forked from OSchip/llvm-project
2053 lines
71 KiB
C++
2053 lines
71 KiB
C++
//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a basic region store model. In this model, we do have field
|
|
// sensitivity. But we assume nothing about the heap shape. So recursive data
|
|
// structures are largely ignored. Basically we do 1-limiting analysis.
|
|
// Parameter pointers are assumed with no aliasing. Pointee objects of
|
|
// parameters are created lazily.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "clang/Checker/PathSensitive/MemRegion.h"
|
|
#include "clang/Analysis/AnalysisContext.h"
|
|
#include "clang/Checker/PathSensitive/GRState.h"
|
|
#include "clang/Checker/PathSensitive/GRStateTrait.h"
|
|
#include "clang/Analysis/Analyses/LiveVariables.h"
|
|
#include "clang/Analysis/Support/Optional.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
|
|
#include "llvm/ADT/ImmutableMap.h"
|
|
#include "llvm/ADT/ImmutableList.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace clang;
|
|
|
|
#define USE_EXPLICIT_COMPOUND 0
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Representation of binding keys.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class BindingKey {
|
|
public:
|
|
enum Kind { Direct = 0x0, Default = 0x1 };
|
|
private:
|
|
llvm ::PointerIntPair<const MemRegion*, 1> P;
|
|
uint64_t Offset;
|
|
|
|
explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
|
|
: P(r, (unsigned) k), Offset(offset) {}
|
|
public:
|
|
|
|
bool isDefault() const { return P.getInt() == Default; }
|
|
bool isDirect() const { return P.getInt() == Direct; }
|
|
|
|
const MemRegion *getRegion() const { return P.getPointer(); }
|
|
uint64_t getOffset() const { return Offset; }
|
|
|
|
void Profile(llvm::FoldingSetNodeID& ID) const {
|
|
ID.AddPointer(P.getOpaqueValue());
|
|
ID.AddInteger(Offset);
|
|
}
|
|
|
|
static BindingKey Make(const MemRegion *R, Kind k);
|
|
|
|
bool operator<(const BindingKey &X) const {
|
|
if (P.getOpaqueValue() < X.P.getOpaqueValue())
|
|
return true;
|
|
if (P.getOpaqueValue() > X.P.getOpaqueValue())
|
|
return false;
|
|
return Offset < X.Offset;
|
|
}
|
|
|
|
bool operator==(const BindingKey &X) const {
|
|
return P.getOpaqueValue() == X.P.getOpaqueValue() &&
|
|
Offset == X.Offset;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace llvm {
|
|
static inline
|
|
llvm::raw_ostream& operator<<(llvm::raw_ostream& os, BindingKey K) {
|
|
os << '(' << K.getRegion() << ',' << K.getOffset()
|
|
<< ',' << (K.isDirect() ? "direct" : "default")
|
|
<< ')';
|
|
return os;
|
|
}
|
|
} // end llvm namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Actual Store type.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Fine-grained control of RegionStoreManager.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct minimal_features_tag {};
|
|
struct maximal_features_tag {};
|
|
|
|
class RegionStoreFeatures {
|
|
bool SupportsFields;
|
|
bool SupportsRemaining;
|
|
|
|
public:
|
|
RegionStoreFeatures(minimal_features_tag) :
|
|
SupportsFields(false), SupportsRemaining(false) {}
|
|
|
|
RegionStoreFeatures(maximal_features_tag) :
|
|
SupportsFields(true), SupportsRemaining(false) {}
|
|
|
|
void enableFields(bool t) { SupportsFields = t; }
|
|
|
|
bool supportsFields() const { return SupportsFields; }
|
|
bool supportsRemaining() const { return SupportsRemaining; }
|
|
};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Region "Extents"
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// MemRegions represent chunks of memory with a size (their "extent"). This
|
|
// GDM entry tracks the extents for regions. Extents are in bytes.
|
|
//
|
|
namespace { class RegionExtents {}; }
|
|
static int RegionExtentsIndex = 0;
|
|
namespace clang {
|
|
template<> struct GRStateTrait<RegionExtents>
|
|
: public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*, SVal> > {
|
|
static void* GDMIndex() { return &RegionExtentsIndex; }
|
|
};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility functions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool IsAnyPointerOrIntptr(QualType ty, ASTContext &Ctx) {
|
|
if (ty->isAnyPointerType())
|
|
return true;
|
|
|
|
return ty->isIntegerType() && ty->isScalarType() &&
|
|
Ctx.getTypeSize(ty) == Ctx.getTypeSize(Ctx.VoidPtrTy);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Main RegionStore logic.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class RegionStoreSubRegionMap : public SubRegionMap {
|
|
public:
|
|
typedef llvm::ImmutableSet<const MemRegion*> Set;
|
|
typedef llvm::DenseMap<const MemRegion*, Set> Map;
|
|
private:
|
|
Set::Factory F;
|
|
Map M;
|
|
public:
|
|
bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
|
|
Map::iterator I = M.find(Parent);
|
|
|
|
if (I == M.end()) {
|
|
M.insert(std::make_pair(Parent, F.Add(F.GetEmptySet(), SubRegion)));
|
|
return true;
|
|
}
|
|
|
|
I->second = F.Add(I->second, SubRegion);
|
|
return false;
|
|
}
|
|
|
|
void process(llvm::SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
|
|
|
|
~RegionStoreSubRegionMap() {}
|
|
|
|
const Set *getSubRegions(const MemRegion *Parent) const {
|
|
Map::const_iterator I = M.find(Parent);
|
|
return I == M.end() ? NULL : &I->second;
|
|
}
|
|
|
|
bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
|
|
Map::const_iterator I = M.find(Parent);
|
|
|
|
if (I == M.end())
|
|
return true;
|
|
|
|
Set S = I->second;
|
|
for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
|
|
if (!V.Visit(Parent, *SI))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
|
|
class RegionStoreManager : public StoreManager {
|
|
const RegionStoreFeatures Features;
|
|
RegionBindings::Factory RBFactory;
|
|
|
|
typedef llvm::DenseMap<const GRState *, RegionStoreSubRegionMap*> SMCache;
|
|
SMCache SC;
|
|
|
|
public:
|
|
RegionStoreManager(GRStateManager& mgr, const RegionStoreFeatures &f)
|
|
: StoreManager(mgr),
|
|
Features(f),
|
|
RBFactory(mgr.getAllocator()) {}
|
|
|
|
virtual ~RegionStoreManager() {
|
|
for (SMCache::iterator I = SC.begin(), E = SC.end(); I != E; ++I)
|
|
delete (*I).second;
|
|
}
|
|
|
|
SubRegionMap *getSubRegionMap(const GRState *state);
|
|
|
|
RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
|
|
|
|
Optional<SVal> getBinding(RegionBindings B, const MemRegion *R);
|
|
Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
|
|
/// getDefaultBinding - Returns an SVal* representing an optional default
|
|
/// binding associated with a region and its subregions.
|
|
Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
|
|
|
|
/// setImplicitDefaultValue - Set the default binding for the provided
|
|
/// MemRegion to the value implicitly defined for compound literals when
|
|
/// the value is not specified.
|
|
const GRState *setImplicitDefaultValue(const GRState *state,
|
|
const MemRegion *R,
|
|
QualType T);
|
|
|
|
/// getLValueString - Returns an SVal representing the lvalue of a
|
|
/// StringLiteral. Within RegionStore a StringLiteral has an
|
|
/// associated StringRegion, and the lvalue of a StringLiteral is
|
|
/// the lvalue of that region.
|
|
SVal getLValueString(const StringLiteral* S);
|
|
|
|
/// getLValueCompoundLiteral - Returns an SVal representing the
|
|
/// lvalue of a compound literal. Within RegionStore a compound
|
|
/// literal has an associated region, and the lvalue of the
|
|
/// compound literal is the lvalue of that region.
|
|
SVal getLValueCompoundLiteral(const CompoundLiteralExpr*);
|
|
|
|
/// getLValueVar - Returns an SVal that represents the lvalue of a
|
|
/// variable. Within RegionStore a variable has an associated
|
|
/// VarRegion, and the lvalue of the variable is the lvalue of that region.
|
|
SVal getLValueVar(const VarDecl *VD, const LocationContext *LC);
|
|
|
|
SVal getLValueIvar(const ObjCIvarDecl* D, SVal Base);
|
|
|
|
SVal getLValueField(const FieldDecl* D, SVal Base);
|
|
|
|
SVal getLValueFieldOrIvar(const Decl* D, SVal Base);
|
|
|
|
SVal getLValueElement(QualType elementType, SVal Offset, SVal Base);
|
|
|
|
|
|
/// ArrayToPointer - Emulates the "decay" of an array to a pointer
|
|
/// type. 'Array' represents the lvalue of the array being decayed
|
|
/// to a pointer, and the returned SVal represents the decayed
|
|
/// version of that lvalue (i.e., a pointer to the first element of
|
|
/// the array). This is called by GRExprEngine when evaluating
|
|
/// casts from arrays to pointers.
|
|
SVal ArrayToPointer(Loc Array);
|
|
|
|
SVal EvalBinOp(const GRState *state, BinaryOperator::Opcode Op,Loc L,
|
|
NonLoc R, QualType resultTy);
|
|
|
|
Store getInitialStore(const LocationContext *InitLoc) {
|
|
return RBFactory.GetEmptyMap().getRoot();
|
|
}
|
|
|
|
//===-------------------------------------------------------------------===//
|
|
// Binding values to regions.
|
|
//===-------------------------------------------------------------------===//
|
|
|
|
const GRState *InvalidateRegion(const GRState *state, const MemRegion *R,
|
|
const Expr *E, unsigned Count,
|
|
InvalidatedSymbols *IS) {
|
|
return RegionStoreManager::InvalidateRegions(state, &R, &R+1, E, Count, IS);
|
|
}
|
|
|
|
const GRState *InvalidateRegions(const GRState *state,
|
|
const MemRegion * const *Begin,
|
|
const MemRegion * const *End,
|
|
const Expr *E, unsigned Count,
|
|
InvalidatedSymbols *IS);
|
|
|
|
public: // Made public for helper classes.
