forked from OSchip/llvm-project
976 lines
35 KiB
C++
976 lines
35 KiB
C++
//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines analysis_warnings::[Policy,Executor].
|
|
// Together they are used by Sema to issue warnings based on inexpensive
|
|
// static analysis algorithms in libAnalysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/AnalysisBasedWarnings.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/AST/EvaluatedExprVisitor.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Analysis/AnalysisContext.h"
|
|
#include "clang/Analysis/CFG.h"
|
|
#include "clang/Analysis/Analyses/ReachableCode.h"
|
|
#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
|
|
#include "clang/Analysis/Analyses/ThreadSafety.h"
|
|
#include "clang/Analysis/CFGStmtMap.h"
|
|
#include "clang/Analysis/Analyses/UninitializedValues.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/ImmutableMap.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Unreachable code analysis.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class UnreachableCodeHandler : public reachable_code::Callback {
|
|
Sema &S;
|
|
public:
|
|
UnreachableCodeHandler(Sema &s) : S(s) {}
|
|
|
|
void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
|
|
S.Diag(L, diag::warn_unreachable) << R1 << R2;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// CheckUnreachable - Check for unreachable code.
|
|
static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
|
|
UnreachableCodeHandler UC(S);
|
|
reachable_code::FindUnreachableCode(AC, UC);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Check for missing return value.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
enum ControlFlowKind {
|
|
UnknownFallThrough,
|
|
NeverFallThrough,
|
|
MaybeFallThrough,
|
|
AlwaysFallThrough,
|
|
NeverFallThroughOrReturn
|
|
};
|
|
|
|
/// CheckFallThrough - Check that we don't fall off the end of a
|
|
/// Statement that should return a value.
|
|
///
|
|
/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
|
|
/// MaybeFallThrough iff we might or might not fall off the end,
|
|
/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
|
|
/// return. We assume NeverFallThrough iff we never fall off the end of the
|
|
/// statement but we may return. We assume that functions not marked noreturn
|
|
/// will return.
|
|
static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
|
|
CFG *cfg = AC.getCFG();
|
|
if (cfg == 0) return UnknownFallThrough;
|
|
|
|
// The CFG leaves in dead things, and we don't want the dead code paths to
|
|
// confuse us, so we mark all live things first.
|
|
llvm::BitVector live(cfg->getNumBlockIDs());
|
|
unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
|
|
live);
|
|
|
|
bool AddEHEdges = AC.getAddEHEdges();
|
|
if (!AddEHEdges && count != cfg->getNumBlockIDs())
|
|
// When there are things remaining dead, and we didn't add EH edges
|
|
// from CallExprs to the catch clauses, we have to go back and
|
|
// mark them as live.
|
|
for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
|
|
CFGBlock &b = **I;
|
|
if (!live[b.getBlockID()]) {
|
|
if (b.pred_begin() == b.pred_end()) {
|
|
if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
|
|
// When not adding EH edges from calls, catch clauses
|
|
// can otherwise seem dead. Avoid noting them as dead.
|
|
count += reachable_code::ScanReachableFromBlock(&b, live);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now we know what is live, we check the live precessors of the exit block
|
|
// and look for fall through paths, being careful to ignore normal returns,
|
|
// and exceptional paths.
|
|
bool HasLiveReturn = false;
|
|
bool HasFakeEdge = false;
|
|
bool HasPlainEdge = false;
|
|
bool HasAbnormalEdge = false;
|
|
|
|
// Ignore default cases that aren't likely to be reachable because all
|
|
// enums in a switch(X) have explicit case statements.
|
|
CFGBlock::FilterOptions FO;
|
|
FO.IgnoreDefaultsWithCoveredEnums = 1;
|
|
|
|
for (CFGBlock::filtered_pred_iterator
|
|
I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
|
|
const CFGBlock& B = **I;
|
|
if (!live[B.getBlockID()])
|
|
continue;
|
|
|
|
// Skip blocks which contain an element marked as no-return. They don't
|
|
// represent actually viable edges into the exit block, so mark them as
|
|
// abnormal.
|
|
if (B.hasNoReturnElement()) {
|
|
HasAbnormalEdge = true;
|
|
continue;
|
|
}
|
|
|
|
// Destructors can appear after the 'return' in the CFG. This is
|
|
// normal. We need to look pass the destructors for the return
|
|
// statement (if it exists).
|
|
CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
|
|
|
|
for ( ; ri != re ; ++ri)
|
|
if (isa<CFGStmt>(*ri))
|
|
break;
|
|
|
|
// No more CFGElements in the block?
|
|
if (ri == re) {
|
|
if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
|
|
HasAbnormalEdge = true;
|
|
continue;
|
|
}
|
|
// A labeled empty statement, or the entry block...
