Src, false, true);
}
}
else { // Scalar
assert (!Dst->isVectorTy());
if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)
return (SrcScalarBits >= 32 ? 1 : 2 /*i8/i16 extend*/);
if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
Src->isIntegerTy(1)) {
// This should be extension of a compare i1 result, which is done with
// ipm and a varying sequence of instructions.
unsigned Cost = 0;
if (Opcode == Instruction::SExt)
Cost = (DstScalarBits < 64 ? 3 : 4);
if (Opcode == Instruction::ZExt)
Cost = 3;
Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
// If operands of an fp-type was compared, this costs +1.
Cost++;
return Cost;
}
}
return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
}
int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
const Instruction *I) {
if (ValTy->isVectorTy()) {
assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type.");
unsigned VF = ValTy->getVectorNumElements();
// Called with a compare instruction.
if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
unsigned PredicateExtraCost = 0;
if (I != nullptr) {
// Some predicates cost one or two extra instructions.
switch (dyn_cast<CmpInst>(I)->getPredicate()) {
case CmpInst::Predicate::ICMP_NE:
case CmpInst::Predicate::ICMP_UGE:
case CmpInst::Predicate::ICMP_ULE:
case CmpInst::Predicate::ICMP_SGE:
case CmpInst::Predicate::ICMP_SLE:
PredicateExtraCost = 1;
break;
case CmpInst::Predicate::FCMP_ONE:
case CmpInst::Predicate::FCMP_ORD:
case CmpInst::Predicate::FCMP_UEQ:
case CmpInst::Predicate::FCMP_UNO:
PredicateExtraCost = 2;
break;
default:
break;
}
}
// Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
// floats. FIXME: <2 x float> generates same code as <4 x float>.
unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
unsigned NumVecs_cmp = getNumberOfParts(ValTy);
unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
return Cost;
}
else { // Called with a select instruction.
assert (Opcode == Instruction::Select);
// We can figure out the extra cost of packing / unpacking if the
// instruction was passed and the compare instruction is found.
unsigned PackCost = 0;
Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
if (CmpOpTy != nullptr)
PackCost =
getVectorBitmaskConversionCost(CmpOpTy, ValTy);
return getNumberOfParts(ValTy) /*vsel*/ + PackCost;
}
}
else { // Scalar
switch (Opcode) {
case Instruction::ICmp: {
unsigned Cost = 1;
if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
Cost += 2; // extend both operands
return Cost;
}
case Instruction::Select:
if (ValTy->isFloatingPointTy())
return 4; // No load on condition for FP, so this costs a conditional jump.
return 1; // Load On Condition.
}
}
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr);
}
int SystemZTTIImpl::
getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
// vlvgp will insert two grs into a vector register, so only count half the
// number of instructions.
if (Opcode == Instruction::InsertElement &&
Val->getScalarType()->isIntegerTy(64))
return ((Index % 2 == 0) ? 1 : 0);
if (Opcode == Instruction::ExtractElement) {
int Cost = ((Val->getScalarSizeInBits() == 1) ? 2 /*+test-under-mask*/ : 1);
// Give a slight penalty for moving out of vector pipeline to FXU unit.
if (Index == 0 && Val->getScalarType()->isIntegerTy())
Cost += 1;
return Cost;
}
return BaseT::getVectorInstrCost(Opcode, Val, Index);
}
int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment, unsigned AddressSpace,
const Instruction *I) {
assert(!Src->isVoidTy() && "Invalid type");
if (!Src->isVectorTy() && Opcode == Instruction::Load &&
I != nullptr && I->hasOneUse()) {
const Instruction *UserI = cast<Instruction>(*I->user_begin());
unsigned Bits = Src->getScalarSizeInBits();
bool FoldsLoad = false;
switch (UserI->getOpcode()) {
case Instruction::ICmp:
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
// This also makes sense for float operations, but disabled for now due
// to regressions.
// case Instruction::FCmp:
// case Instruction::FAdd:
// case Instruction::FSub:
// case Instruction::FMul:
// case Instruction::FDiv:
FoldsLoad = (Bits == 32 || Bits == 64);
break;
}
if (FoldsLoad) {
assert (UserI->getNumOperands() == 2 &&
"Expected to only handle binops.");
// UserI can't fold two loads, so in that case return 0 cost only
// half of the time.
for (unsigned i = 0; i < 2; ++i) {
if (UserI->getOperand(i) == I)
continue;
if (LoadInst *LI = dyn_cast<LoadInst>(UserI->getOperand(i))) {
if (LI->hasOneUse())
return i == 0;
}
}
return 0;
}
}
unsigned NumOps = getNumberOfParts(Src);
if (Src->getScalarSizeInBits() == 128)
// 128 bit scalars are held in a pair of two 64 bit registers.
NumOps *= 2;
return NumOps;
}
int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
unsigned Factor,
ArrayRef<unsigned> Indices,
unsigned Alignment,
unsigned AddressSpace) {
assert(isa<VectorType>(VecTy) &&
"Expect a vector type for interleaved memory op");
unsigned WideBits = (VecTy->isPtrOrPtrVectorTy() ?
(64U * VecTy->getVectorNumElements()) : VecTy->getPrimitiveSizeInBits());
assert (WideBits > 0 && "Could not compute size of vector");
int NumWideParts =
((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
// How many source vectors are handled to produce a vectorized operand?
int NumElsPerVector = (VecTy->getVectorNumElements() / NumWideParts);
int NumSrcParts =
((NumWideParts > NumElsPerVector) ? NumElsPerVector : NumWideParts);
// A Load group may have gaps.
unsigned NumOperands =
((Opcode == Instruction::Load) ? Indices.size() : Factor);
// Each needed permute takes two vectors as input.
if (NumSrcParts > 1)
NumSrcParts--;
int NumPermutes = NumSrcParts * NumOperands;
// Cost of load/store operations and the permutations needed.
return NumWideParts + NumPermutes;
}