llvm-project/llvm/test/Transforms/InstCombine/fmul-sqrt.ll

90 lines
3.5 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -S -instcombine < %s | FileCheck %s
declare double @llvm.sqrt.f64(double) nounwind readnone speculatable
declare void @use(double)
; sqrt(a) * sqrt(b) no math flags
define double @sqrt_a_sqrt_b(double %a, double %b) {
; CHECK-LABEL: @sqrt_a_sqrt_b(
; CHECK-NEXT: [[TMP1:%.*]] = call double @llvm.sqrt.f64(double [[A:%.*]])
; CHECK-NEXT: [[TMP2:%.*]] = call double @llvm.sqrt.f64(double [[B:%.*]])
; CHECK-NEXT: [[MUL:%.*]] = fmul double [[TMP1]], [[TMP2]]
; CHECK-NEXT: ret double [[MUL]]
;
%1 = call double @llvm.sqrt.f64(double %a)
%2 = call double @llvm.sqrt.f64(double %b)
%mul = fmul double %1, %2
ret double %mul
}
; sqrt(a) * sqrt(b) fast-math, multiple uses
define double @sqrt_a_sqrt_b_multiple_uses(double %a, double %b) {
; CHECK-LABEL: @sqrt_a_sqrt_b_multiple_uses(
; CHECK-NEXT: [[TMP1:%.*]] = call fast double @llvm.sqrt.f64(double [[A:%.*]])
; CHECK-NEXT: [[TMP2:%.*]] = call fast double @llvm.sqrt.f64(double [[B:%.*]])
; CHECK-NEXT: [[MUL:%.*]] = fmul fast double [[TMP1]], [[TMP2]]
; CHECK-NEXT: call void @use(double [[TMP2]])
; CHECK-NEXT: ret double [[MUL]]
;
%1 = call fast double @llvm.sqrt.f64(double %a)
%2 = call fast double @llvm.sqrt.f64(double %b)
%mul = fmul fast double %1, %2
call void @use(double %2)
ret double %mul
}
; sqrt(a) * sqrt(b) => sqrt(a*b) with fast-math
define double @sqrt_a_sqrt_b_reassoc_nnan(double %a, double %b) {
; CHECK-LABEL: @sqrt_a_sqrt_b_reassoc_nnan(
; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nnan double [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[TMP2:%.*]] = call reassoc nnan double @llvm.sqrt.f64(double [[TMP1]])
; CHECK-NEXT: ret double [[TMP2]]
;
%1 = call double @llvm.sqrt.f64(double %a)
%2 = call double @llvm.sqrt.f64(double %b)
%mul = fmul reassoc nnan double %1, %2
ret double %mul
}
; nnan disallows the possibility that both operands are negative,
; so we won't return a number when the answer should be NaN.
define double @sqrt_a_sqrt_b_reassoc(double %a, double %b) {
; CHECK-LABEL: @sqrt_a_sqrt_b_reassoc(
; CHECK-NEXT: [[TMP1:%.*]] = call double @llvm.sqrt.f64(double [[A:%.*]])
; CHECK-NEXT: [[TMP2:%.*]] = call double @llvm.sqrt.f64(double [[B:%.*]])
; CHECK-NEXT: [[MUL:%.*]] = fmul reassoc double [[TMP1]], [[TMP2]]
; CHECK-NEXT: ret double [[MUL]]
;
%1 = call double @llvm.sqrt.f64(double %a)
%2 = call double @llvm.sqrt.f64(double %b)
%mul = fmul reassoc double %1, %2
ret double %mul
}
; sqrt(a) * sqrt(b) * sqrt(c) * sqrt(d) => sqrt(a*b*c*d) with fast-math
; 'reassoc nnan' on the fmuls is all that is required, but check propagation of other FMF.
define double @sqrt_a_sqrt_b_sqrt_c_sqrt_d_reassoc(double %a, double %b, double %c, double %d) {
; CHECK-LABEL: @sqrt_a_sqrt_b_sqrt_c_sqrt_d_reassoc(
; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nnan arcp double [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[TMP2:%.*]] = fmul reassoc nnan double [[TMP1]], [[C:%.*]]
; CHECK-NEXT: [[TMP3:%.*]] = fmul reassoc nnan ninf double [[TMP2]], [[D:%.*]]
; CHECK-NEXT: [[TMP4:%.*]] = call reassoc nnan ninf double @llvm.sqrt.f64(double [[TMP3]])
; CHECK-NEXT: ret double [[TMP4]]
;
%1 = call double @llvm.sqrt.f64(double %a)
%2 = call double @llvm.sqrt.f64(double %b)
%3 = call double @llvm.sqrt.f64(double %c)
%4 = call double @llvm.sqrt.f64(double %d)
%mul = fmul reassoc nnan arcp double %1, %2
%mul1 = fmul reassoc nnan double %mul, %3
%mul2 = fmul reassoc nnan ninf double %mul1, %4
ret double %mul2
}