|
|
HasPlainEdge = true;
|
|
continue;
|
|
}
|
|
|
|
CFGStmt CS = cast<CFGStmt>(*ri);
|
|
const Stmt *S = CS.getStmt();
|
|
if (isa<ReturnStmt>(S)) {
|
|
HasLiveReturn = true;
|
|
continue;
|
|
}
|
|
if (isa<ObjCAtThrowStmt>(S)) {
|
|
HasFakeEdge = true;
|
|
continue;
|
|
}
|
|
if (isa<CXXThrowExpr>(S)) {
|
|
HasFakeEdge = true;
|
|
continue;
|
|
}
|
|
if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
|
|
if (AS->isMSAsm()) {
|
|
HasFakeEdge = true;
|
|
HasLiveReturn = true;
|
|
continue;
|
|
}
|
|
}
|
|
if (isa<CXXTryStmt>(S)) {
|
|
HasAbnormalEdge = true;
|
|
continue;
|
|
}
|
|
if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
|
|
== B.succ_end()) {
|
|
HasAbnormalEdge = true;
|
|
continue;
|
|
}
|
|
|
|
HasPlainEdge = true;
|
|
}
|
|
if (!HasPlainEdge) {
|
|
if (HasLiveReturn)
|
|
return NeverFallThrough;
|
|
return NeverFallThroughOrReturn;
|
|
}
|
|
if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
|
|
return MaybeFallThrough;
|
|
// This says AlwaysFallThrough for calls to functions that are not marked
|
|
// noreturn, that don't return. If people would like this warning to be more
|
|
// accurate, such functions should be marked as noreturn.
|
|
return AlwaysFallThrough;
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct CheckFallThroughDiagnostics {
|
|
unsigned diag_MaybeFallThrough_HasNoReturn;
|
|
unsigned diag_MaybeFallThrough_ReturnsNonVoid;
|
|
unsigned diag_AlwaysFallThrough_HasNoReturn;
|
|
unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
|
|
unsigned diag_NeverFallThroughOrReturn;
|
|
bool funMode;
|
|
SourceLocation FuncLoc;
|
|
|
|
static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
|
|
CheckFallThroughDiagnostics D;
|
|
D.FuncLoc = Func->getLocation();
|
|
D.diag_MaybeFallThrough_HasNoReturn =
|
|
diag::warn_falloff_noreturn_function;
|
|
D.diag_MaybeFallThrough_ReturnsNonVoid =
|
|
diag::warn_maybe_falloff_nonvoid_function;
|
|
D.diag_AlwaysFallThrough_HasNoReturn =
|
|
diag::warn_falloff_noreturn_function;
|
|
D.diag_AlwaysFallThrough_ReturnsNonVoid =
|
|
diag::warn_falloff_nonvoid_function;
|
|
|
|
// Don't suggest that virtual functions be marked "noreturn", since they
|
|
// might be overridden by non-noreturn functions.
|
|
bool isVirtualMethod = false;
|
|
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
|
|
isVirtualMethod = Method->isVirtual();
|
|
|
|
// Don't suggest that template instantiations be marked "noreturn"
|
|
bool isTemplateInstantiation = false;
|
|
if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
|
|
isTemplateInstantiation = Function->isTemplateInstantiation();
|
|
|
|
if (!isVirtualMethod && !isTemplateInstantiation)
|
|
D.diag_NeverFallThroughOrReturn =
|
|
diag::warn_suggest_noreturn_function;
|
|
else
|
|
D.diag_NeverFallThroughOrReturn = 0;
|
|
|
|
D.funMode = true;
|
|
return D;
|
|
}
|
|
|
|
static CheckFallThroughDiagnostics MakeForBlock() {
|
|
CheckFallThroughDiagnostics D;
|
|
D.diag_MaybeFallThrough_HasNoReturn =
|
|
diag::err_noreturn_block_has_return_expr;
|
|
D.diag_MaybeFallThrough_ReturnsNonVoid =
|
|
diag::err_maybe_falloff_nonvoid_block;
|
|
D.diag_AlwaysFallThrough_HasNoReturn =
|
|
diag::err_noreturn_block_has_return_expr;
|
|
D.diag_AlwaysFallThrough_ReturnsNonVoid =
|
|
diag::err_falloff_nonvoid_block;
|
|
D.diag_NeverFallThroughOrReturn =
|
|
diag::warn_suggest_noreturn_block;
|
|
D.funMode = false;
|
|
return D;
|
|
}
|
|
|
|
bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
|
|
bool HasNoReturn) const {
|
|
if (funMode) {
|
|
return (ReturnsVoid ||
|
|
D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function,
|
|
FuncLoc) == DiagnosticsEngine::Ignored)
|
|
&& (!HasNoReturn ||
|
|
D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr,
|
|
FuncLoc) == DiagnosticsEngine::Ignored)
|
|
&& (!ReturnsVoid ||
|
|
D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
|
|
== DiagnosticsEngine::Ignored);
|
|
}
|
|
|
|
// For blocks.
