llvm-project/llvm/test/Transforms/InstCombine/and.ll

840 lines
21 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -instcombine -S | FileCheck %s
; There should be no 'and' instructions left in any test.
define i32 @test1(i32 %A) {
; CHECK-LABEL: @test1(
; CHECK-NEXT: ret i32 0
;
%B = and i32 %A, 0
ret i32 %B
}
define i32 @test2(i32 %A) {
; CHECK-LABEL: @test2(
; CHECK-NEXT: ret i32 %A
;
%B = and i32 %A, -1
ret i32 %B
}
define i1 @test3(i1 %A) {
; CHECK-LABEL: @test3(
; CHECK-NEXT: ret i1 false
;
%B = and i1 %A, false
ret i1 %B
}
define i1 @test4(i1 %A) {
; CHECK-LABEL: @test4(
; CHECK-NEXT: ret i1 %A
;
%B = and i1 %A, true
ret i1 %B
}
define i32 @test5(i32 %A) {
; CHECK-LABEL: @test5(
; CHECK-NEXT: ret i32 %A
;
%B = and i32 %A, %A
ret i32 %B
}
define i1 @test6(i1 %A) {
; CHECK-LABEL: @test6(
; CHECK-NEXT: ret i1 %A
;
%B = and i1 %A, %A
ret i1 %B
}
; A & ~A == 0
define i32 @test7(i32 %A) {
; CHECK-LABEL: @test7(
; CHECK-NEXT: ret i32 0
;
%NotA = xor i32 %A, -1
%B = and i32 %A, %NotA
ret i32 %B
}
; AND associates
define i8 @test8(i8 %A) {
; CHECK-LABEL: @test8(
; CHECK-NEXT: ret i8 0
;
%B = and i8 %A, 3
%C = and i8 %B, 4
ret i8 %C
}
; Test of sign bit, convert to setle %A, 0
define i1 @test9(i32 %A) {
; CHECK-LABEL: @test9(
; CHECK-NEXT: [[C:%.*]] = icmp slt i32 %A, 0
; CHECK-NEXT: ret i1 [[C]]
;
%B = and i32 %A, -2147483648
%C = icmp ne i32 %B, 0
ret i1 %C
}
; Test of sign bit, convert to setle %A, 0
define i1 @test9a(i32 %A) {
; CHECK-LABEL: @test9a(
; CHECK-NEXT: [[C:%.*]] = icmp slt i32 %A, 0
; CHECK-NEXT: ret i1 [[C]]
;
%B = and i32 %A, -2147483648
%C = icmp ne i32 %B, 0
ret i1 %C
}
define i32 @test10(i32 %A) {
; CHECK-LABEL: @test10(
; CHECK-NEXT: ret i32 1
;
%B = and i32 %A, 12
%C = xor i32 %B, 15
; (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
%D = and i32 %C, 1
ret i32 %D
}
define i32 @test11(i32 %A, i32* %P) {
; CHECK-LABEL: @test11(
; CHECK-NEXT: [[B:%.*]] = or i32 %A, 3
; CHECK-NEXT: [[C:%.*]] = xor i32 [[B]], 12
; CHECK-NEXT: store i32 [[C]], i32* %P, align 4
; CHECK-NEXT: ret i32 3
;
%B = or i32 %A, 3
%C = xor i32 %B, 12
; additional use of C
store i32 %C, i32* %P
; %C = and uint %B, 3 --> 3
%D = and i32 %C, 3
ret i32 %D
}
define i1 @test12(i32 %A, i32 %B) {
; CHECK-LABEL: @test12(
; CHECK-NEXT: [[TMP1:%.*]] = icmp ult i32 %A, %B
; CHECK-NEXT: ret i1 [[TMP1]]
