llvm-project/clang/lib/Sema/SemaTemplateDeduction.cpp

2803 lines
110 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===/
//
// This file implements C++ template argument deduction.
//
//===----------------------------------------------------------------------===/
#include "clang/Sema/Sema.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Template.h"
#include "clang/Sema/TemplateDeduction.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include <algorithm>
namespace clang {
using namespace sema;
/// \brief Various flags that control template argument deduction.
///
/// These flags can be bitwise-OR'd together.
enum TemplateDeductionFlags {
/// \brief No template argument deduction flags, which indicates the
/// strictest results for template argument deduction (as used for, e.g.,
/// matching class template partial specializations).
TDF_None = 0,
/// \brief Within template argument deduction from a function call, we are
/// matching with a parameter type for which the original parameter was
/// a reference.
TDF_ParamWithReferenceType = 0x1,
/// \brief Within template argument deduction from a function call, we
/// are matching in a case where we ignore cv-qualifiers.
TDF_IgnoreQualifiers = 0x02,
/// \brief Within template argument deduction from a function call,
/// we are matching in a case where we can perform template argument
/// deduction from a template-id of a derived class of the argument type.
TDF_DerivedClass = 0x04,
/// \brief Allow non-dependent types to differ, e.g., when performing
/// template argument deduction from a function call where conversions
/// may apply.
TDF_SkipNonDependent = 0x08
};
}
using namespace clang;
/// \brief Compare two APSInts, extending and switching the sign as
/// necessary to compare their values regardless of underlying type.
static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
if (Y.getBitWidth() > X.getBitWidth())
X.extend(Y.getBitWidth());
else if (Y.getBitWidth() < X.getBitWidth())
Y.extend(X.getBitWidth());
// If there is a signedness mismatch, correct it.
if (X.isSigned() != Y.isSigned()) {
// If the signed value is negative, then the values cannot be the same.
if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
return false;
Y.setIsSigned(true);
X.setIsSigned(true);
}
return X == Y;
}
static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
TemplateParameterList *TemplateParams,
const TemplateArgument &Param,
const TemplateArgument &Arg,
TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced);
/// \brief If the given expression is of a form that permits the deduction
/// of a non-type template parameter, return the declaration of that
/// non-type template parameter.
static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
E = IC->getSubExpr();
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
return 0;
}
/// \brief Deduce the value of the given non-type template parameter
/// from the given constant.
static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema &S,
NonTypeTemplateParmDecl *NTTP,
llvm::APSInt Value, QualType ValueType,
bool DeducedFromArrayBound,
TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
assert(NTTP->getDepth() == 0 &&
"Cannot deduce non-type template argument with depth > 0");
if (Deduced[NTTP->getIndex()].isNull()) {
Deduced[NTTP->getIndex()] = DeducedTemplateArgument(Value, ValueType,
DeducedFromArrayBound);
return Sema::TDK_Success;
}
if (Deduced[NTTP->getIndex()].getKind() != TemplateArgument::Integral) {
Info.Param = NTTP;
Info.FirstArg = Deduced[NTTP->getIndex()];
Info.SecondArg = TemplateArgument(Value, ValueType);
return Sema::TDK_Inconsistent;
}
// Extent the smaller of the two values.
llvm::APSInt PrevValue = *Deduced[NTTP->getIndex()].getAsIntegral();
if (!hasSameExtendedValue(PrevValue, Value)) {
Info.Param = NTTP;
Info.FirstArg = Deduced[NTTP->getIndex()];
Info.SecondArg = TemplateArgument(Value, ValueType);
return Sema::TDK_Inconsistent;
}
if (!DeducedFromArrayBound)
Deduced[NTTP->getIndex()].setDeducedFromArrayBound(false);
return Sema::TDK_Success;
}
/// \brief Deduce the value of the given non-type template parameter
/// from the given type- or value-dependent expression.
///
/// \returns true if deduction succeeded, false otherwise.
static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema &S,
NonTypeTemplateParmDecl *NTTP,
Expr *Value,
TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
assert(NTTP->getDepth() == 0 &&
"Cannot deduce non-type template argument with depth > 0");
assert((Value->isTypeDependent() || Value->isValueDependent()) &&
"Expression template argument must be type- or value-dependent.");
if (Deduced[NTTP->getIndex()].isNull()) {
Deduced[NTTP->getIndex()] = TemplateArgument(Value->Retain());
return Sema::TDK_Success;
}
if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral) {
// Okay, we deduced a constant in one case and a dependent expression
// in another case. FIXME: Later, we will check that instantiating the
// dependent expression gives us the constant value.
return Sema::TDK_Success;
}
if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
// Compare the expressions for equality
llvm::FoldingSetNodeID ID1, ID2;
Deduced[NTTP->getIndex()].getAsExpr()->Profile(ID1, S.Context, true);
Value->Profile(ID2, S.Context, true);
if (ID1 == ID2)
return Sema::TDK_Success;
// FIXME: Fill in argument mismatch information
return Sema::TDK_NonDeducedMismatch;
}
return Sema::TDK_Success;
}
/// \brief Deduce the value of the given non-type template parameter
/// from the given declaration.
///
/// \returns true if deduction succeeded, false otherwise.
static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema &S,
NonTypeTemplateParmDecl *NTTP,
Decl *D,
TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
assert(NTTP->getDepth() == 0 &&
"Cannot deduce non-type template argument with depth > 0");
if (Deduced[NTTP->getIndex()].isNull()) {
Deduced[NTTP->getIndex()] = TemplateArgument(D->getCanonicalDecl());
return Sema::TDK_Success;
}
if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
// Okay, we deduced a declaration in one case and a dependent expression
// in another case.
return Sema::TDK_Success;
}
if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Declaration) {
// Compare the declarations for equality
if (Deduced[NTTP->getIndex()].getAsDecl()->getCanonicalDecl() ==
D->getCanonicalDecl())
return Sema::TDK_Success;
// FIXME: Fill in argument mismatch information
return Sema::TDK_NonDeducedMismatch;
}
return Sema::TDK_Success;
}
static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
TemplateParameterList *TemplateParams,
TemplateName Param,
TemplateName Arg,
TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
if (!ParamDecl) {
// The parameter type is dependent and is not a template template parameter,
// so there is nothing that we can deduce.
return Sema::TDK_Success;
}
if (TemplateTemplateParmDecl *TempParam
= dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
// Bind the template template parameter to the given template name.
TemplateArgument &ExistingArg = Deduced[TempParam->getIndex()];
if (ExistingArg.isNull()) {
// This is the first deduction for this template template parameter.
ExistingArg = TemplateArgument(S.Context.getCanonicalTemplateName(Arg));
return Sema::TDK_Success;
}
// Verify that the previous binding matches this deduction.
assert(ExistingArg.getKind() == TemplateArgument::Template);
if (S.Context.hasSameTemplateName(ExistingArg.getAsTemplate(), Arg))
return Sema::TDK_Success;
// Inconsistent deduction.
Info.Param = TempParam;
Info.FirstArg = ExistingArg;
Info.SecondArg = TemplateArgument(Arg);
return Sema::TDK_Inconsistent;
}
// Verify that the two template names are equivalent.
if (S.Context.hasSameTemplateName(Param, Arg))
return Sema::TDK_Success;
// Mismatch of non-dependent template parameter to argument.
Info.FirstArg = TemplateArgument(Param);
Info.SecondArg = TemplateArgument(Arg);
return Sema::TDK_NonDeducedMismatch;
}
/// \brief Deduce the template arguments by comparing the template parameter
/// type (which is a template-id) with the template argument type.
///
/// \param S the Sema
///
/// \param TemplateParams the template parameters that we are deducing
///
/// \param Param the parameter type
///
/// \param Arg the argument type
///
/// \param Info information about the template argument deduction itself
///
/// \param Deduced the deduced template arguments
///
/// \returns the result of template argument deduction so far. Note that a
/// "success" result means that template argument deduction has not yet failed,
/// but it may still fail, later, for other reasons.
static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
TemplateParameterList *TemplateParams,
const TemplateSpecializationType *Param,
QualType Arg,
TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
assert(Arg.isCanonical() && "Argument type must be canonical");
// Check whether the template argument is a dependent template-id.
if (const TemplateSpecializationType *SpecArg
= dyn_cast<TemplateSpecializationType>(Arg)) {
// Perform template argument deduction for the template name.