|
|
return ReturnsVoid && !HasNoReturn
|
|
&& (!ReturnsVoid ||
|
|
D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
|
|
== DiagnosticsEngine::Ignored);
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
|
|
/// function that should return a value. Check that we don't fall off the end
|
|
/// of a noreturn function. We assume that functions and blocks not marked
|
|
/// noreturn will return.
|
|
static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
|
|
const BlockExpr *blkExpr,
|
|
const CheckFallThroughDiagnostics& CD,
|
|
AnalysisDeclContext &AC) {
|
|
|
|
bool ReturnsVoid = false;
|
|
bool HasNoReturn = false;
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
ReturnsVoid = FD->getResultType()->isVoidType();
|
|
HasNoReturn = FD->hasAttr<NoReturnAttr>() ||
|
|
FD->getType()->getAs<FunctionType>()->getNoReturnAttr();
|
|
}
|
|
else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
|
ReturnsVoid = MD->getResultType()->isVoidType();
|
|
HasNoReturn = MD->hasAttr<NoReturnAttr>();
|
|
}
|
|
else if (isa<BlockDecl>(D)) {
|
|
QualType BlockTy = blkExpr->getType();
|
|
if (const FunctionType *FT =
|
|
BlockTy->getPointeeType()->getAs<FunctionType>()) {
|
|
if (FT->getResultType()->isVoidType())
|
|
ReturnsVoid = true;
|
|
if (FT->getNoReturnAttr())
|
|
HasNoReturn = true;
|
|
}
|
|
}
|
|
|
|
DiagnosticsEngine &Diags = S.getDiagnostics();
|
|
|
|
// Short circuit for compilation speed.
|
|
if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
|
|
return;
|
|
|
|
// FIXME: Function try block
|
|
if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
|
|
switch (CheckFallThrough(AC)) {
|
|
case UnknownFallThrough:
|
|
break;
|
|
|
|
case MaybeFallThrough:
|
|
if (HasNoReturn)
|
|
S.Diag(Compound->getRBracLoc(),
|
|
CD.diag_MaybeFallThrough_HasNoReturn);
|
|
else if (!ReturnsVoid)
|
|
S.Diag(Compound->getRBracLoc(),
|
|
CD.diag_MaybeFallThrough_ReturnsNonVoid);
|
|
break;
|
|
case AlwaysFallThrough:
|
|
if (HasNoReturn)
|
|
S.Diag(Compound->getRBracLoc(),
|
|
CD.diag_AlwaysFallThrough_HasNoReturn);
|
|
else if (!ReturnsVoid)
|
|
S.Diag(Compound->getRBracLoc(),
|
|
CD.diag_AlwaysFallThrough_ReturnsNonVoid);
|
|
break;
|
|
case NeverFallThroughOrReturn:
|
|
if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
|
|
<< 0 << FD;
|
|
} else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
|
S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
|
|
<< 1 << MD;
|
|
} else {
|
|
S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn);
|
|
}
|
|
}
|
|
break;
|
|
case NeverFallThrough:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// -Wuninitialized
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// ContainsReference - A visitor class to search for references to
|
|
/// a particular declaration (the needle) within any evaluated component of an
|
|
/// expression (recursively).
|
|
class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
|
|
bool FoundReference;
|
|
const DeclRefExpr *Needle;
|
|
|
|
public:
|
|
ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
|
|
: EvaluatedExprVisitor<ContainsReference>(Context),
|
|
FoundReference(false), Needle(Needle) {}
|
|
|
|
void VisitExpr(Expr *E) {
|
|
// Stop evaluating if we already have a reference.
|
|
if (FoundReference)
|
|
return;
|
|
|
|
EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
|
|
}
|
|
|
|
void VisitDeclRefExpr(DeclRefExpr *E) {
|
|
if (E == Needle)
|
|
FoundReference = true;
|
|
else
|
|
EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
|
|
}
|
|
|
|
bool doesContainReference() const { return FoundReference; }
|
|
};
|
|
}
|
|
|
|
static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
|
|
// Don't issue a fixit if there is already an initializer.
|
|
if (VD->getInit())
|
|
return false;
|
|
|
|
// Suggest possible initialization (if any).