;
%C1 = icmp ult i32 %A, %B
%C2 = icmp ule i32 %A, %B
; (A < B) & (A <= B) === (A < B)
%D = and i1 %C1, %C2
ret i1 %D
}
define i1 @test13(i32 %A, i32 %B) {
; CHECK-LABEL: @test13(
; CHECK-NEXT: ret i1 false
;
%C1 = icmp ult i32 %A, %B
%C2 = icmp ugt i32 %A, %B
; (A < B) & (A > B) === false
%D = and i1 %C1, %C2
ret i1 %D
}
define i1 @test14(i8 %A) {
; CHECK-LABEL: @test14(
; CHECK-NEXT: [[C:%.*]] = icmp slt i8 %A, 0
; CHECK-NEXT: ret i1 [[C]]
;
%B = and i8 %A, -128
%C = icmp ne i8 %B, 0
ret i1 %C
}
define i8 @test15(i8 %A) {
; CHECK-LABEL: @test15(
; CHECK-NEXT: ret i8 0
;
%B = lshr i8 %A, 7
; Always equals zero
%C = and i8 %B, 2
ret i8 %C
}
define i8 @test16(i8 %A) {
; CHECK-LABEL: @test16(
; CHECK-NEXT: ret i8 0
;
%B = shl i8 %A, 2
%C = and i8 %B, 3
ret i8 %C
}
define i1 @test18(i32 %A) {
; CHECK-LABEL: @test18(
; CHECK-NEXT: [[C:%.*]] = icmp ugt i32 %A, 127
; CHECK-NEXT: ret i1 [[C]]
;
%B = and i32 %A, -128
;; C >= 128
%C = icmp ne i32 %B, 0
ret i1 %C
}
define <2 x i1> @test18_vec(<2 x i32> %A) {
; CHECK-LABEL: @test18_vec(
; CHECK-NEXT: [[C:%.*]] = icmp ugt <2 x i32> %A, <i32 127, i32 127>
; CHECK-NEXT: ret <2 x i1> [[C]]
;
%B = and <2 x i32> %A, <i32 -128, i32 -128>
%C = icmp ne <2 x i32> %B, zeroinitializer
ret <2 x i1> %C
}
define i1 @test18a(i8 %A) {
; CHECK-LABEL: @test18a(
; CHECK-NEXT: [[C:%.*]] = icmp ult i8 %A, 2
; CHECK-NEXT: ret i1 [[C]]
;
%B = and i8 %A, -2
%C = icmp eq i8 %B, 0
ret i1 %C
}
define <2 x i1> @test18a_vec(<2 x i8> %A) {
; CHECK-LABEL: @test18a_vec(
; CHECK-NEXT: [[C:%.*]] = icmp ult <2 x i8> %A, <i8 2, i8 2>
; CHECK-NEXT: ret <2 x i1> [[C]]
;
%B = and <2 x i8> %A, <i8 -2, i8 -2>
%C = icmp eq <2 x i8> %B, zeroinitializer
ret <2 x i1> %C
}
define i32 @test19(i32 %A) {
; CHECK-LABEL: @test19(
; CHECK-NEXT: [[B:%.*]] = shl i32 %A, 3
; CHECK-NEXT: ret i32 [[B]]
;
%B = shl i32 %A, 3
;; Clearing a zero bit
%C = and i32 %B, -2
ret i32 %C
}
define i8 @test20(i8 %A) {
; CHECK-LABEL: @test20(
; CHECK-NEXT: [[C:%.*]] = lshr i8 %A, 7
; CHECK-NEXT: ret i8 [[C]]
;
%C = lshr i8 %A, 7
;; Unneeded
%D = and i8 %C, 1
ret i8 %D
}
define i1 @test23(i32 %A) {
; CHECK-LABEL: @test23(
; CHECK-NEXT: [[TMP1:%.*]] = icmp eq i32 %A, 2
; CHECK-NEXT: ret i1 [[TMP1]]
;
%B = icmp sgt i32 %A, 1
%C = icmp sle i32 %A, 2
%D = and i1 %B, %C
ret i1 %D
}
; FIXME: Vectors should fold too.