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S, TemplateParams,
Param->getTemplateName(),
SpecArg->getTemplateName(),
Info, Deduced))
return Result;
// Perform template argument deduction on each template
// argument.
unsigned NumArgs = std::min(SpecArg->getNumArgs(), Param->getNumArgs());
for (unsigned I = 0; I != NumArgs; ++I)
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S, TemplateParams,
Param->getArg(I),
SpecArg->getArg(I),
Info, Deduced))
return Result;
return Sema::TDK_Success;
}
// If the argument type is a class template specialization, we
// perform template argument deduction using its template
// arguments.
const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
if (!RecordArg)
return Sema::TDK_NonDeducedMismatch;
ClassTemplateSpecializationDecl *SpecArg
= dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
if (!SpecArg)
return Sema::TDK_NonDeducedMismatch;
// Perform template argument deduction for the template name.
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S,
TemplateParams,
Param->getTemplateName(),
TemplateName(SpecArg->getSpecializedTemplate()),
Info, Deduced))
return Result;
unsigned NumArgs = Param->getNumArgs();
const TemplateArgumentList &ArgArgs = SpecArg->getTemplateArgs();
if (NumArgs != ArgArgs.size())
return Sema::TDK_NonDeducedMismatch;
for (unsigned I = 0; I != NumArgs; ++I)
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S, TemplateParams,
Param->getArg(I),
ArgArgs.get(I),
Info, Deduced))
return Result;
return Sema::TDK_Success;
}
/// \brief Determines whether the given type is an opaque type that
/// might be more qualified when instantiated.
static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
switch (T->getTypeClass()) {
case Type::TypeOfExpr:
case Type::TypeOf:
case Type::DependentName:
case Type::Decltype:
case Type::UnresolvedUsing:
return true;
case Type::ConstantArray:
case Type::IncompleteArray:
case Type::VariableArray:
case Type::DependentSizedArray:
return IsPossiblyOpaquelyQualifiedType(
cast<ArrayType>(T)->getElementType());
default:
return false;
}
}
/// \brief Deduce the template arguments by comparing the parameter type and
/// the argument type (C++ [temp.deduct.type]).
///
/// \param S the semantic analysis object within which we are deducing
///
/// \param TemplateParams the template parameters that we are deducing
///
/// \param ParamIn the parameter type
///
/// \param ArgIn the argument type
///
/// \param Info information about the template argument deduction itself
///
/// \param Deduced the deduced template arguments
///
/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
/// how template argument deduction is performed.
///
/// \returns the result of template argument deduction so far. Note that a
/// "success" result means that template argument deduction has not yet failed,
/// but it may still fail, later, for other reasons.
static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
TemplateParameterList *TemplateParams,
QualType ParamIn, QualType ArgIn,
TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
unsigned TDF) {
// We only want to look at the canonical types, since typedefs and
// sugar are not part of template argument deduction.
QualType Param = S.Context.getCanonicalType(ParamIn);
QualType Arg = S.Context.getCanonicalType(ArgIn);
// C++0x [temp.deduct.call]p4 bullet 1:
// - If the original P is a reference type, the deduced A (i.e., the type
// referred to by the reference) can be more cv-qualified than the
// transformed A.
if (TDF & TDF_ParamWithReferenceType) {
Qualifiers Quals;
QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
Arg.getCVRQualifiersThroughArrayTypes());
Param = S.Context.getQualifiedType(UnqualParam, Quals);
}
// If the parameter type is not dependent, there is nothing to deduce.
if (!Param->isDependentType()) {
if (!(TDF & TDF_SkipNonDependent) && Param != Arg) {
return Sema::TDK_NonDeducedMismatch;
}
return Sema::TDK_Success;
}
// C++ [temp.deduct.type]p9:
// A template type argument T, a template template argument TT or a
// template non-type argument i can be deduced if P and A have one of
// the following forms:
//
// T
// cv-list T
if (const TemplateTypeParmType *TemplateTypeParm
= Param->getAs<TemplateTypeParmType>()) {
unsigned Index = TemplateTypeParm->getIndex();
bool RecanonicalizeArg = false;
// If the argument type is an array type, move the qualifiers up to the
// top level, so they can be matched with the qualifiers on the parameter.
// FIXME: address spaces, ObjC GC qualifiers
if (isa<ArrayType>(Arg)) {
Qualifiers Quals;
Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
if (Quals) {
Arg = S.Context.getQualifiedType(Arg, Quals);
RecanonicalizeArg = true;
}
}
// The argument type can not be less qualified than the parameter
// type.
if (Param.isMoreQualifiedThan(Arg) && !(TDF & TDF_IgnoreQualifiers)) {
Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
Info.FirstArg = TemplateArgument(Param);
Info.SecondArg = TemplateArgument(Arg);
return Sema::TDK_Underqualified;
}
assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
QualType DeducedType = Arg;
DeducedType.removeCVRQualifiers(Param.getCVRQualifiers());
if (RecanonicalizeArg)
DeducedType = S.Context.getCanonicalType(DeducedType);
if (Deduced[Index].isNull())
Deduced[Index] = TemplateArgument(DeducedType);
else {
// C++ [temp.deduct.type]p2:
// [...] If type deduction cannot be done for any P/A pair, or if for
// any pair the deduction leads to more than one possible set of
// deduced values, or if different pairs yield different deduced
// values, or if any template argument remains neither deduced nor
// explicitly specified, template argument deduction fails.
if (Deduced[Index].getAsType() != DeducedType) {
Info.Param
= cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
Info.FirstArg = Deduced[Index];
Info.SecondArg = TemplateArgument(Arg);
return Sema::TDK_Inconsistent;
}
}
return Sema::TDK_Success;
}
// Set up the template argument deduction information for a failure.
Info.FirstArg = TemplateArgument(ParamIn);
Info.SecondArg = TemplateArgument(ArgIn);
// Check the cv-qualifiers on the parameter and argument types.
if (!(TDF & TDF_IgnoreQualifiers)) {
if (TDF & TDF_ParamWithReferenceType) {
if (Param.isMoreQualifiedThan(Arg))
return Sema::TDK_NonDeducedMismatch;
} else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
return Sema::TDK_NonDeducedMismatch;
}
}
switch (Param->getTypeClass()) {
// No deduction possible for these types
case Type::Builtin:
return Sema::TDK_NonDeducedMismatch;
// T *
case Type::Pointer: {
QualType PointeeType;
if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
PointeeType = PointerArg->getPointeeType();
} else if (const ObjCObjectPointerType *PointerArg
= Arg->getAs<ObjCObjectPointerType>()) {
PointeeType = PointerArg->getPointeeType();
} else {
return Sema::TDK_NonDeducedMismatch;
}
unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
return DeduceTemplateArguments(S, TemplateParams,
cast<PointerType>(Param)->getPointeeType(),
PointeeType,
Info, Deduced, SubTDF);
}
// T &
case Type::LValueReference: {
const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
if (!ReferenceArg)
return Sema::TDK_NonDeducedMismatch;
return DeduceTemplateArguments(S, TemplateParams,
cast<LValueReferenceType>(Param)->getPointeeType(),
ReferenceArg->getPointeeType(),
Info, Deduced, 0);
}
// T && [C++0x]
case Type::RValueReference: {
const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
if (!ReferenceArg)
return Sema::TDK_NonDeducedMismatch;
return DeduceTemplateArguments(S, TemplateParams,
cast<RValueReferenceType>(Param)->getPointeeType(),
ReferenceArg->getPointeeType(),
Info, Deduced, 0);
}
// T [] (implied, but not stated explicitly)
case Type::IncompleteArray: {
const IncompleteArrayType *IncompleteArrayArg =
S.Context.getAsIncompleteArrayType(Arg);
if (!IncompleteArrayArg)
return Sema::TDK_NonDeducedMismatch;
unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
return DeduceTemplateArguments(S, TemplateParams,
S.Context.getAsIncompleteArrayType(Param)->getElementType(),
IncompleteArrayArg->getElementType(),
Info, Deduced, SubTDF);
}
// T [integer-constant]
case Type::ConstantArray: {
const ConstantArrayType *ConstantArrayArg =
S.Context.getAsConstantArrayType(Arg);
if (!ConstantArrayArg)
return Sema::TDK_NonDeducedMismatch;
const ConstantArrayType *ConstantArrayParm =
S.Context.getAsConstantArrayType(Param);
if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
return Sema::TDK_NonDeducedMismatch;
unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
return DeduceTemplateArguments(S, TemplateParams,
ConstantArrayParm->getElementType(),
ConstantArrayArg->getElementType(),
Info, Deduced, SubTDF);
}
// type [i]
case Type::DependentSizedArray: {
const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
if (!ArrayArg)
return Sema::TDK_NonDeducedMismatch;
unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
// Check the element type of the arrays
const DependentSizedArrayType *DependentArrayParm
= S.Context.getAsDependentSizedArrayType(Param);
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S, TemplateParams,
DependentArrayParm->getElementType(),
ArrayArg->getElementType(),
Info, Deduced, SubTDF))
return Result;
// Determine the array bound is something we can deduce.