|
|
|
|
void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
|
|
RegionStoreSubRegionMap &M);
|
|
|
|
RegionBindings Add(RegionBindings B, BindingKey K, SVal V);
|
|
|
|
RegionBindings Add(RegionBindings B, const MemRegion *R,
|
|
BindingKey::Kind k, SVal V);
|
|
|
|
const SVal *Lookup(RegionBindings B, BindingKey K);
|
|
const SVal *Lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
|
|
|
|
RegionBindings Remove(RegionBindings B, BindingKey K);
|
|
RegionBindings Remove(RegionBindings B, const MemRegion *R,
|
|
BindingKey::Kind k);
|
|
|
|
RegionBindings Remove(RegionBindings B, const MemRegion *R) {
|
|
return Remove(Remove(B, R, BindingKey::Direct), R, BindingKey::Default);
|
|
}
|
|
|
|
Store Remove(Store store, BindingKey K);
|
|
|
|
public: // Part of public interface to class.
|
|
|
|
const GRState *Bind(const GRState *state, Loc LV, SVal V);
|
|
|
|
const GRState *BindCompoundLiteral(const GRState *state,
|
|
const CompoundLiteralExpr* CL,
|
|
const LocationContext *LC,
|
|
SVal V);
|
|
|
|
const GRState *BindDecl(const GRState *ST, const VarRegion *VR,
|
|
SVal InitVal);
|
|
|
|
const GRState *BindDeclWithNoInit(const GRState *state,
|
|
const VarRegion *) {
|
|
return state;
|
|
}
|
|
|
|
/// BindStruct - Bind a compound value to a structure.
|
|
const GRState *BindStruct(const GRState *, const TypedRegion* R, SVal V);
|
|
|
|
const GRState *BindArray(const GRState *state, const TypedRegion* R, SVal V);
|
|
|
|
/// KillStruct - Set the entire struct to unknown.
|
|
Store KillStruct(Store store, const TypedRegion* R);
|
|
|
|
Store Remove(Store store, Loc LV);
|
|
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// Loading values from regions.
|
|
//===------------------------------------------------------------------===//
|
|
|
|
/// The high level logic for this method is this:
|
|
/// Retrieve (L)
|
|
/// if L has binding
|
|
/// return L's binding
|
|
/// else if L is in killset
|
|
/// return unknown
|
|
/// else
|
|
/// if L is on stack or heap
|
|
/// return undefined
|
|
/// else
|
|
/// return symbolic
|
|
SVal Retrieve(const GRState *state, Loc L, QualType T = QualType());
|
|
|
|
SVal RetrieveElement(const GRState *state, const ElementRegion *R);
|
|
|
|
SVal RetrieveField(const GRState *state, const FieldRegion *R);
|
|
|
|
SVal RetrieveObjCIvar(const GRState *state, const ObjCIvarRegion *R);
|
|
|
|
SVal RetrieveVar(const GRState *state, const VarRegion *R);
|
|
|
|
SVal RetrieveLazySymbol(const GRState *state, const TypedRegion *R);
|
|
|
|
SVal RetrieveFieldOrElementCommon(const GRState *state, const TypedRegion *R,
|
|
QualType Ty, const MemRegion *superR);
|
|
|
|
/// Retrieve the values in a struct and return a CompoundVal, used when doing
|
|
/// struct copy:
|
|
/// struct s x, y;
|
|
/// x = y;
|
|
/// y's value is retrieved by this method.
|
|
SVal RetrieveStruct(const GRState *St, const TypedRegion* R);
|
|
|
|
SVal RetrieveArray(const GRState *St, const TypedRegion* R);
|
|
|
|
/// Get the state and region whose binding this region R corresponds to.
|
|
std::pair<const GRState*, const MemRegion*>
|
|
GetLazyBinding(RegionBindings B, const MemRegion *R);
|
|
|
|
const GRState* CopyLazyBindings(nonloc::LazyCompoundVal V,
|
|
const GRState *state,
|
|
const TypedRegion *R);
|
|
|
|
const ElementRegion *GetElementZeroRegion(const SymbolicRegion *SR,
|
|
QualType T);
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// State pruning.
|
|
//===------------------------------------------------------------------===//
|
|
|
|
/// RemoveDeadBindings - Scans the RegionStore of 'state' for dead values.
|
|
/// It returns a new Store with these values removed.
|
|
void RemoveDeadBindings(GRState &state, Stmt* Loc, SymbolReaper& SymReaper,
|
|
llvm::SmallVectorImpl<const MemRegion*>& RegionRoots);
|
|
|
|
const GRState *EnterStackFrame(const GRState *state,
|
|
const StackFrameContext *frame);
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// Region "extents".
|
|
//===------------------------------------------------------------------===//
|
|
|
|
const GRState *setExtent(const GRState *state,const MemRegion* R,SVal Extent);
|
|
DefinedOrUnknownSVal getSizeInElements(const GRState *state,
|
|
const MemRegion* R, QualType EleTy);
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// Utility methods.
|
|
//===------------------------------------------------------------------===//
|
|
|
|
static inline RegionBindings GetRegionBindings(Store store) {
|
|
return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
|
|
}
|
|
|
|
void print(Store store, llvm::raw_ostream& Out, const char* nl,
|
|
const char *sep);
|
|
|
|
void iterBindings(Store store, BindingsHandler& f) {
|
|
// FIXME: Implement.
|
|
}
|
|
|
|
// FIXME: Remove.
|
|
BasicValueFactory& getBasicVals() {
|
|
return StateMgr.getBasicVals();
|
|
}
|
|
|
|
// FIXME: Remove.
|
|
ASTContext& getContext() { return StateMgr.getContext(); }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RegionStore creation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
StoreManager *clang::CreateRegionStoreManager(GRStateManager& StMgr) {
|
|
RegionStoreFeatures F = maximal_features_tag();
|
|
return new RegionStoreManager(StMgr, F);
|
|
}
|
|
|
|
StoreManager *clang::CreateFieldsOnlyRegionStoreManager(GRStateManager &StMgr) {
|
|
RegionStoreFeatures F = minimal_features_tag();
|
|
F.enableFields(true);
|
|
return new RegionStoreManager(StMgr, F);
|
|
}
|
|
|
|
void
|
|
RegionStoreSubRegionMap::process(llvm::SmallVectorImpl<const SubRegion*> &WL,
|
|
const SubRegion *R) {
|
|
const MemRegion *superR = R->getSuperRegion();
|
|
if (add(superR, R))
|
|
if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
|
|
WL.push_back(sr);
|
|
}
|
|
|
|
RegionStoreSubRegionMap*
|
|
RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
|
|
RegionBindings B = GetRegionBindings(store);
|
|
RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
|
|
|
|
llvm::SmallVector<const SubRegion*, 10> WL;
|
|
|
|
for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
|
|
if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
|
|
M->process(WL, R);
|
|
|
|
// We also need to record in the subregion map "intermediate" regions that
|
|
// don't have direct bindings but are super regions of those that do.
|
|
while (!WL.empty()) {
|
|
const SubRegion *R = WL.back();
|
|
WL.pop_back();
|
|
M->process(WL, R);
|
|
}
|
|
|
|
return M;
|
|
}
|
|
|
|
SubRegionMap *RegionStoreManager::getSubRegionMap(const GRState *state) {
|
|
return getRegionStoreSubRegionMap(state->getStore());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Binding invalidation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
|
|
const MemRegion *R,
|
|
RegionStoreSubRegionMap &M) {
|
|
|
|
if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
|
|
for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
|
|
I != E; ++I)
|
|
RemoveSubRegionBindings(B, *I, M);
|
|
|
|
B = Remove(B, R);
|
|
}
|
|
|
|
namespace {
|
|
class InvalidateRegionsWorker {
|
|
typedef BumpVector<BindingKey> RegionCluster;
|
|
typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
|
|
typedef llvm::SmallVector<std::pair<const MemRegion *,RegionCluster*>, 10>
|
|
WorkList;
|
|
|
|
BumpVectorContext BVC;
|
|
ClusterMap ClusterM;
|
|
WorkList WL;
|
|
public:
|
|
const GRState *InvalidateRegions(RegionStoreManager &RM,
|
|
const GRState *state,
|
|
const MemRegion * const *I,
|
|
const MemRegion * const *E,
|
|
const Expr *Ex,
|
|
unsigned Count,
|
|
StoreManager::InvalidatedSymbols *IS);
|
|
|
|
private:
|
|
void AddToWorkList(BindingKey K);
|
|
void AddToWorkList(const MemRegion *R);
|
|
void AddToCluster(BindingKey K);
|
|
RegionCluster **getCluster(const MemRegion *R);
|
|
};
|
|
}
|
|
|
|
void InvalidateRegionsWorker::AddToCluster(BindingKey K) {
|
|
const MemRegion *R = K.getRegion();
|
|
const MemRegion *baseR = R->getBaseRegion();
|
|
RegionCluster **CPtr = getCluster(baseR);
|
|
assert(*CPtr);
|
|
(*CPtr)->push_back(K, BVC);
|
|
}
|
|
|
|
void InvalidateRegionsWorker::AddToWorkList(BindingKey K) {
|
|
AddToWorkList(K.getRegion());
|
|
}
|
|
|
|
void InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
|
|
const MemRegion *baseR = R->getBaseRegion();
|
|
RegionCluster **CPtr = getCluster(baseR);
|
|
if (RegionCluster *C = *CPtr) {
|
|
WL.push_back(std::make_pair(baseR, C));
|
|
*CPtr = NULL;
|
|
}
|
|
}
|
|
|
|
InvalidateRegionsWorker::RegionCluster **
|
|
InvalidateRegionsWorker::getCluster(const MemRegion *R) {
|
|
RegionCluster *&CRef = ClusterM[R];
|
|
if (!CRef) {
|
|
void *Mem = BVC.getAllocator().Allocate<RegionCluster>();
|
|
CRef = new (Mem) RegionCluster(BVC, 10);
|
|
}
|
|
return &CRef;
|
|
}
|
|
|
|
const GRState *
|
|
InvalidateRegionsWorker::InvalidateRegions(RegionStoreManager &RM,
|
|
const GRState *state,
|
|
const MemRegion * const *I,
|
|
const MemRegion * const *E,
|
|
const Expr *Ex, unsigned Count,
|
|
StoreManager::InvalidatedSymbols *IS)
|
|
{
|
|
ASTContext &Ctx = state->getStateManager().getContext();
|
|
ValueManager &ValMgr = state->getStateManager().getValueManager();
|
|
RegionBindings B = RegionStoreManager::GetRegionBindings(state->getStore());
|
|
|
|
// Scan the entire store and make the region clusters.