define <2 x i1> @test23vec(<2 x i32> %A) {
; CHECK-LABEL: @test23vec(
; CHECK-NEXT: [[B:%.*]] = icmp sgt <2 x i32> %A, <i32 1, i32 1>
; CHECK-NEXT: [[C:%.*]] = icmp slt <2 x i32> %A, <i32 3, i32 3>
; CHECK-NEXT: [[D:%.*]] = and <2 x i1> [[B]], [[C]]
; CHECK-NEXT: ret <2 x i1> [[D]]
;
%B = icmp sgt <2 x i32> %A, <i32 1, i32 1>
%C = icmp sle <2 x i32> %A, <i32 2, i32 2>
%D = and <2 x i1> %B, %C
ret <2 x i1> %D
}
define i1 @test24(i32 %A) {
; CHECK-LABEL: @test24(
; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt i32 %A, 2
; CHECK-NEXT: ret i1 [[TMP1]]
;
%B = icmp sgt i32 %A, 1
%C = icmp ne i32 %A, 2
;; A > 2
%D = and i1 %B, %C
ret i1 %D
}
define i1 @test25(i32 %A) {
; CHECK-LABEL: @test25(
; CHECK-NEXT: [[A_OFF:%.*]] = add i32 %A, -50
; CHECK-NEXT: [[TMP1:%.*]] = icmp ult i32 [[A_OFF]], 50
; CHECK-NEXT: ret i1 [[TMP1]]
;
%B = icmp sge i32 %A, 50
%C = icmp slt i32 %A, 100
%D = and i1 %B, %C
ret i1 %D
}
; FIXME: Vectors should fold too.
define <2 x i1> @test25vec(<2 x i32> %A) {
; CHECK-LABEL: @test25vec(
; CHECK-NEXT: [[B:%.*]] = icmp sgt <2 x i32> %A, <i32 49, i32 49>
; CHECK-NEXT: [[C:%.*]] = icmp slt <2 x i32> %A, <i32 100, i32 100>
; CHECK-NEXT: [[D:%.*]] = and <2 x i1> [[B]], [[C]]
; CHECK-NEXT: ret <2 x i1> [[D]]
;
%B = icmp sge <2 x i32> %A, <i32 50, i32 50>
%C = icmp slt <2 x i32> %A, <i32 100, i32 100>
%D = and <2 x i1> %B, %C
ret <2 x i1> %D
}
define i8 @test27(i8 %A) {
; CHECK-LABEL: @test27(
; CHECK-NEXT: ret i8 0
;
%B = and i8 %A, 4
%C = sub i8 %B, 16
;; 0xF0
%D = and i8 %C, -16
%E = add i8 %D, 16
ret i8 %E
}
;; This is just a zero-extending shr.
define i32 @test28(i32 %X) {
; CHECK-LABEL: @test28(
; CHECK-NEXT: [[Y1:%.*]] = lshr i32 %X, 24
; CHECK-NEXT: ret i32 [[Y1]]
;
;; Sign extend
%Y = ashr i32 %X, 24
;; Mask out sign bits
%Z = and i32 %Y, 255
ret i32 %Z
}
define i32 @test29(i8 %X) {
; CHECK-LABEL: @test29(
; CHECK-NEXT: [[Y:%.*]] = zext i8 %X to i32
; CHECK-NEXT: ret i32 [[Y]]
;
%Y = zext i8 %X to i32
;; Zero extend makes this unneeded.
%Z = and i32 %Y, 255
ret i32 %Z
}
define i32 @test30(i1 %X) {
; CHECK-LABEL: @test30(
; CHECK-NEXT: [[Y:%.*]] = zext i1 %X to i32
; CHECK-NEXT: ret i32 [[Y]]
;
%Y = zext i1 %X to i32
%Z = and i32 %Y, 1
ret i32 %Z
}
define i32 @test31(i1 %X) {
; CHECK-LABEL: @test31(
; CHECK-NEXT: [[Y:%.*]] = zext i1 %X to i32
; CHECK-NEXT: [[Z:%.*]] = shl nuw nsw i32 [[Y]], 4
; CHECK-NEXT: ret i32 [[Z]]
;
%Y = zext i1 %X to i32
%Z = shl i32 %Y, 4
%A = and i32 %Z, 16
ret i32 %A
}
; Demanded bit analysis allows us to eliminate the add.