NonTypeTemplateParmDecl *NTTP
= getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
if (!NTTP)
return Sema::TDK_Success;
// We can perform template argument deduction for the given non-type
// template parameter.
assert(NTTP->getDepth() == 0 &&
"Cannot deduce non-type template argument at depth > 0");
if (const ConstantArrayType *ConstantArrayArg
= dyn_cast<ConstantArrayType>(ArrayArg)) {
llvm::APSInt Size(ConstantArrayArg->getSize());
return DeduceNonTypeTemplateArgument(S, NTTP, Size,
S.Context.getSizeType(),
/*ArrayBound=*/true,
Info, Deduced);
}
if (const DependentSizedArrayType *DependentArrayArg
= dyn_cast<DependentSizedArrayType>(ArrayArg))
return DeduceNonTypeTemplateArgument(S, NTTP,
DependentArrayArg->getSizeExpr(),
Info, Deduced);
// Incomplete type does not match a dependently-sized array type
return Sema::TDK_NonDeducedMismatch;
}
// type(*)(T)
// T(*)()
// T(*)(T)
case Type::FunctionProto: {
const FunctionProtoType *FunctionProtoArg =
dyn_cast<FunctionProtoType>(Arg);
if (!FunctionProtoArg)
return Sema::TDK_NonDeducedMismatch;
const FunctionProtoType *FunctionProtoParam =
cast<FunctionProtoType>(Param);
if (FunctionProtoParam->getTypeQuals() !=
FunctionProtoArg->getTypeQuals())
return Sema::TDK_NonDeducedMismatch;
if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs())
return Sema::TDK_NonDeducedMismatch;
if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
return Sema::TDK_NonDeducedMismatch;
// Check return types.
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S, TemplateParams,
FunctionProtoParam->getResultType(),
FunctionProtoArg->getResultType(),
Info, Deduced, 0))
return Result;
for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) {
// Check argument types.
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S, TemplateParams,
FunctionProtoParam->getArgType(I),
FunctionProtoArg->getArgType(I),
Info, Deduced, 0))
return Result;
}
return Sema::TDK_Success;
}
case Type::InjectedClassName: {
// Treat a template's injected-class-name as if the template
// specialization type had been used.
Param = cast<InjectedClassNameType>(Param)
->getInjectedSpecializationType();
assert(isa<TemplateSpecializationType>(Param) &&
"injected class name is not a template specialization type");
// fall through
}
// template-name<T> (where template-name refers to a class template)
// template-name<i>
// TT<T>
// TT<i>
// TT<>
case Type::TemplateSpecialization: {
const TemplateSpecializationType *SpecParam
= cast<TemplateSpecializationType>(Param);
// Try to deduce template arguments from the template-id.
Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
Info, Deduced);
if (Result && (TDF & TDF_DerivedClass)) {
// C++ [temp.deduct.call]p3b3:
// If P is a class, and P has the form template-id, then A can be a
// derived class of the deduced A. Likewise, if P is a pointer to a
// class of the form template-id, A can be a pointer to a derived
// class pointed to by the deduced A.
//
// More importantly:
// These alternatives are considered only if type deduction would
// otherwise fail.
if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
// We cannot inspect base classes as part of deduction when the type
// is incomplete, so either instantiate any templates necessary to
// complete the type, or skip over it if it cannot be completed.
if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
return Result;
// Use data recursion to crawl through the list of base classes.
// Visited contains the set of nodes we have already visited, while
// ToVisit is our stack of records that we still need to visit.
llvm::SmallPtrSet<const RecordType *, 8> Visited;
llvm::SmallVector<const RecordType *, 8> ToVisit;
ToVisit.push_back(RecordT);
bool Successful = false;
while (!ToVisit.empty()) {
// Retrieve the next class in the inheritance hierarchy.
const RecordType *NextT = ToVisit.back();
ToVisit.pop_back();
// If we have already seen this type, skip it.
if (!Visited.insert(NextT))
continue;
// If this is a base class, try to perform template argument
// deduction from it.
if (NextT != RecordT) {
Sema::TemplateDeductionResult BaseResult
= DeduceTemplateArguments(S, TemplateParams, SpecParam,
QualType(NextT, 0), Info, Deduced);
// If template argument deduction for this base was successful,
// note that we had some success.
if (BaseResult == Sema::TDK_Success)
Successful = true;
}
// Visit base classes
CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
BaseEnd = Next->bases_end();
Base != BaseEnd; ++Base) {
assert(Base->getType()->isRecordType() &&
"Base class that isn't a record?");
ToVisit.push_back(Base->getType()->getAs<RecordType>());
}
}
if (Successful)
return Sema::TDK_Success;
}
}
return Result;
}
// T type::*
// T T::*
// T (type::*)()
// type (T::*)()
// type (type::*)(T)
// type (T::*)(T)
// T (type::*)(T)
// T (T::*)()
// T (T::*)(T)
case Type::MemberPointer: {
const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
if (!MemPtrArg)
return Sema::TDK_NonDeducedMismatch;
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S, TemplateParams,
MemPtrParam->getPointeeType(),
MemPtrArg->getPointeeType(),
Info, Deduced,
TDF & TDF_IgnoreQualifiers))
return Result;
return DeduceTemplateArguments(S, TemplateParams,
QualType(MemPtrParam->getClass(), 0),
QualType(MemPtrArg->getClass(), 0),
Info, Deduced, 0);
}
// (clang extension)
//
// type(^)(T)
// T(^)()
// T(^)(T)
case Type::BlockPointer: {
const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
if (!BlockPtrArg)
return Sema::TDK_NonDeducedMismatch;
return DeduceTemplateArguments(S, TemplateParams,
BlockPtrParam->getPointeeType(),
BlockPtrArg->getPointeeType(), Info,
Deduced, 0);
}
case Type::TypeOfExpr:
case Type::TypeOf:
case Type::DependentName:
// No template argument deduction for these types
return Sema::TDK_Success;
default:
break;
}
// FIXME: Many more cases to go (to go).