|
|
for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
|
|
AddToCluster(RI.getKey());
|
|
if (const MemRegion *R = RI.getData().getAsRegion()) {
|
|
// Generate a cluster, but don't add the region to the cluster
|
|
// if there aren't any bindings.
|
|
getCluster(R->getBaseRegion());
|
|
}
|
|
}
|
|
|
|
// Add the cluster for I .. E to a worklist.
|
|
for ( ; I != E; ++I)
|
|
AddToWorkList(*I);
|
|
|
|
while (!WL.empty()) {
|
|
const MemRegion *baseR;
|
|
RegionCluster *C;
|
|
llvm::tie(baseR, C) = WL.back();
|
|
WL.pop_back();
|
|
|
|
for (RegionCluster::iterator I = C->begin(), E = C->end(); I != E; ++I) {
|
|
BindingKey K = *I;
|
|
|
|
// Get the old binding. Is it a region? If so, add it to the worklist.
|
|
if (const SVal *V = RM.Lookup(B, K)) {
|
|
if (const MemRegion *R = V->getAsRegion())
|
|
AddToWorkList(R);
|
|
|
|
// A symbol? Mark it touched by the invalidation.
|
|
if (IS)
|
|
if (SymbolRef Sym = V->getAsSymbol())
|
|
IS->insert(Sym);
|
|
}
|
|
|
|
B = RM.Remove(B, K);
|
|
}
|
|
|
|
// Now inspect the base region.
|
|
|
|
if (IS) {
|
|
// Symbolic region? Mark that symbol touched by the invalidation.
|
|
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
|
|
IS->insert(SR->getSymbol());
|
|
}
|
|
|
|
// BlockDataRegion? If so, invalidate captured variables that are passed
|
|
// by reference.
|
|
if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
|
|
for (BlockDataRegion::referenced_vars_iterator
|
|
I = BR->referenced_vars_begin(), E = BR->referenced_vars_end() ;
|
|
I != E; ++I) {
|
|
const VarRegion *VR = *I;
|
|
if (VR->getDecl()->getAttr<BlocksAttr>())
|
|
AddToWorkList(VR);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
|
|
// Invalidate the region by setting its default value to
|
|
// conjured symbol. The type of the symbol is irrelavant.
|
|
DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy,
|
|
Count);
|
|
B = RM.Add(B, baseR, BindingKey::Default, V);
|
|
continue;
|
|
}
|
|
|
|
if (!baseR->isBoundable())
|
|
continue;
|
|
|
|
const TypedRegion *TR = cast<TypedRegion>(baseR);
|
|
QualType T = TR->getValueType(Ctx);
|
|
|
|
// Invalidate the binding.
|
|
if (const RecordType *RT = T->getAsStructureType()) {
|
|
const RecordDecl *RD = RT->getDecl()->getDefinition(Ctx);
|
|
// No record definition. There is nothing we can do.
|
|
if (!RD) {
|
|
B = RM.Remove(B, baseR);
|
|
continue;
|
|
}
|
|
|
|
// Invalidate the region by setting its default value to
|
|
// conjured symbol. The type of the symbol is irrelavant.
|
|
DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy,
|
|
Count);
|
|
B = RM.Add(B, baseR, BindingKey::Default, V);
|
|
continue;
|
|
}
|
|
|
|
if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
|
|
// Set the default value of the array to conjured symbol.
|
|
DefinedOrUnknownSVal V =
|
|
ValMgr.getConjuredSymbolVal(baseR, Ex, AT->getElementType(), Count);
|
|
B = RM.Add(B, baseR, BindingKey::Default, V);
|
|
continue;
|
|
}
|
|
|
|
DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(baseR, Ex, T, Count);
|
|
assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
|
|
B = RM.Add(B, baseR, BindingKey::Direct, V);
|
|
}
|
|
|
|
// Create a new state with the updated bindings.
|
|
return state->makeWithStore(B.getRoot());
|
|
}
|
|
|
|
const GRState *RegionStoreManager::InvalidateRegions(const GRState *state,
|
|
const MemRegion * const *I,
|
|
const MemRegion * const *E,
|
|
const Expr *Ex,
|
|
unsigned Count,
|
|
InvalidatedSymbols *IS) {
|
|
InvalidateRegionsWorker W;
|
|
return W.InvalidateRegions(*this, state, I, E, Ex, Count, IS);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// getLValueXXX methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getLValueString - Returns an SVal representing the lvalue of a
|
|
/// StringLiteral. Within RegionStore a StringLiteral has an
|
|
/// associated StringRegion, and the lvalue of a StringLiteral is the
|
|
/// lvalue of that region.
|
|
SVal RegionStoreManager::getLValueString(const StringLiteral* S) {
|
|
return loc::MemRegionVal(MRMgr.getStringRegion(S));
|
|
}
|
|
|
|
/// getLValueVar - Returns an SVal that represents the lvalue of a
|
|
/// variable. Within RegionStore a variable has an associated
|
|
/// VarRegion, and the lvalue of the variable is the lvalue of that region.
|
|
SVal RegionStoreManager::getLValueVar(const VarDecl *VD,
|
|
const LocationContext *LC) {
|
|
return loc::MemRegionVal(MRMgr.getVarRegion(VD, LC));
|
|
}
|
|
|
|
SVal RegionStoreManager::getLValueIvar(const ObjCIvarDecl* D, SVal Base) {
|
|
return getLValueFieldOrIvar(D, Base);
|
|
}
|
|
|
|
SVal RegionStoreManager::getLValueField(const FieldDecl* D, SVal Base) {
|
|
return getLValueFieldOrIvar(D, Base);
|
|
}
|
|
|
|
SVal RegionStoreManager::getLValueFieldOrIvar(const Decl* D, SVal Base) {
|
|
if (Base.isUnknownOrUndef())
|
|
return Base;
|
|
|
|
Loc BaseL = cast<Loc>(Base);
|
|
const MemRegion* BaseR = 0;
|
|
|
|
switch (BaseL.getSubKind()) {
|
|
case loc::MemRegionKind:
|
|
BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
|
|
break;
|
|
|
|
case loc::GotoLabelKind:
|
|
// These are anormal cases. Flag an undefined value.
|
|
return UndefinedVal();
|
|
|
|
case loc::ConcreteIntKind:
|
|
// While these seem funny, this can happen through casts.
|
|
// FIXME: What we should return is the field offset. For example,
|
|
// add the field offset to the integer value. That way funny things
|
|
// like this work properly: &(((struct foo *) 0xa)->f)
|
|
return Base;
|
|
|
|
default:
|
|
assert(0 && "Unhandled Base.");
|
|
return Base;
|
|
}
|
|
|
|
// NOTE: We must have this check first because ObjCIvarDecl is a subclass
|
|
// of FieldDecl.
|
|
if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
|
|
return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
|
|
|
|
return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
|
|
}
|
|
|
|
SVal RegionStoreManager::getLValueElement(QualType elementType, SVal Offset,
|
|
SVal Base) {
|
|
|
|
// If the base is an unknown or undefined value, just return it back.
|
|
// FIXME: For absolute pointer addresses, we just return that value back as
|
|
// well, although in reality we should return the offset added to that
|
|
// value.
|
|
if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
|
|
return Base;
|
|
|
|
// Only handle integer offsets... for now.
|
|
if (!isa<nonloc::ConcreteInt>(Offset))
|
|
return UnknownVal();
|
|
|
|
const MemRegion* BaseRegion = cast<loc::MemRegionVal>(Base).getRegion();
|
|
|
|
// Pointer of any type can be cast and used as array base.
|
|
const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
|
|
|
|
// Convert the offset to the appropriate size and signedness.
|
|
Offset = ValMgr.convertToArrayIndex(Offset);
|
|
|
|
if (!ElemR) {
|
|
//
|
|
// If the base region is not an ElementRegion, create one.
|
|
// This can happen in the following example:
|
|
//
|
|
// char *p = __builtin_alloc(10);
|
|
// p[1] = 8;
|
|
//
|
|
// Observe that 'p' binds to an AllocaRegion.
|
|
//
|
|
return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
|
|
BaseRegion, getContext()));
|
|
}
|
|
|
|
SVal BaseIdx = ElemR->getIndex();
|
|
|
|
if (!isa<nonloc::ConcreteInt>(BaseIdx))
|
|
return UnknownVal();
|
|
|
|
const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue();
|
|
const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue();
|
|
assert(BaseIdxI.isSigned());
|
|
|
|
// Compute the new index.
|
|
SVal NewIdx = nonloc::ConcreteInt(getBasicVals().getValue(BaseIdxI + OffI));
|
|
|
|
// Construct the new ElementRegion.