define <2 x i32> @and_demanded_bits_splat_vec(<2 x i32> %x) {
; CHECK-LABEL: @and_demanded_bits_splat_vec(
; CHECK-NEXT: [[Z:%.*]] = and <2 x i32> %x, <i32 7, i32 7>
; CHECK-NEXT: ret <2 x i32> [[Z]]
;
%y = add <2 x i32> %x, <i32 8, i32 8>
%z = and <2 x i32> %y, <i32 7, i32 7>
ret <2 x i32> %z
}
; zext (x >> 8) has all zeros in the high 24-bits: 0x000000xx
; (y | 255) has all ones in the low 8-bits: 0xyyyyyyff
; 'and' of those is all known bits - it's just 'z'.
define i32 @and_zext_demanded(i16 %x, i32 %y) {
; CHECK-LABEL: @and_zext_demanded(
; CHECK-NEXT: [[S:%.*]] = lshr i16 %x, 8
; CHECK-NEXT: [[Z:%.*]] = zext i16 [[S]] to i32
; CHECK-NEXT: ret i32 [[Z]]
;
%s = lshr i16 %x, 8
%z = zext i16 %s to i32
%o = or i32 %y, 255
%a = and i32 %o, %z
ret i32 %a
}
define i32 @test32(i32 %In) {
; CHECK-LABEL: @test32(
; CHECK-NEXT: ret i32 0
;
%Y = and i32 %In, 16
%Z = lshr i32 %Y, 2
%A = and i32 %Z, 1
ret i32 %A
}
;; Code corresponding to one-bit bitfield ^1.
define i32 @test33(i32 %b) {
; CHECK-LABEL: @test33(
; CHECK-NEXT: [[TMP_13:%.*]] = xor i32 %b, 1
; CHECK-NEXT: ret i32 [[TMP_13]]
;
%tmp.4.mask = and i32 %b, 1
%tmp.10 = xor i32 %tmp.4.mask, 1
%tmp.12 = and i32 %b, -2
%tmp.13 = or i32 %tmp.12, %tmp.10
ret i32 %tmp.13
}
define i32 @test33b(i32 %b) {
; CHECK-LABEL: @test33b(
; CHECK-NEXT: [[TMP_13:%.*]] = xor i32 [[B:%.*]], 1
; CHECK-NEXT: ret i32 [[TMP_13]]
;
%tmp.4.mask = and i32 %b, 1
%tmp.10 = xor i32 %tmp.4.mask, 1
%tmp.12 = and i32 %b, -2
%tmp.13 = or i32 %tmp.10, %tmp.12
ret i32 %tmp.13
}
define <2 x i32> @test33vec(<2 x i32> %b) {
; CHECK-LABEL: @test33vec(
; CHECK-NEXT: [[TMP_13:%.*]] = xor <2 x i32> [[B:%.*]], <i32 1, i32 1>
; CHECK-NEXT: ret <2 x i32> [[TMP_13]]
;
%tmp.4.mask = and <2 x i32> %b, <i32 1, i32 1>
%tmp.10 = xor <2 x i32> %tmp.4.mask, <i32 1, i32 1>
%tmp.12 = and <2 x i32> %b, <i32 -2, i32 -2>
%tmp.13 = or <2 x i32> %tmp.12, %tmp.10
ret <2 x i32> %tmp.13
}
define <2 x i32> @test33vecb(<2 x i32> %b) {
; CHECK-LABEL: @test33vecb(
; CHECK-NEXT: [[TMP_13:%.*]] = xor <2 x i32> [[B:%.*]], <i32 1, i32 1>
; CHECK-NEXT: ret <2 x i32> [[TMP_13]]
;
%tmp.4.mask = and <2 x i32> %b, <i32 1, i32 1>
%tmp.10 = xor <2 x i32> %tmp.4.mask, <i32 1, i32 1>
%tmp.12 = and <2 x i32> %b, <i32 -2, i32 -2>
%tmp.13 = or <2 x i32> %tmp.10, %tmp.12
ret <2 x i32> %tmp.13
}
define i32 @test34(i32 %A, i32 %B) {
; CHECK-LABEL: @test34(
; CHECK-NEXT: ret i32 %B
;
%tmp.2 = or i32 %B, %A
%tmp.4 = and i32 %tmp.2, %B
ret i32 %tmp.4
}
; FIXME: This test should only need -instsimplify (ValueTracking / computeKnownBits), not -instcombine.