return Sema::TDK_Success;
}
static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
TemplateParameterList *TemplateParams,
const TemplateArgument &Param,
const TemplateArgument &Arg,
TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
switch (Param.getKind()) {
case TemplateArgument::Null:
assert(false && "Null template argument in parameter list");
break;
case TemplateArgument::Type:
if (Arg.getKind() == TemplateArgument::Type)
return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(),
Arg.getAsType(), Info, Deduced, 0);
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
case TemplateArgument::Template:
if (Arg.getKind() == TemplateArgument::Template)
return DeduceTemplateArguments(S, TemplateParams,
Param.getAsTemplate(),
Arg.getAsTemplate(), Info, Deduced);
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
case TemplateArgument::Declaration:
if (Arg.getKind() == TemplateArgument::Declaration &&
Param.getAsDecl()->getCanonicalDecl() ==
Arg.getAsDecl()->getCanonicalDecl())
return Sema::TDK_Success;
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
case TemplateArgument::Integral:
if (Arg.getKind() == TemplateArgument::Integral) {
if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
return Sema::TDK_Success;
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
}
if (Arg.getKind() == TemplateArgument::Expression) {
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
}
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
case TemplateArgument::Expression: {
if (NonTypeTemplateParmDecl *NTTP
= getDeducedParameterFromExpr(Param.getAsExpr())) {
if (Arg.getKind() == TemplateArgument::Integral)
return DeduceNonTypeTemplateArgument(S, NTTP,
*Arg.getAsIntegral(),
Arg.getIntegralType(),
/*ArrayBound=*/false,
Info, Deduced);
if (Arg.getKind() == TemplateArgument::Expression)
return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
Info, Deduced);
if (Arg.getKind() == TemplateArgument::Declaration)
return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
Info, Deduced);
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
}
// Can't deduce anything, but that's okay.
return Sema::TDK_Success;
}
case TemplateArgument::Pack:
assert(0 && "FIXME: Implement!");
break;
}
return Sema::TDK_Success;
}
static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
TemplateParameterList *TemplateParams,
const TemplateArgumentList &ParamList,
const TemplateArgumentList &ArgList,
TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
assert(ParamList.size() == ArgList.size());
for (unsigned I = 0, N = ParamList.size(); I != N; ++I) {
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S, TemplateParams,
ParamList[I], ArgList[I],
Info, Deduced))
return Result;
}
return Sema::TDK_Success;
}
/// \brief Determine whether two template arguments are the same.
static bool isSameTemplateArg(ASTContext &Context,
const TemplateArgument &X,
const TemplateArgument &Y) {
if (X.getKind() != Y.getKind())
return false;
switch (X.getKind()) {
case TemplateArgument::Null:
assert(false && "Comparing NULL template argument");
break;
case TemplateArgument::Type:
return Context.getCanonicalType(X.getAsType()) ==
Context.getCanonicalType(Y.getAsType());
case TemplateArgument::Declaration:
return X.getAsDecl()->getCanonicalDecl() ==
Y.getAsDecl()->getCanonicalDecl();
case TemplateArgument::Template:
return Context.getCanonicalTemplateName(X.getAsTemplate())
.getAsVoidPointer() ==
Context.getCanonicalTemplateName(Y.getAsTemplate())
.getAsVoidPointer();
case TemplateArgument::Integral:
return *X.getAsIntegral() == *Y.getAsIntegral();
case TemplateArgument::Expression: {
llvm::FoldingSetNodeID XID, YID;
X.getAsExpr()->Profile(XID, Context, true);
Y.getAsExpr()->Profile(YID, Context, true);
return XID == YID;
}
case TemplateArgument::Pack:
if (X.pack_size() != Y.pack_size())
return false;
for (TemplateArgument::pack_iterator XP = X.pack_begin(),
XPEnd = X.pack_end(),
YP = Y.pack_begin();
XP != XPEnd; ++XP, ++YP)
if (!isSameTemplateArg(Context, *XP, *YP))
return false;
return true;
}
return false;
}
/// \brief Helper function to build a TemplateParameter when we don't
/// know its type statically.
static TemplateParameter makeTemplateParameter(Decl *D) {
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
return TemplateParameter(TTP);
else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
return TemplateParameter(NTTP);
return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
}
/// Complete template argument deduction for a class template partial
/// specialization.
static Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(Sema &S,
ClassTemplatePartialSpecializationDecl *Partial,
const TemplateArgumentList &TemplateArgs,
llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
TemplateDeductionInfo &Info) {
// Trap errors.
Sema::SFINAETrap Trap(S);
Sema::ContextRAII SavedContext(S, Partial);
// C++ [temp.deduct.type]p2:
// [...] or if any template argument remains neither deduced nor
// explicitly specified, template argument deduction fails.
TemplateArgumentListBuilder Builder(Partial->getTemplateParameters(),
Deduced.size());
for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
if (Deduced[I].isNull()) {
Decl *Param
= const_cast<NamedDecl *>(
Partial->getTemplateParameters()->getParam(I));
Info.Param = makeTemplateParameter(Param);
return Sema::TDK_Incomplete;
}
Builder.Append(Deduced[I]);
}
// Form the template argument list from the deduced template arguments.
TemplateArgumentList *DeducedArgumentList
= new (S.Context) TemplateArgumentList(S.Context, Builder,
/*TakeArgs=*/true);
Info.reset(DeducedArgumentList);
// Substitute the deduced template arguments into the template
// arguments of the class template partial specialization, and
// verify that the instantiated template arguments are both valid
// and are equivalent to the template arguments originally provided
// to the class template.
// FIXME: Do we have to correct the types of deduced non-type template
// arguments (in particular, integral non-type template arguments?).
LocalInstantiationScope InstScope(S);
ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
const TemplateArgumentLoc *PartialTemplateArgs
= Partial->getTemplateArgsAsWritten();
unsigned N = Partial->getNumTemplateArgsAsWritten();
// Note that we don't provide the langle and rangle locations.
TemplateArgumentListInfo InstArgs;
for (unsigned I = 0; I != N; ++I) {
Decl *Param = const_cast<NamedDecl *>(
ClassTemplate->getTemplateParameters()->getParam(I));
TemplateArgumentLoc InstArg;
if (S.Subst(PartialTemplateArgs[I], InstArg,
MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
Info.Param = makeTemplateParameter(Param);
Info.FirstArg = PartialTemplateArgs[I].getArgument();
return Sema::TDK_SubstitutionFailure;
}
InstArgs.addArgument(InstArg);
}
TemplateArgumentListBuilder ConvertedInstArgs(
ClassTemplate->getTemplateParameters(), N);
if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
InstArgs, false, ConvertedInstArgs))
return Sema::TDK_SubstitutionFailure;
for (unsigned I = 0, E = ConvertedInstArgs.flatSize(); I != E; ++I) {
TemplateArgument InstArg = ConvertedInstArgs.getFlatArguments()[I];
Decl *Param = const_cast<NamedDecl *>(
ClassTemplate->getTemplateParameters()->getParam(I));
if (InstArg.getKind() == TemplateArgument::Expression) {
// When the argument is an expression, check the expression result
// against the actual template parameter to get down to the canonical
// template argument.
Expr *InstExpr = InstArg.getAsExpr();
if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(Param)) {
if (S.CheckTemplateArgument(NTTP, NTTP->getType(), InstExpr, InstArg)) {
Info.Param = makeTemplateParameter(Param);
Info.FirstArg = Partial->getTemplateArgs()[I];
return Sema::TDK_SubstitutionFailure;
}
}
}
if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
Info.Param = makeTemplateParameter(Param);
Info.FirstArg = TemplateArgs[I];
Info.SecondArg = InstArg;
return Sema::TDK_NonDeducedMismatch;
}
}
if (Trap.hasErrorOccurred())
return Sema::TDK_SubstitutionFailure;
return Sema::TDK_Success;
}
/// \brief Perform template argument deduction to determine whether
/// the given template arguments match the given class template
/// partial specialization per C++ [temp.class.spec.match].
Sema::TemplateDeductionResult
Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
const TemplateArgumentList &TemplateArgs,
TemplateDeductionInfo &Info) {
// C++ [temp.class.spec.match]p2:
// A partial specialization matches a given actual template
// argument list if the template arguments of the partial
// specialization can be deduced from the actual template argument
// list (14.8.2).