|
|
const MemRegion *ArrayR = ElemR->getSuperRegion();
|
|
return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
|
|
getContext()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extents for regions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(const GRState *state,
|
|
const MemRegion *R,
|
|
QualType EleTy) {
|
|
|
|
switch (R->getKind()) {
|
|
case MemRegion::CXXThisRegionKind:
|
|
assert(0 && "Cannot get size of 'this' region");
|
|
case MemRegion::GenericMemSpaceRegionKind:
|
|
case MemRegion::StackLocalsSpaceRegionKind:
|
|
case MemRegion::StackArgumentsSpaceRegionKind:
|
|
case MemRegion::HeapSpaceRegionKind:
|
|
case MemRegion::GlobalsSpaceRegionKind:
|
|
case MemRegion::UnknownSpaceRegionKind:
|
|
assert(0 && "Cannot index into a MemSpace");
|
|
return UnknownVal();
|
|
|
|
case MemRegion::FunctionTextRegionKind:
|
|
case MemRegion::BlockTextRegionKind:
|
|
case MemRegion::BlockDataRegionKind:
|
|
// Technically this can happen if people do funny things with casts.
|
|
return UnknownVal();
|
|
|
|
// Not yet handled.
|
|
case MemRegion::AllocaRegionKind:
|
|
case MemRegion::CompoundLiteralRegionKind:
|
|
case MemRegion::ElementRegionKind:
|
|
case MemRegion::FieldRegionKind:
|
|
case MemRegion::ObjCIvarRegionKind:
|
|
case MemRegion::CXXObjectRegionKind:
|
|
return UnknownVal();
|
|
|
|
case MemRegion::SymbolicRegionKind: {
|
|
const SVal *Size = state->get<RegionExtents>(R);
|
|
if (!Size)
|
|
return UnknownVal();
|
|
const nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(Size);
|
|
if (!CI)
|
|
return UnknownVal();
|
|
|
|
CharUnits RegionSize =
|
|
CharUnits::fromQuantity(CI->getValue().getSExtValue());
|
|
CharUnits EleSize = getContext().getTypeSizeInChars(EleTy);
|
|
assert(RegionSize % EleSize == 0);
|
|
|
|
return ValMgr.makeIntVal(RegionSize / EleSize, false);
|
|
}
|
|
|
|
case MemRegion::StringRegionKind: {
|
|
const StringLiteral* Str = cast<StringRegion>(R)->getStringLiteral();
|
|
// We intentionally made the size value signed because it participates in
|
|
// operations with signed indices.
|
|
return ValMgr.makeIntVal(Str->getByteLength()+1, false);
|
|
}
|
|
|
|
case MemRegion::VarRegionKind: {
|
|
const VarRegion* VR = cast<VarRegion>(R);
|
|
// Get the type of the variable.
|
|
QualType T = VR->getDesugaredValueType(getContext());
|
|
|
|
// FIXME: Handle variable-length arrays.
|
|
if (isa<VariableArrayType>(T))
|
|
return UnknownVal();
|
|
|
|
if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(T)) {
|
|
// return the size as signed integer.
|
|
return ValMgr.makeIntVal(CAT->getSize(), false);
|
|
}
|
|
|
|
// Clients can use ordinary variables as if they were arrays. These
|
|
// essentially are arrays of size 1.
|
|
return ValMgr.makeIntVal(1, false);
|
|
}
|
|
}
|
|
|
|
assert(0 && "Unreachable");
|
|
return UnknownVal();
|
|
}
|
|
|
|
const GRState *RegionStoreManager::setExtent(const GRState *state,
|
|
const MemRegion *region,
|
|
SVal extent) {
|
|
return state->set<RegionExtents>(region, extent);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Location and region casting.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ArrayToPointer - Emulates the "decay" of an array to a pointer
|
|
/// type. 'Array' represents the lvalue of the array being decayed
|
|
/// to a pointer, and the returned SVal represents the decayed
|
|
/// version of that lvalue (i.e., a pointer to the first element of
|
|
/// the array). This is called by GRExprEngine when evaluating casts
|
|
/// from arrays to pointers.
|
|
SVal RegionStoreManager::ArrayToPointer(Loc Array) {
|
|
if (!isa<loc::MemRegionVal>(Array))
|
|
return UnknownVal();
|
|
|
|
const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
|
|
const TypedRegion* ArrayR = dyn_cast<TypedRegion>(R);
|
|
|
|
if (!ArrayR)
|
|
return UnknownVal();
|
|
|
|
// Strip off typedefs from the ArrayRegion's ValueType.
|
|
QualType T = ArrayR->getValueType(getContext()).getDesugaredType();
|
|
ArrayType *AT = cast<ArrayType>(T);
|
|
T = AT->getElementType();
|
|
|
|
SVal ZeroIdx = ValMgr.makeZeroArrayIndex();
|
|
return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR,
|
|
getContext()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pointer arithmetic.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SVal RegionStoreManager::EvalBinOp(const GRState *state,
|
|
BinaryOperator::Opcode Op, Loc L, NonLoc R,
|
|
QualType resultTy) {
|
|
// Assume the base location is MemRegionVal.
|
|
if (!isa<loc::MemRegionVal>(L))
|
|
return UnknownVal();
|
|
|
|
const MemRegion* MR = cast<loc::MemRegionVal>(L).getRegion();
|
|
const ElementRegion *ER = 0;
|
|
|
|
switch (MR->getKind()) {
|
|
case MemRegion::SymbolicRegionKind: {
|
|
const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
|
|
SymbolRef Sym = SR->getSymbol();
|
|
QualType T = Sym->getType(getContext());
|
|
QualType EleTy;
|
|
|
|
if (const PointerType *PT = T->getAs<PointerType>())
|
|
EleTy = PT->getPointeeType();
|
|
else
|
|
EleTy = T->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
|
|
SVal ZeroIdx = ValMgr.makeZeroArrayIndex();
|
|
ER = MRMgr.getElementRegion(EleTy, ZeroIdx, SR, getContext());
|
|
break;
|
|
}
|
|
case MemRegion::AllocaRegionKind: {
|
|
const AllocaRegion *AR = cast<AllocaRegion>(MR);
|
|
QualType T = getContext().CharTy; // Create an ElementRegion of bytes.
|
|
QualType EleTy = T->getAs<PointerType>()->getPointeeType();
|
|
SVal ZeroIdx = ValMgr.makeZeroArrayIndex();
|
|
ER = MRMgr.getElementRegion(EleTy, ZeroIdx, AR, getContext());
|
|
break;
|
|
}
|
|
|
|
case MemRegion::ElementRegionKind: {
|
|
ER = cast<ElementRegion>(MR);
|
|
break;
|
|
}
|
|
|
|
// Not yet handled.
|
|
case MemRegion::VarRegionKind:
|
|
case MemRegion::StringRegionKind: {
|
|
|
|
}
|
|
// Fall-through.
|
|
case MemRegion::CompoundLiteralRegionKind:
|
|
case MemRegion::FieldRegionKind:
|
|
case MemRegion::ObjCIvarRegionKind:
|
|
case MemRegion::CXXObjectRegionKind:
|
|
return UnknownVal();
|
|
|
|
case MemRegion::FunctionTextRegionKind:
|
|
case MemRegion::BlockTextRegionKind:
|
|
case MemRegion::BlockDataRegionKind:
|
|
// Technically this can happen if people do funny things with casts.
|
|
return UnknownVal();
|
|
|
|
case MemRegion::CXXThisRegionKind:
|
|
assert(0 &&
|
|
"Cannot perform pointer arithmetic on implicit argument 'this'");
|
|
case MemRegion::GenericMemSpaceRegionKind:
|
|
case MemRegion::StackLocalsSpaceRegionKind:
|
|
case MemRegion::StackArgumentsSpaceRegionKind:
|
|
case MemRegion::HeapSpaceRegionKind:
|
|
case MemRegion::GlobalsSpaceRegionKind:
|
|
case MemRegion::UnknownSpaceRegionKind:
|
|
assert(0 && "Cannot perform pointer arithmetic on a MemSpace");
|
|
return UnknownVal();
|
|
}
|
|
|
|
SVal Idx = ER->getIndex();
|
|
nonloc::ConcreteInt* Base = dyn_cast<nonloc::ConcreteInt>(&Idx);
|
|
|
|
// For now, only support:
|
|
// (a) concrete integer indices that can easily be resolved
|
|
// (b) 0 + symbolic index
|
|
if (Base) {
|
|
if (nonloc::ConcreteInt *Offset = dyn_cast<nonloc::ConcreteInt>(&R)) {
|
|
// FIXME: Should use SValuator here.
|
|
SVal NewIdx =
|
|
Base->evalBinOp(ValMgr, Op,
|
|
cast<nonloc::ConcreteInt>(ValMgr.convertToArrayIndex(*Offset)));
|
|
const MemRegion* NewER =
|
|
MRMgr.getElementRegion(ER->getElementType(), NewIdx,
|
|
ER->getSuperRegion(), getContext());
|
|
return ValMgr.makeLoc(NewER);
|
|
}
|
|
if (0 == Base->getValue()) {
|
|
const MemRegion* NewER =
|
|
MRMgr.getElementRegion(ER->getElementType(), R,
|
|
ER->getSuperRegion(), getContext());
|
|
return ValMgr.makeLoc(NewER);
|
|
}
|
|
}
|
|
|
|
return UnknownVal();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Loading values from regions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
|
|
const MemRegion *R) {
|
|
if (const SVal *V = Lookup(B, R, BindingKey::Direct))
|
|
return *V;
|
|
|
|
return Optional<SVal>();
|
|
}
|
|
|
|
Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
|
|
const MemRegion *R) {
|
|
if (R->isBoundable())
|
|
if (const TypedRegion *TR = dyn_cast<TypedRegion>(R))
|
|
if (TR->getValueType(getContext())->isUnionType())
|
|
return UnknownVal();
|
|
|
|
if (const SVal *V = Lookup(B, R, BindingKey::Default))
|
|
return *V;
|
|
|
|
return Optional<SVal>();
|
|
}
|
|
|
|
Optional<SVal> RegionStoreManager::getBinding(RegionBindings B,
|
|
const MemRegion *R) {
|
|
|
|
if (Optional<SVal> V = getDirectBinding(B, R))
|
|
return V;
|
|
|
|
return getDefaultBinding(B, R);
|
|
}
|
|
|
|
static bool IsReinterpreted(QualType RTy, QualType UsedTy, ASTContext &Ctx) {
|
|
RTy = Ctx.getCanonicalType(RTy);
|
|
UsedTy = Ctx.getCanonicalType(UsedTy);
|
|
|
|
if (RTy == UsedTy)
|
|
return false;
|
|
|
|
|
|
// Recursively check the types. We basically want to see if a pointer value
|
|
// is ever reinterpreted as a non-pointer, e.g. void** and intptr_t*
|
|
// represents a reinterpretation.