|
|
QualType VariableTy = VD->getType().getCanonicalType();
|
|
const char *Init = S.getFixItZeroInitializerForType(VariableTy);
|
|
if (!Init)
|
|
return false;
|
|
|
|
SourceLocation Loc = S.PP.getLocForEndOfToken(VD->getLocEnd());
|
|
S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
|
|
<< FixItHint::CreateInsertion(Loc, Init);
|
|
return true;
|
|
}
|
|
|
|
/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
|
|
/// uninitialized variable. This manages the different forms of diagnostic
|
|
/// emitted for particular types of uses. Returns true if the use was diagnosed
|
|
/// as a warning. If a pariticular use is one we omit warnings for, returns
|
|
/// false.
|
|
static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
|
|
const Expr *E, bool isAlwaysUninit,
|
|
bool alwaysReportSelfInit = false) {
|
|
bool isSelfInit = false;
|
|
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
if (isAlwaysUninit) {
|
|
// Inspect the initializer of the variable declaration which is
|
|
// being referenced prior to its initialization. We emit
|
|
// specialized diagnostics for self-initialization, and we
|
|
// specifically avoid warning about self references which take the
|
|
// form of:
|
|
//
|
|
// int x = x;
|
|
//
|
|
// This is used to indicate to GCC that 'x' is intentionally left
|
|
// uninitialized. Proven code paths which access 'x' in
|
|
// an uninitialized state after this will still warn.
|
|
//
|
|
// TODO: Should we suppress maybe-uninitialized warnings for
|
|
// variables initialized in this way?
|
|
if (const Expr *Initializer = VD->getInit()) {
|
|
if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
|
|
return false;
|
|
|
|
ContainsReference CR(S.Context, DRE);
|
|
CR.Visit(const_cast<Expr*>(Initializer));
|
|
isSelfInit = CR.doesContainReference();
|
|
}
|
|
if (isSelfInit) {
|
|
S.Diag(DRE->getLocStart(),
|
|
diag::warn_uninit_self_reference_in_init)
|
|
<< VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
|
|
} else {
|
|
S.Diag(DRE->getLocStart(), diag::warn_uninit_var)
|
|
<< VD->getDeclName() << DRE->getSourceRange();
|
|
}
|
|
} else {
|
|
S.Diag(DRE->getLocStart(), diag::warn_maybe_uninit_var)
|
|
<< VD->getDeclName() << DRE->getSourceRange();
|
|
}
|
|
} else {
|
|
const BlockExpr *BE = cast<BlockExpr>(E);
|
|
S.Diag(BE->getLocStart(),
|
|
isAlwaysUninit ? diag::warn_uninit_var_captured_by_block
|
|
: diag::warn_maybe_uninit_var_captured_by_block)
|
|
<< VD->getDeclName();
|
|
}
|
|
|
|
// Report where the variable was declared when the use wasn't within
|
|
// the initializer of that declaration & we didn't already suggest
|
|
// an initialization fixit.
|
|
if (!isSelfInit && !SuggestInitializationFixit(S, VD))
|
|
S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
|
|
<< VD->getDeclName();
|
|
|
|
return true;
|
|
}
|
|
|
|
typedef std::pair<const Expr*, bool> UninitUse;
|
|
|
|
namespace {
|
|
struct SLocSort {
|
|
bool operator()(const UninitUse &a, const UninitUse &b) {
|
|
SourceLocation aLoc = a.first->getLocStart();
|
|
SourceLocation bLoc = b.first->getLocStart();
|
|
return aLoc.getRawEncoding() < bLoc.getRawEncoding();
|
|
}
|
|
};
|
|
|
|
class UninitValsDiagReporter : public UninitVariablesHandler {
|
|
Sema &S;
|
|
typedef SmallVector<UninitUse, 2> UsesVec;
|
|
typedef llvm::DenseMap<const VarDecl *, std::pair<UsesVec*, bool> > UsesMap;
|
|
UsesMap *uses;
|
|
|
|
public:
|
|
UninitValsDiagReporter(Sema &S) : S(S), uses(0) {}
|
|
~UninitValsDiagReporter() {
|
|
flushDiagnostics();
|
|
}
|
|
|
|
std::pair<UsesVec*, bool> &getUses(const VarDecl *vd) {
|
|
if (!uses)
|
|
uses = new UsesMap();
|
|
|
|
UsesMap::mapped_type &V = (*uses)[vd];
|
|
UsesVec *&vec = V.first;
|
|
if (!vec)
|
|
vec = new UsesVec();
|
|
|
|
return V;
|
|
}
|
|
|
|
void handleUseOfUninitVariable(const Expr *ex, const VarDecl *vd,
|
|
bool isAlwaysUninit) {
|
|
getUses(vd).first->push_back(std::make_pair(ex, isAlwaysUninit));
|
|
}
|
|
|
|
void handleSelfInit(const VarDecl *vd) {
|
|
getUses(vd).second = true;
|
|
}
|
|
|
|
void flushDiagnostics() {
|
|
if (!uses)
|
|
return;
|
|
|
|
for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) {
|
|
const VarDecl *vd = i->first;
|
|
const UsesMap::mapped_type &V = i->second;
|
|
|
|
UsesVec *vec = V.first;
|
|
bool hasSelfInit = V.second;
|
|
|
|
// Specially handle the case where we have uses of an uninitialized
|
|
// variable, but the root cause is an idiomatic self-init. We want
|
|
// to report the diagnostic at the self-init since that is the root cause.