SFINAETrap Trap(*this);
llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
Deduced.resize(Partial->getTemplateParameters()->size());
if (TemplateDeductionResult Result
= ::DeduceTemplateArguments(*this,
Partial->getTemplateParameters(),
Partial->getTemplateArgs(),
TemplateArgs, Info, Deduced))
return Result;
InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
Deduced.data(), Deduced.size());
if (Inst)
return TDK_InstantiationDepth;
if (Trap.hasErrorOccurred())
return Sema::TDK_SubstitutionFailure;
return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
Deduced, Info);
}
/// \brief Determine whether the given type T is a simple-template-id type.
static bool isSimpleTemplateIdType(QualType T) {
if (const TemplateSpecializationType *Spec
= T->getAs<TemplateSpecializationType>())
return Spec->getTemplateName().getAsTemplateDecl() != 0;
return false;
}
/// \brief Substitute the explicitly-provided template arguments into the
/// given function template according to C++ [temp.arg.explicit].
///
/// \param FunctionTemplate the function template into which the explicit
/// template arguments will be substituted.
///
/// \param ExplicitTemplateArguments the explicitly-specified template
/// arguments.
///
/// \param Deduced the deduced template arguments, which will be populated
/// with the converted and checked explicit template arguments.
///
/// \param ParamTypes will be populated with the instantiated function
/// parameters.
///
/// \param FunctionType if non-NULL, the result type of the function template
/// will also be instantiated and the pointed-to value will be updated with
/// the instantiated function type.
///
/// \param Info if substitution fails for any reason, this object will be
/// populated with more information about the failure.
///
/// \returns TDK_Success if substitution was successful, or some failure
/// condition.
Sema::TemplateDeductionResult
Sema::SubstituteExplicitTemplateArguments(
FunctionTemplateDecl *FunctionTemplate,
const TemplateArgumentListInfo &ExplicitTemplateArgs,
llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
llvm::SmallVectorImpl<QualType> &ParamTypes,
QualType *FunctionType,
TemplateDeductionInfo &Info) {
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
TemplateParameterList *TemplateParams
= FunctionTemplate->getTemplateParameters();
if (ExplicitTemplateArgs.size() == 0) {
// No arguments to substitute; just copy over the parameter types and
// fill in the function type.
for (FunctionDecl::param_iterator P = Function->param_begin(),
PEnd = Function->param_end();
P != PEnd;
++P)
ParamTypes.push_back((*P)->getType());
if (FunctionType)
*FunctionType = Function->getType();
return TDK_Success;
}
// Substitution of the explicit template arguments into a function template
/// is a SFINAE context. Trap any errors that might occur.
SFINAETrap Trap(*this);
// C++ [temp.arg.explicit]p3:
// Template arguments that are present shall be specified in the
// declaration order of their corresponding template-parameters. The
// template argument list shall not specify more template-arguments than
// there are corresponding template-parameters.
TemplateArgumentListBuilder Builder(TemplateParams,
ExplicitTemplateArgs.size());
// Enter a new template instantiation context where we check the
// explicitly-specified template arguments against this function template,
// and then substitute them into the function parameter types.
InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
FunctionTemplate, Deduced.data(), Deduced.size(),
ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution);
if (Inst)
return TDK_InstantiationDepth;
ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
if (CheckTemplateArgumentList(FunctionTemplate,
SourceLocation(),
ExplicitTemplateArgs,
true,
Builder) || Trap.hasErrorOccurred()) {
unsigned Index = Builder.structuredSize();
if (Index >= TemplateParams->size())
Index = TemplateParams->size() - 1;
Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
return TDK_InvalidExplicitArguments;
}
// Form the template argument list from the explicitly-specified
// template arguments.
TemplateArgumentList *ExplicitArgumentList
= new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
Info.reset(ExplicitArgumentList);
// Instantiate the types of each of the function parameters given the
// explicitly-specified template arguments.
for (FunctionDecl::param_iterator P = Function->param_begin(),
PEnd = Function->param_end();
P != PEnd;
++P) {
QualType ParamType
= SubstType((*P)->getType(),
MultiLevelTemplateArgumentList(*ExplicitArgumentList),
(*P)->getLocation(), (*P)->getDeclName());
if (ParamType.isNull() || Trap.hasErrorOccurred())
return TDK_SubstitutionFailure;
ParamTypes.push_back(ParamType);
}
// If the caller wants a full function type back, instantiate the return
// type and form that function type.
if (FunctionType) {
// FIXME: exception-specifications?
const FunctionProtoType *Proto
= Function->getType()->getAs<FunctionProtoType>();
assert(Proto && "Function template does not have a prototype?");
QualType ResultType
= SubstType(Proto->getResultType(),
MultiLevelTemplateArgumentList(*ExplicitArgumentList),
Function->getTypeSpecStartLoc(),
Function->getDeclName());
if (ResultType.isNull() || Trap.hasErrorOccurred())
return TDK_SubstitutionFailure;
*FunctionType = BuildFunctionType(ResultType,
ParamTypes.data(), ParamTypes.size(),
Proto->isVariadic(),
Proto->getTypeQuals(),
Function->getLocation(),
Function->getDeclName(),
Proto->getExtInfo());
if (FunctionType->isNull() || Trap.hasErrorOccurred())
return TDK_SubstitutionFailure;
}
// C++ [temp.arg.explicit]p2:
// Trailing template arguments that can be deduced (14.8.2) may be
// omitted from the list of explicit template-arguments. If all of the
// template arguments can be deduced, they may all be omitted; in this
// case, the empty template argument list <> itself may also be omitted.
//
// Take all of the explicitly-specified arguments and put them into the
// set of deduced template arguments.
Deduced.reserve(TemplateParams->size());
for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I)
Deduced.push_back(ExplicitArgumentList->get(I));
return TDK_Success;
}
/// \brief Allocate a TemplateArgumentLoc where all locations have
/// been initialized to the given location.
///
/// \param S The semantic analysis object.
///
/// \param The template argument we are producing template argument
/// location information for.
///
/// \param NTTPType For a declaration template argument, the type of
/// the non-type template parameter that corresponds to this template
/// argument.
///
/// \param Loc The source location to use for the resulting template
/// argument.
static TemplateArgumentLoc
getTrivialTemplateArgumentLoc(Sema &S,
const TemplateArgument &Arg,
QualType NTTPType,
SourceLocation Loc) {
switch (Arg.getKind()) {
case TemplateArgument::Null:
llvm_unreachable("Can't get a NULL template argument here");
break;
case TemplateArgument::Type:
return TemplateArgumentLoc(Arg,
S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
case TemplateArgument::Declaration: {
Expr *E
= S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
.takeAs<Expr>();
return TemplateArgumentLoc(TemplateArgument(E), E);
}
case TemplateArgument::Integral: {
Expr *E
= S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
return TemplateArgumentLoc(TemplateArgument(E), E);
}
case TemplateArgument::Template:
return TemplateArgumentLoc(Arg, SourceRange(), Loc);
case TemplateArgument::Expression:
return TemplateArgumentLoc(Arg, Arg.getAsExpr());
case TemplateArgument::Pack:
llvm_unreachable("Template parameter packs are not yet supported");
}
return TemplateArgumentLoc();
}
/// \brief Finish template argument deduction for a function template,
/// checking the deduced template arguments for completeness and forming
/// the function template specialization.
Sema::TemplateDeductionResult
Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
unsigned NumExplicitlySpecified,
FunctionDecl *&Specialization,
TemplateDeductionInfo &Info) {
TemplateParameterList *TemplateParams
= FunctionTemplate->getTemplateParameters();
// Template argument deduction for function templates in a SFINAE context.
// Trap any errors that might occur.
SFINAETrap Trap(*this);
// Enter a new template instantiation context while we instantiate the
// actual function declaration.
InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
FunctionTemplate, Deduced.data(), Deduced.size(),
ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution);
if (Inst)
return TDK_InstantiationDepth;
ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
// C++ [temp.deduct.type]p2:
// [...] or if any template argument remains neither deduced nor
// explicitly specified, template argument deduction fails.