|
|
if (Loc::IsLocType(RTy) && Loc::IsLocType(UsedTy)) {
|
|
const PointerType *PRTy = RTy->getAs<PointerType>();
|
|
const PointerType *PUsedTy = UsedTy->getAs<PointerType>();
|
|
|
|
return PUsedTy && PRTy &&
|
|
IsReinterpreted(PRTy->getPointeeType(),
|
|
PUsedTy->getPointeeType(), Ctx);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
const ElementRegion *
|
|
RegionStoreManager::GetElementZeroRegion(const SymbolicRegion *SR, QualType T) {
|
|
ASTContext &Ctx = getContext();
|
|
SVal idx = ValMgr.makeZeroArrayIndex();
|
|
assert(!T.isNull());
|
|
return MRMgr.getElementRegion(T, idx, SR, Ctx);
|
|
}
|
|
|
|
SVal RegionStoreManager::Retrieve(const GRState *state, Loc L, QualType T) {
|
|
assert(!isa<UnknownVal>(L) && "location unknown");
|
|
assert(!isa<UndefinedVal>(L) && "location undefined");
|
|
|
|
// FIXME: Is this even possible? Shouldn't this be treated as a null
|
|
// dereference at a higher level?
|
|
if (isa<loc::ConcreteInt>(L))
|
|
return UndefinedVal();
|
|
|
|
const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
|
|
|
|
// FIXME: return symbolic value for these cases.
|
|
// Example:
|
|
// void f(int* p) { int x = *p; }
|
|
// char* p = alloca();
|
|
// read(p);
|
|
// c = *p;
|
|
if (isa<AllocaRegion>(MR))
|
|
return UnknownVal();
|
|
|
|
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
|
|
MR = GetElementZeroRegion(SR, T);
|
|
|
|
if (isa<CodeTextRegion>(MR))
|
|
return UnknownVal();
|
|
|
|
// FIXME: Perhaps this method should just take a 'const MemRegion*' argument
|
|
// instead of 'Loc', and have the other Loc cases handled at a higher level.
|
|
const TypedRegion *R = cast<TypedRegion>(MR);
|
|
QualType RTy = R->getValueType(getContext());
|
|
|
|
// FIXME: We should eventually handle funny addressing. e.g.:
|
|
//
|
|
// int x = ...;
|
|
// int *p = &x;
|
|
// char *q = (char*) p;
|
|
// char c = *q; // returns the first byte of 'x'.
|
|
//
|
|
// Such funny addressing will occur due to layering of regions.
|
|
|
|
#if 0
|
|
ASTContext &Ctx = getContext();
|
|
if (!T.isNull() && IsReinterpreted(RTy, T, Ctx)) {
|
|
SVal ZeroIdx = ValMgr.makeZeroArrayIndex();
|
|
R = MRMgr.getElementRegion(T, ZeroIdx, R, Ctx);
|
|
RTy = T;
|
|
assert(Ctx.getCanonicalType(RTy) ==
|
|
Ctx.getCanonicalType(R->getValueType(Ctx)));
|
|
}
|
|
#endif
|
|
|
|
if (RTy->isStructureType())
|
|
return RetrieveStruct(state, R);
|
|
|
|
// FIXME: Handle unions.
|
|
if (RTy->isUnionType())
|
|
return UnknownVal();
|
|
|
|
if (RTy->isArrayType())
|
|
return RetrieveArray(state, R);
|
|
|
|
// FIXME: handle Vector types.
|
|
if (RTy->isVectorType())
|
|
return UnknownVal();
|
|
|
|
if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
|
|
return CastRetrievedVal(RetrieveField(state, FR), FR, T, false);
|
|
|
|
if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
|
|
// FIXME: Here we actually perform an implicit conversion from the loaded
|
|
// value to the element type. Eventually we want to compose these values
|
|
// more intelligently. For example, an 'element' can encompass multiple
|
|
// bound regions (e.g., several bound bytes), or could be a subset of
|
|
// a larger value.
|
|
return CastRetrievedVal(RetrieveElement(state, ER), ER, T, false);
|
|
}
|
|
|
|
if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
|
|
// FIXME: Here we actually perform an implicit conversion from the loaded
|
|
// value to the ivar type. What we should model is stores to ivars
|
|
// that blow past the extent of the ivar. If the address of the ivar is
|
|
// reinterpretted, it is possible we stored a different value that could
|
|
// fit within the ivar. Either we need to cast these when storing them
|
|
// or reinterpret them lazily (as we do here).
|
|
return CastRetrievedVal(RetrieveObjCIvar(state, IVR), IVR, T, false);
|
|
}
|
|
|
|
if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
|
|
// FIXME: Here we actually perform an implicit conversion from the loaded
|
|
// value to the variable type. What we should model is stores to variables
|
|
// that blow past the extent of the variable. If the address of the
|
|
// variable is reinterpretted, it is possible we stored a different value
|
|
// that could fit within the variable. Either we need to cast these when
|
|
// storing them or reinterpret them lazily (as we do here).
|
|
return CastRetrievedVal(RetrieveVar(state, VR), VR, T, false);
|
|
}
|
|
|
|
RegionBindings B = GetRegionBindings(state->getStore());
|
|
const SVal *V = Lookup(B, R, BindingKey::Direct);
|
|
|
|
// Check if the region has a binding.
|
|
if (V)
|
|
return *V;
|
|
|
|
// The location does not have a bound value. This means that it has
|
|
// the value it had upon its creation and/or entry to the analyzed
|
|
// function/method. These are either symbolic values or 'undefined'.
|
|
if (R->hasStackNonParametersStorage()) {
|
|
// All stack variables are considered to have undefined values
|
|
// upon creation. All heap allocated blocks are considered to
|
|
// have undefined values as well unless they are explicitly bound
|
|
// to specific values.
|
|
return UndefinedVal();
|
|
}
|
|
|
|
// All other values are symbolic.
|
|
return ValMgr.getRegionValueSymbolVal(R, RTy);
|
|
}
|
|
|
|
std::pair<const GRState*, const MemRegion*>
|
|
RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R) {
|
|
if (Optional<SVal> OV = getDirectBinding(B, R))
|
|
if (const nonloc::LazyCompoundVal *V =
|
|
dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
|
|
return std::make_pair(V->getState(), V->getRegion());
|
|
|
|
if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
|
|
const std::pair<const GRState *, const MemRegion *> &X =
|
|
GetLazyBinding(B, ER->getSuperRegion());
|
|
|
|
if (X.first)
|
|
return std::make_pair(X.first,
|
|
MRMgr.getElementRegionWithSuper(ER, X.second));
|
|
}
|
|
else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
|
|
const std::pair<const GRState *, const MemRegion *> &X =
|
|
GetLazyBinding(B, FR->getSuperRegion());
|
|
|
|
if (X.first)
|
|
return std::make_pair(X.first,
|
|
MRMgr.getFieldRegionWithSuper(FR, X.second));
|
|
}
|
|
|
|
return std::make_pair((const GRState*) 0, (const MemRegion *) 0);
|
|
}
|
|
|
|
SVal RegionStoreManager::RetrieveElement(const GRState* state,
|
|
const ElementRegion* R) {
|
|
// Check if the region has a binding.
|
|
RegionBindings B = GetRegionBindings(state->getStore());
|
|
if (Optional<SVal> V = getDirectBinding(B, R))
|
|
return *V;
|
|
|
|
const MemRegion* superR = R->getSuperRegion();
|
|
|
|
// Check if the region is an element region of a string literal.
|
|
if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
|
|
// FIXME: Handle loads from strings where the literal is treated as
|
|
// an integer, e.g., *((unsigned int*)"hello")
|
|
ASTContext &Ctx = getContext();
|
|
QualType T = Ctx.getAsArrayType(StrR->getValueType(Ctx))->getElementType();
|
|
if (T != Ctx.getCanonicalType(R->getElementType()))
|
|
return UnknownVal();
|
|
|
|
const StringLiteral *Str = StrR->getStringLiteral();
|
|
SVal Idx = R->getIndex();
|
|
if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
|
|
int64_t i = CI->getValue().getSExtValue();
|
|
int64_t byteLength = Str->getByteLength();
|
|
if (i > byteLength) {
|
|
// Buffer overflow checking in GRExprEngine should handle this case,
|
|
// but we shouldn't rely on it to not overflow here if that checking
|
|
// is disabled.
|
|
return UnknownVal();
|
|
}
|
|
char c = (i == byteLength) ? '\0' : Str->getStrData()[i];
|
|
return ValMgr.makeIntVal(c, T);
|
|
}
|
|
}
|
|
|
|
// Check if the immediate super region has a direct binding.
|
|
if (Optional<SVal> V = getDirectBinding(B, superR)) {
|
|
if (SymbolRef parentSym = V->getAsSymbol())
|
|
return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R);
|
|
|
|
if (V->isUnknownOrUndef())
|
|
return *V;
|
|
|
|
// Handle LazyCompoundVals for the immediate super region. Other cases
|
|
// are handled in 'RetrieveFieldOrElementCommon'.
|
|
if (const nonloc::LazyCompoundVal *LCV =
|
|
dyn_cast<nonloc::LazyCompoundVal>(V)) {
|
|
|
|
R = MRMgr.getElementRegionWithSuper(R, LCV->getRegion());
|
|
return RetrieveElement(LCV->getState(), R);
|
|
}
|
|
|
|
// Other cases: give up.
|
|
return UnknownVal();
|
|
}
|
|
|
|
return RetrieveFieldOrElementCommon(state, R, R->getElementType(), superR);
|
|
}
|
|
|
|
SVal RegionStoreManager::RetrieveField(const GRState* state,
|
|
const FieldRegion* R) {
|
|
|
|
// Check if the region has a binding.