define <2 x i32> @PR24942(<2 x i32> %x) {
; CHECK-LABEL: @PR24942(
; CHECK-NEXT: ret <2 x i32> zeroinitializer
;
%lshr = lshr <2 x i32> %x, <i32 31, i32 31>
%and = and <2 x i32> %lshr, <i32 2, i32 2>
ret <2 x i32> %and
}
define i64 @test35(i32 %X) {
; CHECK-LABEL: @test35(
; CHECK-NEXT: %[[sub:.*]] = sub i32 0, %X
; CHECK-NEXT: %[[and:.*]] = and i32 %[[sub]], 240
; CHECK-NEXT: %[[cst:.*]] = zext i32 %[[and]] to i64
; CHECK-NEXT: ret i64 %[[cst]]
%zext = zext i32 %X to i64
%zsub = sub i64 0, %zext
%res = and i64 %zsub, 240
ret i64 %res
}
define i64 @test36(i32 %X) {
; CHECK-LABEL: @test36(
; CHECK-NEXT: %[[sub:.*]] = add i32 %X, 7
; CHECK-NEXT: %[[and:.*]] = and i32 %[[sub]], 240
; CHECK-NEXT: %[[cst:.*]] = zext i32 %[[and]] to i64
; CHECK-NEXT: ret i64 %[[cst]]
%zext = zext i32 %X to i64
%zsub = add i64 %zext, 7
%res = and i64 %zsub, 240
ret i64 %res
}
define i64 @test37(i32 %X) {
; CHECK-LABEL: @test37(
; CHECK-NEXT: %[[sub:.*]] = mul i32 %X, 7
; CHECK-NEXT: %[[and:.*]] = and i32 %[[sub]], 240
; CHECK-NEXT: %[[cst:.*]] = zext i32 %[[and]] to i64
; CHECK-NEXT: ret i64 %[[cst]]
%zext = zext i32 %X to i64
%zsub = mul i64 %zext, 7
%res = and i64 %zsub, 240
ret i64 %res
}
define i64 @test38(i32 %X) {
; CHECK-LABEL: @test38(
; CHECK-NEXT: %[[and:.*]] = and i32 %X, 240
; CHECK-NEXT: %[[cst:.*]] = zext i32 %[[and]] to i64
; CHECK-NEXT: ret i64 %[[cst]]
%zext = zext i32 %X to i64
%zsub = xor i64 %zext, 7
%res = and i64 %zsub, 240
ret i64 %res
}
define i64 @test39(i32 %X) {
; CHECK-LABEL: @test39(
; CHECK-NEXT: %[[and:.*]] = and i32 %X, 240
; CHECK-NEXT: %[[cst:.*]] = zext i32 %[[and]] to i64
; CHECK-NEXT: ret i64 %[[cst]]
%zext = zext i32 %X to i64
%zsub = or i64 %zext, 7
%res = and i64 %zsub, 240
ret i64 %res
}
define i32 @test40(i1 %C) {
; CHECK-LABEL: @test40(
; CHECK-NEXT: [[A:%.*]] = select i1 [[C:%.*]], i32 104, i32 10
; CHECK-NEXT: ret i32 [[A]]
;
%A = select i1 %C, i32 1000, i32 10
%V = and i32 %A, 123
ret i32 %V
}
define <2 x i32> @test40vec(i1 %C) {
; CHECK-LABEL: @test40vec(
; CHECK-NEXT: [[A:%.*]] = select i1 [[C:%.*]], <2 x i32> <i32 104, i32 104>, <2 x i32> <i32 10, i32 10>
; CHECK-NEXT: ret <2 x i32> [[A]]
;
%A = select i1 %C, <2 x i32> <i32 1000, i32 1000>, <2 x i32> <i32 10, i32 10>
%V = and <2 x i32> %A, <i32 123, i32 123>
ret <2 x i32> %V
}
define <2 x i32> @test40vec2(i1 %C) {
; CHECK-LABEL: @test40vec2(
; CHECK-NEXT: [[V:%.*]] = select i1 [[C:%.*]], <2 x i32> <i32 104, i32 324>, <2 x i32> <i32 10, i32 12>
; CHECK-NEXT: ret <2 x i32> [[V]]
;
%A = select i1 %C, <2 x i32> <i32 1000, i32 2500>, <2 x i32> <i32 10, i32 30>
%V = and <2 x i32> %A, <i32 123, i32 333>
ret <2 x i32> %V
}
define i32 @test41(i1 %which) {
; CHECK-LABEL: @test41(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]]
; CHECK: delay:
; CHECK-NEXT: br label [[FINAL]]
; CHECK: final:
; CHECK-NEXT: [[A:%.*]] = phi i32 [ 104, [[ENTRY:%.*]] ], [ 10, [[DELAY]] ]
; CHECK-NEXT: ret i32 [[A]]
;
entry:
br i1 %which, label %final, label %delay
delay:
br label %final
final:
%A = phi i32 [ 1000, %entry ], [ 10, %delay ]
%value = and i32 %A, 123