|
|
if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
|
|
DiagnoseUninitializedUse(S, vd, vd->getInit()->IgnoreParenCasts(),
|
|
/* isAlwaysUninit */ true,
|
|
/* alwaysReportSelfInit */ true);
|
|
else {
|
|
// Sort the uses by their SourceLocations. While not strictly
|
|
// guaranteed to produce them in line/column order, this will provide
|
|
// a stable ordering.
|
|
std::sort(vec->begin(), vec->end(), SLocSort());
|
|
|
|
for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve;
|
|
++vi) {
|
|
if (DiagnoseUninitializedUse(S, vd, vi->first,
|
|
/*isAlwaysUninit=*/vi->second))
|
|
// Skip further diagnostics for this variable. We try to warn only
|
|
// on the first point at which a variable is used uninitialized.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Release the uses vector.
|
|
delete vec;
|
|
}
|
|
delete uses;
|
|
}
|
|
|
|
private:
|
|
static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
|
|
for (UsesVec::const_iterator i = vec->begin(), e = vec->end(); i != e; ++i) {
|
|
if (i->second) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// -Wthread-safety
|
|
//===----------------------------------------------------------------------===//
|
|
namespace clang {
|
|
namespace thread_safety {
|
|
typedef std::pair<SourceLocation, PartialDiagnostic> DelayedDiag;
|
|
typedef llvm::SmallVector<DelayedDiag, 4> DiagList;
|
|
|
|
struct SortDiagBySourceLocation {
|
|
Sema &S;
|
|
SortDiagBySourceLocation(Sema &S) : S(S) {}
|
|
|
|
bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
|
|
// Although this call will be slow, this is only called when outputting
|
|
// multiple warnings.
|
|
return S.getSourceManager().isBeforeInTranslationUnit(left.first,
|
|
right.first);
|
|
}
|
|
};
|
|
|
|
namespace {
|
|
class ThreadSafetyReporter : public clang::thread_safety::ThreadSafetyHandler {
|
|
Sema &S;
|
|
DiagList Warnings;
|
|
SourceLocation FunLocation;
|
|
|
|
// Helper functions
|
|
void warnLockMismatch(unsigned DiagID, Name LockName, SourceLocation Loc) {
|
|
// Gracefully handle rare cases when the analysis can't get a more
|
|
// precise source location.
|
|
if (!Loc.isValid())
|
|
Loc = FunLocation;
|
|
PartialDiagnostic Warning = S.PDiag(DiagID) << LockName;
|
|
Warnings.push_back(DelayedDiag(Loc, Warning));
|
|
}
|
|
|
|
public:
|
|
ThreadSafetyReporter(Sema &S, SourceLocation FL)
|
|
: S(S), FunLocation(FL) {}
|
|
|
|
/// \brief Emit all buffered diagnostics in order of sourcelocation.
|
|
/// We need to output diagnostics produced while iterating through
|
|
/// the lockset in deterministic order, so this function orders diagnostics
|
|
/// and outputs them.