TemplateArgumentListBuilder Builder(TemplateParams, Deduced.size());
for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
NamedDecl *Param = FunctionTemplate->getTemplateParameters()->getParam(I);
if (!Deduced[I].isNull()) {
if (I < NumExplicitlySpecified ||
Deduced[I].getKind() == TemplateArgument::Type) {
// We have already fully type-checked and converted this
// argument (because it was explicitly-specified) or no
// additional checking is necessary (because it's a template
// type parameter). Just record the presence of this
// parameter.
Builder.Append(Deduced[I]);
continue;
}
// We have deduced this argument, so it still needs to be
// checked and converted.
// First, for a non-type template parameter type that is
// initialized by a declaration, we need the type of the
// corresponding non-type template parameter.
QualType NTTPType;
if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(Param)) {
if (Deduced[I].getKind() == TemplateArgument::Declaration) {
NTTPType = NTTP->getType();
if (NTTPType->isDependentType()) {
TemplateArgumentList TemplateArgs(Context, Builder,
/*TakeArgs=*/false);
NTTPType = SubstType(NTTPType,
MultiLevelTemplateArgumentList(TemplateArgs),
NTTP->getLocation(),
NTTP->getDeclName());
if (NTTPType.isNull()) {
Info.Param = makeTemplateParameter(Param);
Info.reset(new (Context) TemplateArgumentList(Context, Builder,
/*TakeArgs=*/true));
return TDK_SubstitutionFailure;
}
}
}
}
// Convert the deduced template argument into a template
// argument that we can check, almost as if the user had written
// the template argument explicitly.
TemplateArgumentLoc Arg = getTrivialTemplateArgumentLoc(*this,
Deduced[I],
NTTPType,
SourceLocation());
// Check the template argument, converting it as necessary.
if (CheckTemplateArgument(Param, Arg,
FunctionTemplate,
FunctionTemplate->getLocation(),
FunctionTemplate->getSourceRange().getEnd(),
Builder,
Deduced[I].wasDeducedFromArrayBound()
? CTAK_DeducedFromArrayBound
: CTAK_Deduced)) {
Info.Param = makeTemplateParameter(
const_cast<NamedDecl *>(TemplateParams->getParam(I)));
Info.reset(new (Context) TemplateArgumentList(Context, Builder,
/*TakeArgs=*/true));
return TDK_SubstitutionFailure;
}
continue;
}
// Substitute into the default template argument, if available.
TemplateArgumentLoc DefArg
= SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
FunctionTemplate->getLocation(),
FunctionTemplate->getSourceRange().getEnd(),
Param,
Builder);
// If there was no default argument, deduction is incomplete.
if (DefArg.getArgument().isNull()) {
Info.Param = makeTemplateParameter(
const_cast<NamedDecl *>(TemplateParams->getParam(I)));
return TDK_Incomplete;
}
// Check whether we can actually use the default argument.
if (CheckTemplateArgument(Param, DefArg,
FunctionTemplate,
FunctionTemplate->getLocation(),
FunctionTemplate->getSourceRange().getEnd(),
Builder,
CTAK_Deduced)) {
Info.Param = makeTemplateParameter(
const_cast<NamedDecl *>(TemplateParams->getParam(I)));
Info.reset(new (Context) TemplateArgumentList(Context, Builder,
/*TakeArgs=*/true));
return TDK_SubstitutionFailure;
}
// If we get here, we successfully used the default template argument.
}
// Form the template argument list from the deduced template arguments.
TemplateArgumentList *DeducedArgumentList
= new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
Info.reset(DeducedArgumentList);
// Substitute the deduced template arguments into the function template
// declaration to produce the function template specialization.
DeclContext *Owner = FunctionTemplate->getDeclContext();
if (FunctionTemplate->getFriendObjectKind())
Owner = FunctionTemplate->getLexicalDeclContext();
Specialization = cast_or_null<FunctionDecl>(
SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
MultiLevelTemplateArgumentList(*DeducedArgumentList)));
if (!Specialization)
return TDK_SubstitutionFailure;
assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
FunctionTemplate->getCanonicalDecl());
// If the template argument list is owned by the function template
// specialization, release it.
if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
!Trap.hasErrorOccurred())
Info.take();
// There may have been an error that did not prevent us from constructing a
// declaration. Mark the declaration invalid and return with a substitution
// failure.
if (Trap.hasErrorOccurred()) {
Specialization->setInvalidDecl(true);
return TDK_SubstitutionFailure;
}
return TDK_Success;
}
/// Gets the type of a function for template-argument-deducton
/// purposes when it's considered as part of an overload set.
static QualType GetTypeOfFunction(ASTContext &Context,
const OverloadExpr::FindResult &R,
FunctionDecl *Fn) {
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
if (Method->isInstance()) {
// An instance method that's referenced in a form that doesn't
// look like a member pointer is just invalid.
if (!R.HasFormOfMemberPointer) return QualType();
return Context.getMemberPointerType(Fn->getType(),
Context.getTypeDeclType(Method->getParent()).getTypePtr());
}
if (!R.IsAddressOfOperand) return Fn->getType();
return Context.getPointerType(Fn->getType());
}
/// Apply the deduction rules for overload sets.
///
/// \return the null type if this argument should be treated as an
/// undeduced context
static QualType
ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
Expr *Arg, QualType ParamType,
bool ParamWasReference) {
OverloadExpr::FindResult R = OverloadExpr::find(Arg);
OverloadExpr *Ovl = R.Expression;
// C++0x [temp.deduct.call]p4
unsigned TDF = 0;
if (ParamWasReference)
TDF |= TDF_ParamWithReferenceType;
if (R.IsAddressOfOperand)
TDF |= TDF_IgnoreQualifiers;
// If there were explicit template arguments, we can only find
// something via C++ [temp.arg.explicit]p3, i.e. if the arguments
// unambiguously name a full specialization.
if (Ovl->hasExplicitTemplateArgs()) {
// But we can still look for an explicit specialization.
if (FunctionDecl *ExplicitSpec
= S.ResolveSingleFunctionTemplateSpecialization(Ovl))
return GetTypeOfFunction(S.Context, R, ExplicitSpec);
return QualType();
}
// C++0x [temp.deduct.call]p6:
// When P is a function type, pointer to function type, or pointer
// to member function type:
if (!ParamType->isFunctionType() &&
!ParamType->isFunctionPointerType() &&
!ParamType->isMemberFunctionPointerType())
return QualType();
QualType Match;
for (UnresolvedSetIterator I = Ovl->decls_begin(),
E = Ovl->decls_end(); I != E; ++I) {
NamedDecl *D = (*I)->getUnderlyingDecl();
// - If the argument is an overload set containing one or more
// function templates, the parameter is treated as a
// non-deduced context.
if (isa<FunctionTemplateDecl>(D))
return QualType();
FunctionDecl *Fn = cast<FunctionDecl>(D);
QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
if (ArgType.isNull()) continue;
// Function-to-pointer conversion.
if (!ParamWasReference && ParamType->isPointerType() &&
ArgType->isFunctionType())
ArgType = S.Context.getPointerType(ArgType);
// - If the argument is an overload set (not containing function
// templates), trial argument deduction is attempted using each
// of the members of the set. If deduction succeeds for only one
// of the overload set members, that member is used as the
// argument value for the deduction. If deduction succeeds for
// more than one member of the overload set the parameter is
// treated as a non-deduced context.
// We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
// Type deduction is done independently for each P/A pair, and
// the deduced template argument values are then combined.
// So we do not reject deductions which were made elsewhere.
llvm::SmallVector<DeducedTemplateArgument, 8>
Deduced(TemplateParams->size());
TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S, TemplateParams,
ParamType, ArgType,
Info, Deduced, TDF);
if (Result) continue;
if (!Match.isNull()) return QualType();
Match = ArgType;
}
return Match;
}
/// \brief Perform template argument deduction from a function call
/// (C++ [temp.deduct.call]).
///
/// \param FunctionTemplate the function template for which we are performing
/// template argument deduction.
///
/// \param ExplicitTemplateArguments the explicit template arguments provided
/// for this call.