ret i32 %value
}
define <2 x i32> @test41vec(i1 %which) {
; CHECK-LABEL: @test41vec(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]]
; CHECK: delay:
; CHECK-NEXT: br label [[FINAL]]
; CHECK: final:
; CHECK-NEXT: [[A:%.*]] = phi <2 x i32> [ <i32 104, i32 104>, [[ENTRY:%.*]] ], [ <i32 10, i32 10>, [[DELAY]] ]
; CHECK-NEXT: ret <2 x i32> [[A]]
;
entry:
br i1 %which, label %final, label %delay
delay:
br label %final
final:
%A = phi <2 x i32> [ <i32 1000, i32 1000>, %entry ], [ <i32 10, i32 10>, %delay ]
%value = and <2 x i32> %A, <i32 123, i32 123>
ret <2 x i32> %value
}
define <2 x i32> @test41vec2(i1 %which) {
; CHECK-LABEL: @test41vec2(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]]
; CHECK: delay:
; CHECK-NEXT: br label [[FINAL]]
; CHECK: final:
; CHECK-NEXT: [[A:%.*]] = phi <2 x i32> [ <i32 104, i32 324>, [[ENTRY:%.*]] ], [ <i32 10, i32 12>, [[DELAY]] ]
; CHECK-NEXT: ret <2 x i32> [[A]]
;
entry:
br i1 %which, label %final, label %delay
delay:
br label %final
final:
%A = phi <2 x i32> [ <i32 1000, i32 2500>, %entry ], [ <i32 10, i32 30>, %delay ]
%value = and <2 x i32> %A, <i32 123, i32 333>
ret <2 x i32> %value
}
define i32 @test42(i32 %a, i32 %c, i32 %d) {
; CHECK-LABEL: @test42(
; CHECK-NEXT: [[FORCE:%.*]] = mul i32 [[C:%.*]], [[D:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and i32 [[FORCE]], [[A:%.*]]
; CHECK-NEXT: ret i32 [[AND]]
;
%force = mul i32 %c, %d ; forces the complexity sorting
%or = or i32 %a, %force
%nota = xor i32 %a, -1
%xor = xor i32 %nota, %force
%and = and i32 %xor, %or
ret i32 %and
}
define i32 @test43(i32 %a, i32 %c, i32 %d) {
; CHECK-LABEL: @test43(
; CHECK-NEXT: [[FORCE:%.*]] = mul i32 [[C:%.*]], [[D:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and i32 [[FORCE]], [[A:%.*]]
; CHECK-NEXT: ret i32 [[AND]]
;
%force = mul i32 %c, %d ; forces the complexity sorting
%or = or i32 %a, %force
%nota = xor i32 %a, -1
%xor = xor i32 %nota, %force
%and = and i32 %or, %xor
ret i32 %and
}
; (~y | x) & y -> x & y
define i32 @test44(i32 %x, i32 %y) nounwind {
; CHECK-LABEL: @test44(
; CHECK-NEXT: [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: ret i32 [[A]]
;
%n = xor i32 %y, -1
%o = or i32 %n, %x
%a = and i32 %o, %y
ret i32 %a
}
; (x | ~y) & y -> x & y
define i32 @test45(i32 %x, i32 %y) nounwind {
; CHECK-LABEL: @test45(
; CHECK-NEXT: [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: ret i32 [[A]]
;
%n = xor i32 %y, -1
%o = or i32 %x, %n
%a = and i32 %o, %y
ret i32 %a
}
; y & (~y | x) -> y | x
define i32 @test46(i32 %x, i32 %y) nounwind {
; CHECK-LABEL: @test46(
; CHECK-NEXT: [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: ret i32 [[A]]
;
%n = xor i32 %y, -1
%o = or i32 %n, %x
%a = and i32 %y, %o
ret i32 %a
}
; y & (x | ~y) -> y | x
define i32 @test47(i32 %x, i32 %y) nounwind {
; CHECK-LABEL: @test47(
; CHECK-NEXT: [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: ret i32 [[A]]
;
%n = xor i32 %y, -1
%o = or i32 %x, %n
%a = and i32 %y, %o
ret i32 %a
}
; In the next 4 tests, vary the types and predicates for extra coverage.