|
|
RegionBindings B = GetRegionBindings(state->getStore());
|
|
if (Optional<SVal> V = getDirectBinding(B, R))
|
|
return *V;
|
|
|
|
QualType Ty = R->getValueType(getContext());
|
|
return RetrieveFieldOrElementCommon(state, R, Ty, R->getSuperRegion());
|
|
}
|
|
|
|
SVal RegionStoreManager::RetrieveFieldOrElementCommon(const GRState *state,
|
|
const TypedRegion *R,
|
|
QualType Ty,
|
|
const MemRegion *superR) {
|
|
|
|
// At this point we have already checked in either RetrieveElement or
|
|
// RetrieveField if 'R' has a direct binding.
|
|
|
|
RegionBindings B = GetRegionBindings(state->getStore());
|
|
|
|
while (superR) {
|
|
if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
|
|
if (SymbolRef parentSym = D->getAsSymbol())
|
|
return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R);
|
|
|
|
if (D->isZeroConstant())
|
|
return ValMgr.makeZeroVal(Ty);
|
|
|
|
if (D->isUnknown())
|
|
return *D;
|
|
|
|
assert(0 && "Unknown default value");
|
|
}
|
|
|
|
// If our super region is a field or element itself, walk up the region
|
|
// hierarchy to see if there is a default value installed in an ancestor.
|
|
if (isa<FieldRegion>(superR) || isa<ElementRegion>(superR)) {
|
|
superR = cast<SubRegion>(superR)->getSuperRegion();
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
// Lazy binding?
|
|
const GRState *lazyBindingState = NULL;
|
|
const MemRegion *lazyBindingRegion = NULL;
|
|
llvm::tie(lazyBindingState, lazyBindingRegion) = GetLazyBinding(B, R);
|
|
|
|
if (lazyBindingState) {
|
|
assert(lazyBindingRegion && "Lazy-binding region not set");
|
|
|
|
if (isa<ElementRegion>(R))
|
|
return RetrieveElement(lazyBindingState,
|
|
cast<ElementRegion>(lazyBindingRegion));
|
|
|
|
return RetrieveField(lazyBindingState,
|
|
cast<FieldRegion>(lazyBindingRegion));
|
|
}
|
|
|
|
if (R->hasStackNonParametersStorage()) {
|
|
if (isa<ElementRegion>(R)) {
|
|
// Currently we don't reason specially about Clang-style vectors. Check
|
|
// if superR is a vector and if so return Unknown.
|
|
if (const TypedRegion *typedSuperR = dyn_cast<TypedRegion>(superR)) {
|
|
if (typedSuperR->getValueType(getContext())->isVectorType())
|
|
return UnknownVal();
|
|
}
|
|
}
|
|
|
|
return UndefinedVal();
|
|
}
|
|
|
|
// All other values are symbolic.
|
|
return ValMgr.getRegionValueSymbolVal(R, Ty);
|
|
}
|
|
|
|
SVal RegionStoreManager::RetrieveObjCIvar(const GRState* state,
|
|
const ObjCIvarRegion* R) {
|
|
|
|
// Check if the region has a binding.
|
|
RegionBindings B = GetRegionBindings(state->getStore());
|
|
|
|
if (Optional<SVal> V = getDirectBinding(B, R))
|
|
return *V;
|
|
|
|
const MemRegion *superR = R->getSuperRegion();
|
|
|
|
// Check if the super region has a default binding.
|
|
if (Optional<SVal> V = getDefaultBinding(B, superR)) {
|
|
if (SymbolRef parentSym = V->getAsSymbol())
|
|
return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R);
|
|
|
|
// Other cases: give up.
|
|
return UnknownVal();
|
|
}
|
|
|
|
return RetrieveLazySymbol(state, R);
|
|
}
|
|
|
|
SVal RegionStoreManager::RetrieveVar(const GRState *state,
|
|
const VarRegion *R) {
|
|
|
|
// Check if the region has a binding.
|
|
RegionBindings B = GetRegionBindings(state->getStore());
|
|
|
|
if (Optional<SVal> V = getDirectBinding(B, R))
|
|
return *V;
|
|
|
|
// Lazily derive a value for the VarRegion.
|
|
const VarDecl *VD = R->getDecl();
|
|
|
|
if (R->hasGlobalsOrParametersStorage() ||
|
|
isa<UnknownSpaceRegion>(R->getMemorySpace()))
|
|
return ValMgr.getRegionValueSymbolVal(R, VD->getType());
|
|
|
|
return UndefinedVal();
|
|
}
|
|
|
|
SVal RegionStoreManager::RetrieveLazySymbol(const GRState *state,
|
|
const TypedRegion *R) {
|
|
|
|
QualType valTy = R->getValueType(getContext());
|
|
|
|
// All other values are symbolic.
|
|
return ValMgr.getRegionValueSymbolVal(R, valTy);
|
|
}
|
|
|
|
SVal RegionStoreManager::RetrieveStruct(const GRState *state,
|
|
const TypedRegion* R) {
|
|
QualType T = R->getValueType(getContext());
|
|
assert(T->isStructureType());
|
|
|
|
const RecordType* RT = T->getAsStructureType();
|
|
RecordDecl* RD = RT->getDecl();
|
|
assert(RD->isDefinition());
|
|
(void)RD;
|
|
#if USE_EXPLICIT_COMPOUND
|
|
llvm::ImmutableList<SVal> StructVal = getBasicVals().getEmptySValList();
|
|
|
|
// FIXME: We shouldn't use a std::vector. If RecordDecl doesn't have a
|
|
// reverse iterator, we should implement one.
|
|
std::vector<FieldDecl *> Fields(RD->field_begin(), RD->field_end());
|
|
|
|
for (std::vector<FieldDecl *>::reverse_iterator Field = Fields.rbegin(),
|
|
FieldEnd = Fields.rend();
|
|
Field != FieldEnd; ++Field) {
|
|
FieldRegion* FR = MRMgr.getFieldRegion(*Field, R);
|
|
QualType FTy = (*Field)->getType();
|
|
SVal FieldValue = Retrieve(state, loc::MemRegionVal(FR), FTy).getSVal();
|
|
StructVal = getBasicVals().consVals(FieldValue, StructVal);
|
|
}
|
|
|
|
return ValMgr.makeCompoundVal(T, StructVal);
|
|
#else
|
|
return ValMgr.makeLazyCompoundVal(state, R);
|
|
#endif
|
|
}
|
|
|
|
SVal RegionStoreManager::RetrieveArray(const GRState *state,
|
|
const TypedRegion * R) {
|
|
#if USE_EXPLICIT_COMPOUND
|
|
QualType T = R->getValueType(getContext());
|
|
ConstantArrayType* CAT = cast<ConstantArrayType>(T.getTypePtr());
|
|
|
|
llvm::ImmutableList<SVal> ArrayVal = getBasicVals().getEmptySValList();
|
|
uint64_t size = CAT->getSize().getZExtValue();
|
|
for (uint64_t i = 0; i < size; ++i) {
|
|
SVal Idx = ValMgr.makeArrayIndex(i);
|
|
ElementRegion* ER = MRMgr.getElementRegion(CAT->getElementType(), Idx, R,
|
|
getContext());
|
|
QualType ETy = ER->getElementType();
|
|
SVal ElementVal = Retrieve(state, loc::MemRegionVal(ER), ETy).getSVal();
|
|
ArrayVal = getBasicVals().consVals(ElementVal, ArrayVal);
|
|
}
|
|
|
|
return ValMgr.makeCompoundVal(T, ArrayVal);
|
|
#else
|
|
assert(isa<ConstantArrayType>(R->getValueType(getContext())));
|
|
return ValMgr.makeLazyCompoundVal(state, R);
|
|
#endif
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Binding values to regions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Store RegionStoreManager::Remove(Store store, Loc L) {
|
|
if (isa<loc::MemRegionVal>(L))
|
|
if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
|
|
return Remove(GetRegionBindings(store), R).getRoot();
|
|
|
|
return store;
|
|
}
|
|
|
|
const GRState *RegionStoreManager::Bind(const GRState *state, Loc L, SVal V) {
|
|
if (isa<loc::ConcreteInt>(L))
|
|
return state;
|
|
|
|
// If we get here, the location should be a region.
|
|
const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
|
|
|
|
// Check if the region is a struct region.
|
|
if (const TypedRegion* TR = dyn_cast<TypedRegion>(R))
|
|
if (TR->getValueType(getContext())->isStructureType())
|
|
return BindStruct(state, TR, V);
|
|
|
|
// Special case: the current region represents a cast and it and the super
|
|
// region both have pointer types or intptr_t types. If so, perform the
|
|
// bind to the super region.
|
|
// This is needed to support OSAtomicCompareAndSwap and friends or other
|
|
// loads that treat integers as pointers and vis versa.
|
|
if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
|
|
if (ER->getIndex().isZeroConstant()) {
|
|
if (const TypedRegion *superR =
|
|
dyn_cast<TypedRegion>(ER->getSuperRegion())) {
|
|
ASTContext &Ctx = getContext();
|
|
QualType superTy = superR->getValueType(Ctx);
|
|
QualType erTy = ER->getValueType(Ctx);
|
|
|
|
if (IsAnyPointerOrIntptr(superTy, Ctx) &&
|
|
IsAnyPointerOrIntptr(erTy, Ctx)) {
|
|
SValuator::CastResult cr =
|
|
ValMgr.getSValuator().EvalCast(V, state, superTy, erTy);
|
|
return Bind(cr.getState(), loc::MemRegionVal(superR), cr.getSVal());
|
|
}
|
|
// For now, just invalidate the fields of the struct/union/class.
|
|
// FIXME: Precisely handle the fields of the record.
|
|
if (superTy->isRecordType())
|
|
return InvalidateRegion(state, superR, NULL, 0, NULL);
|
|
}
|
|
}
|
|
}
|
|
else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
|
|
// Binding directly to a symbolic region should be treated as binding
|
|
// to element 0.