|
|
void emitDiagnostics() {
|
|
SortDiagBySourceLocation SortDiagBySL(S);
|
|
sort(Warnings.begin(), Warnings.end(), SortDiagBySL);
|
|
for (DiagList::iterator I = Warnings.begin(), E = Warnings.end();
|
|
I != E; ++I)
|
|
S.Diag(I->first, I->second);
|
|
}
|
|
|
|
void handleInvalidLockExp(SourceLocation Loc) {
|
|
PartialDiagnostic Warning = S.PDiag(diag::warn_cannot_resolve_lock) << Loc;
|
|
Warnings.push_back(DelayedDiag(Loc, Warning));
|
|
}
|
|
void handleUnmatchedUnlock(Name LockName, SourceLocation Loc) {
|
|
warnLockMismatch(diag::warn_unlock_but_no_lock, LockName, Loc);
|
|
}
|
|
|
|
void handleDoubleLock(Name LockName, SourceLocation Loc) {
|
|
warnLockMismatch(diag::warn_double_lock, LockName, Loc);
|
|
}
|
|
|
|
void handleMutexHeldEndOfScope(Name LockName, SourceLocation Loc,
|
|
LockErrorKind LEK){
|
|
unsigned DiagID = 0;
|
|
switch (LEK) {
|
|
case LEK_LockedSomePredecessors:
|
|
DiagID = diag::warn_lock_at_end_of_scope;
|
|
break;
|
|
case LEK_LockedSomeLoopIterations:
|
|
DiagID = diag::warn_expecting_lock_held_on_loop;
|
|
break;
|
|
case LEK_LockedAtEndOfFunction:
|
|
DiagID = diag::warn_no_unlock;
|
|
break;
|
|
}
|
|
warnLockMismatch(DiagID, LockName, Loc);
|
|
}
|
|
|
|
|
|
void handleExclusiveAndShared(Name LockName, SourceLocation Loc1,
|
|
SourceLocation Loc2) {
|
|
PartialDiagnostic Warning =
|
|
S.PDiag(diag::warn_lock_exclusive_and_shared) << LockName;
|
|
PartialDiagnostic Note =
|
|
S.PDiag(diag::note_lock_exclusive_and_shared) << LockName;
|
|
Warnings.push_back(DelayedDiag(Loc1, Warning));
|
|
Warnings.push_back(DelayedDiag(Loc2, Note));
|
|
}
|
|
|
|
void handleNoMutexHeld(const NamedDecl *D, ProtectedOperationKind POK,
|
|
AccessKind AK, SourceLocation Loc) {
|
|
assert((POK == POK_VarAccess || POK == POK_VarDereference)
|
|
&& "Only works for variables");
|
|
unsigned DiagID = POK == POK_VarAccess?
|
|
diag::warn_variable_requires_any_lock:
|
|
diag::warn_var_deref_requires_any_lock;
|
|
PartialDiagnostic Warning = S.PDiag(DiagID)
|
|
<< D->getName() << getLockKindFromAccessKind(AK);
|
|
Warnings.push_back(DelayedDiag(Loc, Warning));
|
|
}
|
|
|
|
void handleMutexNotHeld(const NamedDecl *D, ProtectedOperationKind POK,
|
|
Name LockName, LockKind LK, SourceLocation Loc) {
|
|
unsigned DiagID = 0;
|
|
switch (POK) {
|
|
case POK_VarAccess:
|
|
DiagID = diag::warn_variable_requires_lock;
|
|
break;
|
|
case POK_VarDereference:
|
|
DiagID = diag::warn_var_deref_requires_lock;
|
|
break;
|
|
case POK_FunctionCall:
|
|
DiagID = diag::warn_fun_requires_lock;
|
|
break;
|
|
}
|
|
PartialDiagnostic Warning = S.PDiag(DiagID)
|
|
<< D->getName() << LockName << LK;
|
|
Warnings.push_back(DelayedDiag(Loc, Warning));
|
|
}
|
|
|
|
void handleFunExcludesLock(Name FunName, Name LockName, SourceLocation Loc) {
|
|
PartialDiagnostic Warning =
|
|
S.PDiag(diag::warn_fun_excludes_mutex) << FunName << LockName;
|
|
Warnings.push_back(DelayedDiag(Loc, Warning));
|
|
}
|
|
};
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
|
|
// warnings on a function, method, or block.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
clang::sema::AnalysisBasedWarnings::Policy::Policy() {
|
|
enableCheckFallThrough = 1;
|
|
enableCheckUnreachable = 0;
|
|
enableThreadSafetyAnalysis = 0;
|
|
}
|
|
|
|
clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
|
|
: S(s),
|
|
NumFunctionsAnalyzed(0),
|
|
NumFunctionsWithBadCFGs(0),
|
|
NumCFGBlocks(0),
|
|
MaxCFGBlocksPerFunction(0),
|
|
NumUninitAnalysisFunctions(0),
|
|
NumUninitAnalysisVariables(0),
|
|
MaxUninitAnalysisVariablesPerFunction(0),
|
|
NumUninitAnalysisBlockVisits(0),
|
|
MaxUninitAnalysisBlockVisitsPerFunction(0) {
|
|
DiagnosticsEngine &D = S.getDiagnostics();
|
|
DefaultPolicy.enableCheckUnreachable = (unsigned)
|
|
(D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) !=
|
|
DiagnosticsEngine::Ignored);
|
|
DefaultPolicy.enableThreadSafetyAnalysis = (unsigned)
|
|
(D.getDiagnosticLevel(diag::warn_double_lock, SourceLocation()) !=
|
|
DiagnosticsEngine::Ignored);
|
|
|
|
}
|
|
|
|
static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) {
|
|
for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
|
|
i = fscope->PossiblyUnreachableDiags.begin(),
|
|
e = fscope->PossiblyUnreachableDiags.end();
|
|
i != e; ++i) {
|
|
const sema::PossiblyUnreachableDiag &D = *i;
|
|
S.Diag(D.Loc, D.PD);
|
|
}
|
|
}
|
|
|
|
void clang::sema::
|
|
AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
|
|
sema::FunctionScopeInfo *fscope,
|
|
const Decl *D, const BlockExpr *blkExpr) {
|
|
|
|
// We avoid doing analysis-based warnings when there are errors for
|
|
// two reasons:
|
|
// (1) The CFGs often can't be constructed (if the body is invalid), so
|
|
// don't bother trying.