; (X & (Y | ~X)) -> (X & Y), where 'not' is an inverted cmp
define i1 @and_orn_cmp_1(i32 %a, i32 %b, i32 %c) {
; CHECK-LABEL: @and_orn_cmp_1(
; CHECK-NEXT: [[X:%.*]] = icmp sgt i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt i32 [[C:%.*]], 42
; CHECK-NEXT: [[AND:%.*]] = and i1 [[X]], [[Y]]
; CHECK-NEXT: ret i1 [[AND]]
;
%x = icmp sgt i32 %a, %b
%x_inv = icmp sle i32 %a, %b
%y = icmp ugt i32 %c, 42 ; thwart complexity-based ordering
%or = or i1 %y, %x_inv
%and = and i1 %x, %or
ret i1 %and
}
; Commute the 'and':
; ((Y | ~X) & X) -> (X & Y), where 'not' is an inverted cmp
define <2 x i1> @and_orn_cmp_2(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c) {
; CHECK-LABEL: @and_orn_cmp_2(
; CHECK-NEXT: [[X:%.*]] = icmp sge <2 x i32> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt <2 x i32> [[C:%.*]], <i32 42, i32 47>
; CHECK-NEXT: [[AND:%.*]] = and <2 x i1> [[Y]], [[X]]
; CHECK-NEXT: ret <2 x i1> [[AND]]
;
%x = icmp sge <2 x i32> %a, %b
%x_inv = icmp slt <2 x i32> %a, %b
%y = icmp ugt <2 x i32> %c, <i32 42, i32 47> ; thwart complexity-based ordering
%or = or <2 x i1> %y, %x_inv
%and = and <2 x i1> %or, %x
ret <2 x i1> %and
}
; Commute the 'or':
; (X & (~X | Y)) -> (X & Y), where 'not' is an inverted cmp
define i1 @and_orn_cmp_3(i72 %a, i72 %b, i72 %c) {
; CHECK-LABEL: @and_orn_cmp_3(
; CHECK-NEXT: [[X:%.*]] = icmp ugt i72 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt i72 [[C:%.*]], 42
; CHECK-NEXT: [[AND:%.*]] = and i1 [[X]], [[Y]]
; CHECK-NEXT: ret i1 [[AND]]
;
%x = icmp ugt i72 %a, %b
%x_inv = icmp ule i72 %a, %b
%y = icmp ugt i72 %c, 42 ; thwart complexity-based ordering
%or = or i1 %x_inv, %y
%and = and i1 %x, %or
ret i1 %and
}
; Commute the 'and':
; ((~X | Y) & X) -> (X & Y), where 'not' is an inverted cmp
define <3 x i1> @or_andn_cmp_4(<3 x i32> %a, <3 x i32> %b, <3 x i32> %c) {
; CHECK-LABEL: @or_andn_cmp_4(
; CHECK-NEXT: [[X:%.*]] = icmp eq <3 x i32> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt <3 x i32> [[C:%.*]], <i32 42, i32 43, i32 -1>
; CHECK-NEXT: [[AND:%.*]] = and <3 x i1> [[Y]], [[X]]
; CHECK-NEXT: ret <3 x i1> [[AND]]
;
%x = icmp eq <3 x i32> %a, %b
%x_inv = icmp ne <3 x i32> %a, %b
%y = icmp ugt <3 x i32> %c, <i32 42, i32 43, i32 -1> ; thwart complexity-based ordering
%or = or <3 x i1> %x_inv, %y
%and = and <3 x i1> %or, %x
ret <3 x i1> %and
}
; In the next 4 tests, vary the types and predicates for extra coverage.