|
|
QualType T = SR->getSymbol()->getType(getContext());
|
|
|
|
// FIXME: Is this the right way to handle symbols that are references?
|
|
if (const PointerType *PT = T->getAs<PointerType>())
|
|
T = PT->getPointeeType();
|
|
else
|
|
T = T->getAs<ReferenceType>()->getPointeeType();
|
|
|
|
R = GetElementZeroRegion(SR, T);
|
|
}
|
|
|
|
// Perform the binding.
|
|
RegionBindings B = GetRegionBindings(state->getStore());
|
|
return state->makeWithStore(Add(B, R, BindingKey::Direct, V).getRoot());
|
|
}
|
|
|
|
const GRState *RegionStoreManager::BindDecl(const GRState *ST,
|
|
const VarRegion *VR,
|
|
SVal InitVal) {
|
|
|
|
QualType T = VR->getDecl()->getType();
|
|
|
|
if (T->isArrayType())
|
|
return BindArray(ST, VR, InitVal);
|
|
if (T->isStructureType())
|
|
return BindStruct(ST, VR, InitVal);
|
|
|
|
return Bind(ST, ValMgr.makeLoc(VR), InitVal);
|
|
}
|
|
|
|
// FIXME: this method should be merged into Bind().
|
|
const GRState *
|
|
RegionStoreManager::BindCompoundLiteral(const GRState *state,
|
|
const CompoundLiteralExpr *CL,
|
|
const LocationContext *LC,
|
|
SVal V) {
|
|
return Bind(state, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
|
|
V);
|
|
}
|
|
|
|
const GRState *RegionStoreManager::setImplicitDefaultValue(const GRState *state,
|
|
const MemRegion *R,
|
|
QualType T) {
|
|
Store store = state->getStore();
|
|
RegionBindings B = GetRegionBindings(store);
|
|
SVal V;
|
|
|
|
if (Loc::IsLocType(T))
|
|
V = ValMgr.makeNull();
|
|
else if (T->isIntegerType())
|
|
V = ValMgr.makeZeroVal(T);
|
|
else if (T->isStructureType() || T->isArrayType()) {
|
|
// Set the default value to a zero constant when it is a structure
|
|
// or array. The type doesn't really matter.
|
|
V = ValMgr.makeZeroVal(ValMgr.getContext().IntTy);
|
|
}
|
|
else {
|
|
return state;
|
|
}
|
|
|
|
return state->makeWithStore(Add(B, R, BindingKey::Default, V).getRoot());
|
|
}
|
|
|
|
const GRState *RegionStoreManager::BindArray(const GRState *state,
|
|
const TypedRegion* R,
|
|
SVal Init) {
|
|
|
|
ASTContext &Ctx = getContext();
|
|
const ArrayType *AT =
|
|
cast<ArrayType>(Ctx.getCanonicalType(R->getValueType(Ctx)));
|
|
QualType ElementTy = AT->getElementType();
|
|
Optional<uint64_t> Size;
|
|
|
|
if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
|
|
Size = CAT->getSize().getZExtValue();
|
|
|
|
// Check if the init expr is a StringLiteral.
|
|
if (isa<loc::MemRegionVal>(Init)) {
|
|
const MemRegion* InitR = cast<loc::MemRegionVal>(Init).getRegion();
|
|
const StringLiteral* S = cast<StringRegion>(InitR)->getStringLiteral();
|
|
const char* str = S->getStrData();
|
|
unsigned len = S->getByteLength();
|
|
unsigned j = 0;
|
|
|
|
// Copy bytes from the string literal into the target array. Trailing bytes
|
|
// in the array that are not covered by the string literal are initialized
|
|
// to zero.
|
|
|
|
// We assume that string constants are bound to
|
|
// constant arrays.
|
|
uint64_t size = Size.getValue();
|
|
|
|
for (uint64_t i = 0; i < size; ++i, ++j) {
|
|
if (j >= len)
|
|
break;
|
|
|
|
SVal Idx = ValMgr.makeArrayIndex(i);
|
|
const ElementRegion* ER = MRMgr.getElementRegion(ElementTy, Idx, R,
|
|
getContext());
|
|
|
|
SVal V = ValMgr.makeIntVal(str[j], sizeof(char)*8, true);
|
|
state = Bind(state, loc::MemRegionVal(ER), V);
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
// Handle lazy compound values.
|
|
if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
|
|
return CopyLazyBindings(*LCV, state, R);
|
|
|
|
// Remaining case: explicit compound values.
|
|
|
|
if (Init.isUnknown())
|
|
return setImplicitDefaultValue(state, R, ElementTy);
|
|
|
|
nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
|
|
nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
|
|
uint64_t i = 0;
|
|
|
|
for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
|
|
// The init list might be shorter than the array length.
|
|
if (VI == VE)
|
|
break;
|
|
|
|
SVal Idx = ValMgr.makeArrayIndex(i);
|
|
const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, getContext());
|
|
|
|
if (ElementTy->isStructureType())
|
|
state = BindStruct(state, ER, *VI);
|
|
else
|
|
state = Bind(state, ValMgr.makeLoc(ER), *VI);
|
|
}
|
|
|
|
// If the init list is shorter than the array length, set the
|
|
// array default value.
|
|
if (Size.hasValue() && i < Size.getValue())
|
|
state = setImplicitDefaultValue(state, R, ElementTy);
|
|
|
|
return state;
|
|
}
|
|
|
|
const GRState *
|
|
RegionStoreManager::BindStruct(const GRState *state, const TypedRegion* R,
|
|
SVal V) {
|
|
|
|
if (!Features.supportsFields())
|
|
return state;
|
|
|
|
QualType T = R->getValueType(getContext());
|
|
assert(T->isStructureType());
|
|
|
|
const RecordType* RT = T->getAs<RecordType>();
|
|
RecordDecl* RD = RT->getDecl();
|
|
|
|
if (!RD->isDefinition())
|
|
return state;
|
|
|
|
// Handle lazy compound values.
|
|
if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
|
|
return CopyLazyBindings(*LCV, state, R);
|
|
|
|
// We may get non-CompoundVal accidentally due to imprecise cast logic.
|
|
// Ignore them and kill the field values.
|
|
if (V.isUnknown() || !isa<nonloc::CompoundVal>(V))
|
|
return state->makeWithStore(KillStruct(state->getStore(), R));
|
|
|
|
nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
|
|
nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
|
|
|
|
RecordDecl::field_iterator FI, FE;
|
|
|
|
for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI, ++VI) {
|
|
|
|
if (VI == VE)
|
|
break;
|
|
|
|
QualType FTy = (*FI)->getType();
|
|
const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
|
|
|
|
if (FTy->isArrayType())
|
|
state = BindArray(state, FR, *VI);
|
|
else if (FTy->isStructureType())
|
|
state = BindStruct(state, FR, *VI);
|
|
else
|
|
state = Bind(state, ValMgr.makeLoc(FR), *VI);
|
|
}
|
|
|
|
// There may be fewer values in the initialize list than the fields of struct.
|
|
if (FI != FE) {
|
|
Store store = state->getStore();
|
|
RegionBindings B = GetRegionBindings(store);
|
|
B = Add(B, R, BindingKey::Default, ValMgr.makeIntVal(0, false));
|
|
state = state->makeWithStore(B.getRoot());
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
Store RegionStoreManager::KillStruct(Store store, const TypedRegion* R) {
|
|
RegionBindings B = GetRegionBindings(store);
|
|
llvm::OwningPtr<RegionStoreSubRegionMap>
|
|
SubRegions(getRegionStoreSubRegionMap(store));
|
|
RemoveSubRegionBindings(B, R, *SubRegions);
|
|
|
|
// Set the default value of the struct region to "unknown".
|
|
return Add(B, R, BindingKey::Default, UnknownVal()).getRoot();
|
|
}
|
|
|
|
const GRState*
|
|
RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
|
|
const GRState *state,
|
|
const TypedRegion *R) {
|
|
|
|
// Nuke the old bindings stemming from R.
|
|
RegionBindings B = GetRegionBindings(state->getStore());
|
|
|
|
llvm::OwningPtr<RegionStoreSubRegionMap>
|
|
SubRegions(getRegionStoreSubRegionMap(state->getStore()));
|
|
|
|
// B and DVM are updated after the call to RemoveSubRegionBindings.
|
|
RemoveSubRegionBindings(B, R, *SubRegions.get());
|
|
|
|
// Now copy the bindings. This amounts to just binding 'V' to 'R'. This
|
|
// results in a zero-copy algorithm.
|
|
return state->makeWithStore(Add(B, R, BindingKey::Direct, V).getRoot());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// "Raw" retrievals and bindings.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
|
|
if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
|
|
const RegionRawOffset &O = ER->getAsRawOffset();
|
|
|
|
if (O.getRegion())
|
|
return BindingKey(O.getRegion(), O.getByteOffset(), k);
|
|
|
|
// FIXME: There are some ElementRegions for which we cannot compute
|
|
// raw offsets yet, including regions with symbolic offsets.