|
|
// (2) The code already has problems; running the analysis just takes more
|
|
// time.
|
|
DiagnosticsEngine &Diags = S.getDiagnostics();
|
|
|
|
// Do not do any analysis for declarations in system headers if we are
|
|
// going to just ignore them.
|
|
if (Diags.getSuppressSystemWarnings() &&
|
|
S.SourceMgr.isInSystemHeader(D->getLocation()))
|
|
return;
|
|
|
|
// For code in dependent contexts, we'll do this at instantiation time.
|
|
if (cast<DeclContext>(D)->isDependentContext())
|
|
return;
|
|
|
|
if (Diags.hasErrorOccurred() || Diags.hasFatalErrorOccurred()) {
|
|
// Flush out any possibly unreachable diagnostics.
|
|
flushDiagnostics(S, fscope);
|
|
return;
|
|
}
|
|
|
|
const Stmt *Body = D->getBody();
|
|
assert(Body);
|
|
|
|
AnalysisDeclContext AC(/* AnalysisDeclContextManager */ 0, D, 0);
|
|
|
|
// Don't generate EH edges for CallExprs as we'd like to avoid the n^2
|
|
// explosion for destrutors that can result and the compile time hit.
|
|
AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
|
|
AC.getCFGBuildOptions().AddEHEdges = false;
|
|
AC.getCFGBuildOptions().AddInitializers = true;
|
|
AC.getCFGBuildOptions().AddImplicitDtors = true;
|
|
|
|
// Force that certain expressions appear as CFGElements in the CFG. This
|
|
// is used to speed up various analyses.
|
|
// FIXME: This isn't the right factoring. This is here for initial
|
|
// prototyping, but we need a way for analyses to say what expressions they
|
|
// expect to always be CFGElements and then fill in the BuildOptions
|
|
// appropriately. This is essentially a layering violation.
|
|
if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis) {
|
|
// Unreachable code analysis and thread safety require a linearized CFG.
|
|
AC.getCFGBuildOptions().setAllAlwaysAdd();
|
|
}
|
|
else {
|
|
AC.getCFGBuildOptions()
|
|
.setAlwaysAdd(Stmt::BinaryOperatorClass)
|
|
.setAlwaysAdd(Stmt::BlockExprClass)
|
|
.setAlwaysAdd(Stmt::CStyleCastExprClass)
|
|
.setAlwaysAdd(Stmt::DeclRefExprClass)
|
|
.setAlwaysAdd(Stmt::ImplicitCastExprClass)
|
|
.setAlwaysAdd(Stmt::UnaryOperatorClass);
|
|
}
|
|
|
|
// Construct the analysis context with the specified CFG build options.
|
|
|
|
// Emit delayed diagnostics.
|
|
if (!fscope->PossiblyUnreachableDiags.empty()) {
|
|
bool analyzed = false;
|
|
|
|
// Register the expressions with the CFGBuilder.
|
|
for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
|
|
i = fscope->PossiblyUnreachableDiags.begin(),
|
|
e = fscope->PossiblyUnreachableDiags.end();
|
|
i != e; ++i) {
|
|
if (const Stmt *stmt = i->stmt)
|
|
AC.registerForcedBlockExpression(stmt);
|
|
}
|
|
|
|
if (AC.getCFG()) {
|
|
analyzed = true;
|
|
for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
|
|
i = fscope->PossiblyUnreachableDiags.begin(),
|
|
e = fscope->PossiblyUnreachableDiags.end();
|
|
i != e; ++i)
|
|
{
|
|
const sema::PossiblyUnreachableDiag &D = *i;
|
|
bool processed = false;
|
|
if (const Stmt *stmt = i->stmt) {
|
|
const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt);
|
|
CFGReverseBlockReachabilityAnalysis *cra =
|
|
AC.getCFGReachablityAnalysis();
|
|
// FIXME: We should be able to assert that block is non-null, but
|
|
// the CFG analysis can skip potentially-evaluated expressions in
|
|
// edge cases; see test/Sema/vla-2.c.
|
|
if (block && cra) {
|
|
// Can this block be reached from the entrance?