///
/// \param Args the function call arguments
///
/// \param NumArgs the number of arguments in Args
///
/// \param Name the name of the function being called. This is only significant
/// when the function template is a conversion function template, in which
/// case this routine will also perform template argument deduction based on
/// the function to which
///
/// \param Specialization if template argument deduction was successful,
/// this will be set to the function template specialization produced by
/// template argument deduction.
///
/// \param Info the argument will be updated to provide additional information
/// about template argument deduction.
///
/// \returns the result of template argument deduction.
Sema::TemplateDeductionResult
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
const TemplateArgumentListInfo *ExplicitTemplateArgs,
Expr **Args, unsigned NumArgs,
FunctionDecl *&Specialization,
TemplateDeductionInfo &Info) {
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
// C++ [temp.deduct.call]p1:
// Template argument deduction is done by comparing each function template
// parameter type (call it P) with the type of the corresponding argument
// of the call (call it A) as described below.
unsigned CheckArgs = NumArgs;
if (NumArgs < Function->getMinRequiredArguments())
return TDK_TooFewArguments;
else if (NumArgs > Function->getNumParams()) {
const FunctionProtoType *Proto
= Function->getType()->getAs<FunctionProtoType>();
if (!Proto->isVariadic())
return TDK_TooManyArguments;
CheckArgs = Function->getNumParams();
}
// The types of the parameters from which we will perform template argument
// deduction.
LocalInstantiationScope InstScope(*this);
TemplateParameterList *TemplateParams
= FunctionTemplate->getTemplateParameters();
llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
llvm::SmallVector<QualType, 4> ParamTypes;
unsigned NumExplicitlySpecified = 0;
if (ExplicitTemplateArgs) {
TemplateDeductionResult Result =
SubstituteExplicitTemplateArguments(FunctionTemplate,
*ExplicitTemplateArgs,
Deduced,
ParamTypes,
0,
Info);
if (Result)
return Result;
NumExplicitlySpecified = Deduced.size();
} else {
// Just fill in the parameter types from the function declaration.
for (unsigned I = 0; I != CheckArgs; ++I)
ParamTypes.push_back(Function->getParamDecl(I)->getType());
}
// Deduce template arguments from the function parameters.
Deduced.resize(TemplateParams->size());
for (unsigned I = 0; I != CheckArgs; ++I) {
QualType ParamType = ParamTypes[I];
QualType ArgType = Args[I]->getType();
// C++0x [temp.deduct.call]p3:
// If P is a cv-qualified type, the top level cv-qualifiers of Ps type
// are ignored for type deduction.
if (ParamType.getCVRQualifiers())
ParamType = ParamType.getLocalUnqualifiedType();
const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
if (ParamRefType) {
// [...] If P is a reference type, the type referred to by P is used
// for type deduction.
ParamType = ParamRefType->getPointeeType();
}
// Overload sets usually make this parameter an undeduced
// context, but there are sometimes special circumstances.
if (ArgType == Context.OverloadTy) {
ArgType = ResolveOverloadForDeduction(*this, TemplateParams,
Args[I], ParamType,
ParamRefType != 0);
if (ArgType.isNull())
continue;
}
if (ParamRefType) {
// C++0x [temp.deduct.call]p3:
// [...] If P is of the form T&&, where T is a template parameter, and
// the argument is an lvalue, the type A& is used in place of A for
// type deduction.
if (ParamRefType->isRValueReferenceType() &&
ParamRefType->getAs<TemplateTypeParmType>() &&
Args[I]->isLvalue(Context) == Expr::LV_Valid)
ArgType = Context.getLValueReferenceType(ArgType);
} else {
// C++ [temp.deduct.call]p2:
// If P is not a reference type:
// - If A is an array type, the pointer type produced by the
// array-to-pointer standard conversion (4.2) is used in place of
// A for type deduction; otherwise,
if (ArgType->isArrayType())
ArgType = Context.getArrayDecayedType(ArgType);
// - If A is a function type, the pointer type produced by the
// function-to-pointer standard conversion (4.3) is used in place
// of A for type deduction; otherwise,
else if (ArgType->isFunctionType())
ArgType = Context.getPointerType(ArgType);
else {
// - If A is a cv-qualified type, the top level cv-qualifiers of As
// type are ignored for type deduction.
QualType CanonArgType = Context.getCanonicalType(ArgType);
if (ArgType.getCVRQualifiers())
ArgType = ArgType.getUnqualifiedType();
}
}
// C++0x [temp.deduct.call]p4:
// In general, the deduction process attempts to find template argument
// values that will make the deduced A identical to A (after the type A
// is transformed as described above). [...]
unsigned TDF = TDF_SkipNonDependent;
// - If the original P is a reference type, the deduced A (i.e., the
// type referred to by the reference) can be more cv-qualified than
// the transformed A.
if (ParamRefType)
TDF |= TDF_ParamWithReferenceType;
// - The transformed A can be another pointer or pointer to member
// type that can be converted to the deduced A via a qualification
// conversion (4.4).
if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
ArgType->isObjCObjectPointerType())
TDF |= TDF_IgnoreQualifiers;
// - If P is a class and P has the form simple-template-id, then the
// transformed A can be a derived class of the deduced A. Likewise,
// if P is a pointer to a class of the form simple-template-id, the
// transformed A can be a pointer to a derived class pointed to by
// the deduced A.
if (isSimpleTemplateIdType(ParamType) ||
(isa<PointerType>(ParamType) &&
isSimpleTemplateIdType(
ParamType->getAs<PointerType>()->getPointeeType())))
TDF |= TDF_DerivedClass;
if (TemplateDeductionResult Result
= ::DeduceTemplateArguments(*this, TemplateParams,
ParamType, ArgType, Info, Deduced,
TDF))
return Result;
// FIXME: we need to check that the deduced A is the same as A,
// modulo the various allowed differences.
}
return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
NumExplicitlySpecified,
Specialization, Info);
}
/// \brief Deduce template arguments when taking the address of a function
/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
/// a template.
///
/// \param FunctionTemplate the function template for which we are performing
/// template argument deduction.
///
/// \param ExplicitTemplateArguments the explicitly-specified template
/// arguments.
///
/// \param ArgFunctionType the function type that will be used as the
/// "argument" type (A) when performing template argument deduction from the
/// function template's function type. This type may be NULL, if there is no
/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
///
/// \param Specialization if template argument deduction was successful,
/// this will be set to the function template specialization produced by
/// template argument deduction.
///
/// \param Info the argument will be updated to provide additional information
/// about template argument deduction.
///
/// \returns the result of template argument deduction.
Sema::TemplateDeductionResult
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
const TemplateArgumentListInfo *ExplicitTemplateArgs,
QualType ArgFunctionType,
FunctionDecl *&Specialization,
TemplateDeductionInfo &Info) {
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
TemplateParameterList *TemplateParams
= FunctionTemplate->getTemplateParameters();
QualType FunctionType = Function->getType();
// Substitute any explicit template arguments.
LocalInstantiationScope InstScope(*this);
llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
unsigned NumExplicitlySpecified = 0;
llvm::SmallVector<QualType, 4> ParamTypes;
if (ExplicitTemplateArgs) {
if (TemplateDeductionResult Result
= SubstituteExplicitTemplateArguments(FunctionTemplate,
*ExplicitTemplateArgs,
Deduced, ParamTypes,
&FunctionType, Info))
return Result;
NumExplicitlySpecified = Deduced.size();
}
// Template argument deduction for function templates in a SFINAE context.
// Trap any errors that might occur.
SFINAETrap Trap(*this);
Deduced.resize(TemplateParams->size());
if (!ArgFunctionType.isNull()) {
// Deduce template arguments from the function type.
if (TemplateDeductionResult Result
= ::DeduceTemplateArguments(*this, TemplateParams,
FunctionType, ArgFunctionType, Info,
Deduced, 0))
return Result;
}
return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
NumExplicitlySpecified,
Specialization, Info);
}
/// \brief Deduce template arguments for a templated conversion
/// function (C++ [temp.deduct.conv]) and, if successful, produce a
/// conversion function template specialization.