|
|
}
|
|
|
|
return BindingKey(R, 0, k);
|
|
}
|
|
|
|
RegionBindings RegionStoreManager::Add(RegionBindings B, BindingKey K, SVal V) {
|
|
return RBFactory.Add(B, K, V);
|
|
}
|
|
|
|
RegionBindings RegionStoreManager::Add(RegionBindings B, const MemRegion *R,
|
|
BindingKey::Kind k, SVal V) {
|
|
return Add(B, BindingKey::Make(R, k), V);
|
|
}
|
|
|
|
const SVal *RegionStoreManager::Lookup(RegionBindings B, BindingKey K) {
|
|
return B.lookup(K);
|
|
}
|
|
|
|
const SVal *RegionStoreManager::Lookup(RegionBindings B,
|
|
const MemRegion *R,
|
|
BindingKey::Kind k) {
|
|
return Lookup(B, BindingKey::Make(R, k));
|
|
}
|
|
|
|
RegionBindings RegionStoreManager::Remove(RegionBindings B, BindingKey K) {
|
|
return RBFactory.Remove(B, K);
|
|
}
|
|
|
|
RegionBindings RegionStoreManager::Remove(RegionBindings B, const MemRegion *R,
|
|
BindingKey::Kind k){
|
|
return Remove(B, BindingKey::Make(R, k));
|
|
}
|
|
|
|
Store RegionStoreManager::Remove(Store store, BindingKey K) {
|
|
RegionBindings B = GetRegionBindings(store);
|
|
return Remove(B, K).getRoot();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// State pruning.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void RegionStoreManager::RemoveDeadBindings(GRState &state, Stmt* Loc,
|
|
SymbolReaper& SymReaper,
|
|
llvm::SmallVectorImpl<const MemRegion*>& RegionRoots)
|
|
{
|
|
typedef std::pair<const GRState*, const MemRegion *> RBDNode;
|
|
|
|
Store store = state.getStore();
|
|
RegionBindings B = GetRegionBindings(store);
|
|
|
|
// The backmap from regions to subregions.
|
|
llvm::OwningPtr<RegionStoreSubRegionMap>
|
|
SubRegions(getRegionStoreSubRegionMap(store));
|
|
|
|
// Do a pass over the regions in the store. For VarRegions we check if
|
|
// the variable is still live and if so add it to the list of live roots.
|
|
// For other regions we populate our region backmap.
|
|
llvm::SmallVector<const MemRegion*, 10> IntermediateRoots;
|
|
|
|
// Scan the direct bindings for "intermediate" roots.
|
|
for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
|
|
const MemRegion *R = I.getKey().getRegion();
|
|
IntermediateRoots.push_back(R);
|
|
}
|
|
|
|
// Process the "intermediate" roots to find if they are referenced by
|
|
// real roots.
|
|
llvm::SmallVector<RBDNode, 10> WorkList;
|
|
llvm::SmallVector<RBDNode, 10> Postponed;
|
|
|
|
llvm::DenseSet<const MemRegion*> IntermediateVisited;
|
|
|
|
while (!IntermediateRoots.empty()) {
|
|
const MemRegion* R = IntermediateRoots.back();
|
|
IntermediateRoots.pop_back();
|
|
|
|
if (IntermediateVisited.count(R))
|
|
continue;
|
|
IntermediateVisited.insert(R);
|
|
|
|
if (const VarRegion* VR = dyn_cast<VarRegion>(R)) {
|
|
if (SymReaper.isLive(Loc, VR))
|
|
WorkList.push_back(std::make_pair(&state, VR));
|
|
continue;
|
|
}
|
|
|
|
if (const SymbolicRegion* SR = dyn_cast<SymbolicRegion>(R)) {
|
|
llvm::SmallVectorImpl<RBDNode> &Q =
|
|
SymReaper.isLive(SR->getSymbol()) ? WorkList : Postponed;
|
|
|
|
Q.push_back(std::make_pair(&state, SR));
|
|
|
|
continue;
|
|
}
|
|
|
|
// Add the super region for R to the worklist if it is a subregion.
|
|
if (const SubRegion* superR =
|
|
dyn_cast<SubRegion>(cast<SubRegion>(R)->getSuperRegion()))
|
|
IntermediateRoots.push_back(superR);
|
|
}
|
|
|
|
// Enqueue the RegionRoots onto WorkList.
|
|
for (llvm::SmallVectorImpl<const MemRegion*>::iterator I=RegionRoots.begin(),
|
|
E=RegionRoots.end(); I!=E; ++I) {
|
|
WorkList.push_back(std::make_pair(&state, *I));
|
|
}
|
|
RegionRoots.clear();
|
|
|
|
llvm::DenseSet<RBDNode> Visited;
|
|
|
|
tryAgain:
|
|
while (!WorkList.empty()) {
|
|
RBDNode N = WorkList.back();
|
|
WorkList.pop_back();
|
|
|
|
// Have we visited this node before?
|
|
if (Visited.count(N))
|
|
continue;
|
|
Visited.insert(N);
|
|
|
|
const MemRegion *R = N.second;
|
|
const GRState *state_N = N.first;
|
|
|
|
// Enqueue subregions.
|
|
RegionStoreSubRegionMap *M;
|
|
|
|
if (&state == state_N)
|
|
M = SubRegions.get();
|
|
else {
|
|
RegionStoreSubRegionMap *& SM = SC[state_N];
|
|
if (!SM)
|
|
SM = getRegionStoreSubRegionMap(state_N->getStore());
|
|
M = SM;
|
|
}
|
|
|
|
if (const RegionStoreSubRegionMap::Set *S = M->getSubRegions(R))
|
|
for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
|
|
I != E; ++I)
|
|
WorkList.push_back(std::make_pair(state_N, *I));
|
|
|
|
// Enqueue the super region.
|
|
if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
|
|
const MemRegion *superR = SR->getSuperRegion();
|
|
if (!isa<MemSpaceRegion>(superR)) {
|
|
// If 'R' is a field or an element, we want to keep the bindings
|
|
// for the other fields and elements around. The reason is that
|
|
// pointer arithmetic can get us to the other fields or elements.
|
|
assert(isa<FieldRegion>(R) || isa<ElementRegion>(R)
|
|
|| isa<ObjCIvarRegion>(R));
|
|
WorkList.push_back(std::make_pair(state_N, superR));
|
|
}
|
|
}
|
|
|
|
// Mark the symbol for any live SymbolicRegion as "live". This means we
|
|
// should continue to track that symbol.
|
|
if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
|
|
SymReaper.markLive(SymR->getSymbol());
|
|
|
|
// For BlockDataRegions, enqueue the VarRegions for variables marked
|
|
// with __block (passed-by-reference).
|
|
// via BlockDeclRefExprs.
|
|
if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) {
|
|
for (BlockDataRegion::referenced_vars_iterator
|
|
RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end();
|
|
RI != RE; ++RI) {
|
|
if ((*RI)->getDecl()->getAttr<BlocksAttr>())
|
|
WorkList.push_back(std::make_pair(state_N, *RI));
|
|
}
|
|
// No possible data bindings on a BlockDataRegion. Continue to the
|
|
// next region in the worklist.
|
|
continue;
|
|
}
|
|
|
|
Store store_N = state_N->getStore();
|
|
RegionBindings B_N = GetRegionBindings(store_N);
|
|
|
|
// Get the data binding for R (if any).
|
|
Optional<SVal> V = getBinding(B_N, R);
|
|
|
|
if (V) {
|
|
// Check for lazy bindings.
|
|
if (const nonloc::LazyCompoundVal *LCV =
|
|
dyn_cast<nonloc::LazyCompoundVal>(V.getPointer())) {
|
|
|
|
const LazyCompoundValData *D = LCV->getCVData();
|
|
WorkList.push_back(std::make_pair(D->getState(), D->getRegion()));
|
|
}
|
|
else {
|
|
// Update the set of live symbols.
|
|
for (SVal::symbol_iterator SI=V->symbol_begin(), SE=V->symbol_end();
|
|
SI!=SE;++SI)
|
|
SymReaper.markLive(*SI);
|
|
|
|
// If V is a region, then add it to the worklist.
|
|
if (const MemRegion *RX = V->getAsRegion())
|
|
WorkList.push_back(std::make_pair(state_N, RX));
|
|
}
|
|
}
|
|
}
|
|
|
|
// See if any postponed SymbolicRegions are actually live now, after
|
|
// having done a scan.
|
|
for (llvm::SmallVectorImpl<RBDNode>::iterator I = Postponed.begin(),
|
|
E = Postponed.end() ; I != E ; ++I) {
|
|
if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(I->second)) {
|
|
if (SymReaper.isLive(SR->getSymbol())) {
|
|
WorkList.push_back(*I);
|
|
I->second = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!WorkList.empty())
|
|
goto tryAgain;
|
|
|
|
// We have now scanned the store, marking reachable regions and symbols
|
|
// as live. We now remove all the regions that are dead from the store
|
|
// as well as update DSymbols with the set symbols that are now dead.
|
|
for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
|
|
const MemRegion* R = I.getKey().getRegion();
|
|
// If this region live? Is so, none of its symbols are dead.
|
|
if (Visited.count(std::make_pair(&state, R)))
|
|
continue;
|
|
|
|
// Remove this dead region from the store.
|
|
store = Remove(store, I.getKey());
|
|
|
|
// Mark all non-live symbols that this region references as dead.
|
|
if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(R))
|
|
SymReaper.maybeDead(SymR->getSymbol());
|
|
|
|
SVal X = I.getData();
|
|
SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
|
|
for (; SI != SE; ++SI)
|
|
SymReaper.maybeDead(*SI);
|
|
}
|
|
|
|
// Write the store back.
|
|
state.setStore(store);
|
|
}
|
|
|
|
GRState const *RegionStoreManager::EnterStackFrame(GRState const *state,
|
|
StackFrameContext const *frame) {
|
|
FunctionDecl const *FD = cast<FunctionDecl>(frame->getDecl());
|
|
CallExpr const *CE = cast<CallExpr>(frame->getCallSite());
|
|
|
|
FunctionDecl::param_const_iterator PI = FD->param_begin();
|
|
|
|
CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
|
|
|
|
// Copy the arg expression value to the arg variables.
|
|
for (; AI != AE; ++AI, ++PI) {
|
|
SVal ArgVal = state->getSVal(*AI);
|
|
state = Bind(state, ValMgr.makeLoc(MRMgr.getVarRegion(*PI, frame)), ArgVal);
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void RegionStoreManager::print(Store store, llvm::raw_ostream& OS,
|
|
const char* nl, const char *sep) {
|
|
RegionBindings B = GetRegionBindings(store);
|
|
OS << "Store (direct and default bindings):" << nl;
|
|
|
|
for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
|
|
OS << ' ' << I.getKey() << " : " << I.getData() << nl;
|
|
}
|