; (~X & (Y | X)) -> (~X & Y), where 'not' is an inverted cmp
define i1 @andn_or_cmp_1(i37 %a, i37 %b, i37 %c) {
; CHECK-LABEL: @andn_or_cmp_1(
; CHECK-NEXT: [[X_INV:%.*]] = icmp sle i37 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt i37 [[C:%.*]], 42
; CHECK-NEXT: [[AND:%.*]] = and i1 [[X_INV]], [[Y]]
; CHECK-NEXT: ret i1 [[AND]]
;
%x = icmp sgt i37 %a, %b
%x_inv = icmp sle i37 %a, %b
%y = icmp ugt i37 %c, 42 ; thwart complexity-based ordering
%or = or i1 %y, %x
%and = and i1 %x_inv, %or
ret i1 %and
}
; Commute the 'and':
; ((Y | X) & ~X) -> (~X & Y), where 'not' is an inverted cmp
define i1 @andn_or_cmp_2(i16 %a, i16 %b, i16 %c) {
; CHECK-LABEL: @andn_or_cmp_2(
; CHECK-NEXT: [[X_INV:%.*]] = icmp slt i16 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt i16 [[C:%.*]], 42
; CHECK-NEXT: [[AND:%.*]] = and i1 [[Y]], [[X_INV]]
; CHECK-NEXT: ret i1 [[AND]]
;
%x = icmp sge i16 %a, %b
%x_inv = icmp slt i16 %a, %b
%y = icmp ugt i16 %c, 42 ; thwart complexity-based ordering
%or = or i1 %y, %x
%and = and i1 %or, %x_inv
ret i1 %and
}
; Commute the 'or':
; (~X & (X | Y)) -> (~X & Y), where 'not' is an inverted cmp
define <4 x i1> @andn_or_cmp_3(<4 x i32> %a, <4 x i32> %b, <4 x i32> %c) {
; CHECK-LABEL: @andn_or_cmp_3(
; CHECK-NEXT: [[X_INV:%.*]] = icmp ule <4 x i32> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt <4 x i32> [[C:%.*]], <i32 42, i32 0, i32 1, i32 -1>
; CHECK-NEXT: [[AND:%.*]] = and <4 x i1> [[X_INV]], [[Y]]
; CHECK-NEXT: ret <4 x i1> [[AND]]
;
%x = icmp ugt <4 x i32> %a, %b
%x_inv = icmp ule <4 x i32> %a, %b
%y = icmp ugt <4 x i32> %c, <i32 42, i32 0, i32 1, i32 -1> ; thwart complexity-based ordering
%or = or <4 x i1> %x, %y
%and = and <4 x i1> %x_inv, %or
ret <4 x i1> %and
}
; Commute the 'and':
; ((X | Y) & ~X) -> (~X & Y), where 'not' is an inverted cmp
define i1 @andn_or_cmp_4(i32 %a, i32 %b, i32 %c) {
; CHECK-LABEL: @andn_or_cmp_4(
; CHECK-NEXT: [[X_INV:%.*]] = icmp ne i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt i32 [[C:%.*]], 42
; CHECK-NEXT: [[AND:%.*]] = and i1 [[Y]], [[X_INV]]
; CHECK-NEXT: ret i1 [[AND]]
;
%x = icmp eq i32 %a, %b
%x_inv = icmp ne i32 %a, %b
%y = icmp ugt i32 %c, 42 ; thwart complexity-based ordering
%or = or i1 %x, %y
%and = and i1 %or, %x_inv
ret i1 %and
}