|
|
if (cra->isReachable(&AC.getCFG()->getEntry(), block))
|
|
S.Diag(D.Loc, D.PD);
|
|
processed = true;
|
|
}
|
|
}
|
|
if (!processed) {
|
|
// Emit the warning anyway if we cannot map to a basic block.
|
|
S.Diag(D.Loc, D.PD);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!analyzed)
|
|
flushDiagnostics(S, fscope);
|
|
}
|
|
|
|
|
|
// Warning: check missing 'return'
|
|
if (P.enableCheckFallThrough) {
|
|
const CheckFallThroughDiagnostics &CD =
|
|
(isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
|
|
: CheckFallThroughDiagnostics::MakeForFunction(D));
|
|
CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
|
|
}
|
|
|
|
// Warning: check for unreachable code
|
|
if (P.enableCheckUnreachable) {
|
|
// Only check for unreachable code on non-template instantiations.
|
|
// Different template instantiations can effectively change the control-flow
|
|
// and it is very difficult to prove that a snippet of code in a template
|
|
// is unreachable for all instantiations.
|
|
bool isTemplateInstantiation = false;
|
|
if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
|
|
isTemplateInstantiation = Function->isTemplateInstantiation();
|
|
if (!isTemplateInstantiation)
|
|
CheckUnreachable(S, AC);
|
|
}
|
|
|
|
// Check for thread safety violations
|
|
if (P.enableThreadSafetyAnalysis) {
|
|
SourceLocation FL = AC.getDecl()->getLocation();
|
|
thread_safety::ThreadSafetyReporter Reporter(S, FL);
|
|
thread_safety::runThreadSafetyAnalysis(AC, Reporter);
|
|
Reporter.emitDiagnostics();
|
|
}
|
|
|
|
if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart())
|
|
!= DiagnosticsEngine::Ignored ||
|
|
Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart())
|
|
!= DiagnosticsEngine::Ignored) {
|
|
if (CFG *cfg = AC.getCFG()) {
|
|
UninitValsDiagReporter reporter(S);
|
|
UninitVariablesAnalysisStats stats;
|
|
std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
|
|
runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
|
|
reporter, stats);
|
|
|
|
if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
|
|
++NumUninitAnalysisFunctions;
|
|
NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
|
|
NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
|
|
MaxUninitAnalysisVariablesPerFunction =
|
|
std::max(MaxUninitAnalysisVariablesPerFunction,
|
|
stats.NumVariablesAnalyzed);
|
|
MaxUninitAnalysisBlockVisitsPerFunction =
|
|
std::max(MaxUninitAnalysisBlockVisitsPerFunction,
|
|
stats.NumBlockVisits);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Collect statistics about the CFG if it was built.
|
|
if (S.CollectStats && AC.isCFGBuilt()) {
|
|
++NumFunctionsAnalyzed;
|
|
if (CFG *cfg = AC.getCFG()) {
|
|
// If we successfully built a CFG for this context, record some more
|
|
// detail information about it.
|
|
NumCFGBlocks += cfg->getNumBlockIDs();
|
|
MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
|
|
cfg->getNumBlockIDs());
|
|
} else {
|
|
++NumFunctionsWithBadCFGs;
|
|
}
|
|
}
|
|
}
|
|
|
|
void clang::sema::AnalysisBasedWarnings::PrintStats() const {
|
|
llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
|
|
|
|
unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
|
|
unsigned AvgCFGBlocksPerFunction =
|
|
!NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
|
|
llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
|
|
<< NumFunctionsWithBadCFGs << " w/o CFGs).\n"
|
|
<< " " << NumCFGBlocks << " CFG blocks built.\n"
|
|
<< " " << AvgCFGBlocksPerFunction
|
|
<< " average CFG blocks per function.\n"
|
|
<< " " << MaxCFGBlocksPerFunction
|
|
<< " max CFG blocks per function.\n";
|
|
|
|
unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
|
|
: NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
|
|
unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
|
|
: NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
|
|
llvm::errs() << NumUninitAnalysisFunctions
|
|
<< " functions analyzed for uninitialiazed variables\n"
|
|
<< " " << NumUninitAnalysisVariables << " variables analyzed.\n"
|
|
<< " " << AvgUninitVariablesPerFunction
|
|
<< " average variables per function.\n"
|
|
<< " " << MaxUninitAnalysisVariablesPerFunction
|
|
<< " max variables per function.\n"
|
|
<< " " << NumUninitAnalysisBlockVisits << " block visits.\n"
|
|
<< " " << AvgUninitBlockVisitsPerFunction
|
|
<< " average block visits per function.\n"
|
|
<< " " << MaxUninitAnalysisBlockVisitsPerFunction
|
|
<< " max block visits per function.\n";
|
|
}
|