Sema::TemplateDeductionResult
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
QualType ToType,
CXXConversionDecl *&Specialization,
TemplateDeductionInfo &Info) {
CXXConversionDecl *Conv
= cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
QualType FromType = Conv->getConversionType();
// Canonicalize the types for deduction.
QualType P = Context.getCanonicalType(FromType);
QualType A = Context.getCanonicalType(ToType);
// C++0x [temp.deduct.conv]p3:
// If P is a reference type, the type referred to by P is used for
// type deduction.
if (const ReferenceType *PRef = P->getAs<ReferenceType>())
P = PRef->getPointeeType();
// C++0x [temp.deduct.conv]p3:
// If A is a reference type, the type referred to by A is used
// for type deduction.
if (const ReferenceType *ARef = A->getAs<ReferenceType>())
A = ARef->getPointeeType();
// C++ [temp.deduct.conv]p2:
//
// If A is not a reference type:
else {
assert(!A->isReferenceType() && "Reference types were handled above");
// - If P is an array type, the pointer type produced by the
// array-to-pointer standard conversion (4.2) is used in place
// of P for type deduction; otherwise,
if (P->isArrayType())
P = Context.getArrayDecayedType(P);
// - If P is a function type, the pointer type produced by the
// function-to-pointer standard conversion (4.3) is used in
// place of P for type deduction; otherwise,
else if (P->isFunctionType())
P = Context.getPointerType(P);
// - If P is a cv-qualified type, the top level cv-qualifiers of
// Ps type are ignored for type deduction.
else
P = P.getUnqualifiedType();
// C++0x [temp.deduct.conv]p3:
// If A is a cv-qualified type, the top level cv-qualifiers of As
// type are ignored for type deduction.
A = A.getUnqualifiedType();
}
// Template argument deduction for function templates in a SFINAE context.
// Trap any errors that might occur.
SFINAETrap Trap(*this);
// C++ [temp.deduct.conv]p1:
// Template argument deduction is done by comparing the return
// type of the template conversion function (call it P) with the
// type that is required as the result of the conversion (call it
// A) as described in 14.8.2.4.
TemplateParameterList *TemplateParams
= FunctionTemplate->getTemplateParameters();
llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
Deduced.resize(TemplateParams->size());
// C++0x [temp.deduct.conv]p4:
// In general, the deduction process attempts to find template
// argument values that will make the deduced A identical to
// A. However, there are two cases that allow a difference:
unsigned TDF = 0;
// - If the original A is a reference type, A can be more
// cv-qualified than the deduced A (i.e., the type referred to
// by the reference)
if (ToType->isReferenceType())
TDF |= TDF_ParamWithReferenceType;
// - The deduced A can be another pointer or pointer to member
// type that can be converted to A via a qualification
// conversion.
//
// (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
// both P and A are pointers or member pointers. In this case, we
// just ignore cv-qualifiers completely).
if ((P->isPointerType() && A->isPointerType()) ||
(P->isMemberPointerType() && P->isMemberPointerType()))
TDF |= TDF_IgnoreQualifiers;
if (TemplateDeductionResult Result
= ::DeduceTemplateArguments(*this, TemplateParams,
P, A, Info, Deduced, TDF))
return Result;
// FIXME: we need to check that the deduced A is the same as A,
// modulo the various allowed differences.
// Finish template argument deduction.
LocalInstantiationScope InstScope(*this);
FunctionDecl *Spec = 0;
TemplateDeductionResult Result
= FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
Info);
Specialization = cast_or_null<CXXConversionDecl>(Spec);
return Result;
}
/// \brief Deduce template arguments for a function template when there is
/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
///
/// \param FunctionTemplate the function template for which we are performing
/// template argument deduction.
///
/// \param ExplicitTemplateArguments the explicitly-specified template
/// arguments.
///
/// \param Specialization if template argument deduction was successful,
/// this will be set to the function template specialization produced by
/// template argument deduction.
///
/// \param Info the argument will be updated to provide additional information
/// about template argument deduction.
///
/// \returns the result of template argument deduction.
Sema::TemplateDeductionResult
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
const TemplateArgumentListInfo *ExplicitTemplateArgs,
FunctionDecl *&Specialization,
TemplateDeductionInfo &Info) {
return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
QualType(), Specialization, Info);
}
/// \brief Stores the result of comparing the qualifiers of two types.
enum DeductionQualifierComparison {
NeitherMoreQualified = 0,
ParamMoreQualified,
ArgMoreQualified
};
/// \brief Deduce the template arguments during partial ordering by comparing
/// the parameter type and the argument type (C++0x [temp.deduct.partial]).
///
/// \param S the semantic analysis object within which we are deducing
///
/// \param TemplateParams the template parameters that we are deducing
///
/// \param ParamIn the parameter type
///
/// \param ArgIn the argument type
///
/// \param Info information about the template argument deduction itself
///
/// \param Deduced the deduced template arguments
///
/// \returns the result of template argument deduction so far. Note that a
/// "success" result means that template argument deduction has not yet failed,
/// but it may still fail, later, for other reasons.
static Sema::TemplateDeductionResult
DeduceTemplateArgumentsDuringPartialOrdering(Sema &S,
TemplateParameterList *TemplateParams,
QualType ParamIn, QualType ArgIn,
TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
CanQualType Param = S.Context.getCanonicalType(ParamIn);
CanQualType Arg = S.Context.getCanonicalType(ArgIn);
// C++0x [temp.deduct.partial]p5:
// Before the partial ordering is done, certain transformations are
// performed on the types used for partial ordering:
// - If P is a reference type, P is replaced by the type referred to.
CanQual<ReferenceType> ParamRef = Param->getAs<ReferenceType>();
if (!ParamRef.isNull())
Param = ParamRef->getPointeeType();
// - If A is a reference type, A is replaced by the type referred to.
CanQual<ReferenceType> ArgRef = Arg->getAs<ReferenceType>();
if (!ArgRef.isNull())
Arg = ArgRef->getPointeeType();
if (QualifierComparisons && !ParamRef.isNull() && !ArgRef.isNull()) {
// C++0x [temp.deduct.partial]p6:
// If both P and A were reference types (before being replaced with the
// type referred to above), determine which of the two types (if any) is
// more cv-qualified than the other; otherwise the types are considered to
// be equally cv-qualified for partial ordering purposes. The result of this
// determination will be used below.
//
// We save this information for later, using it only when deduction
// succeeds in both directions.
DeductionQualifierComparison QualifierResult = NeitherMoreQualified;
if (Param.isMoreQualifiedThan(Arg))
QualifierResult = ParamMoreQualified;
else if (Arg.isMoreQualifiedThan(Param))
QualifierResult = ArgMoreQualified;
QualifierComparisons->push_back(QualifierResult);
}
// C++0x [temp.deduct.partial]p7:
// Remove any top-level cv-qualifiers:
// - If P is a cv-qualified type, P is replaced by the cv-unqualified
// version of P.
Param = Param.getUnqualifiedType();
// - If A is a cv-qualified type, A is replaced by the cv-unqualified
// version of A.
Arg = Arg.getUnqualifiedType();
// C++0x [temp.deduct.partial]p8:
// Using the resulting types P and A the deduction is then done as
// described in 14.9.2.5. If deduction succeeds for a given type, the type
// from the argument template is considered to be at least as specialized
// as the type from the parameter template.
return DeduceTemplateArguments(S, TemplateParams, Param, Arg, Info,
Deduced, TDF_None);
}
static void
MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
bool OnlyDeduced,
unsigned Level,
llvm::SmallVectorImpl<bool> &Deduced);
/// \brief Determine whether the function template \p FT1 is at least as
/// specialized as \p FT2.
static bool isAtLeastAsSpecializedAs(Sema &S,
SourceLocation Loc,
FunctionTemplateDecl *FT1,
FunctionTemplateDecl *FT2,
TemplatePartialOrderingContext TPOC,
llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
FunctionDecl *FD1 = FT1->getTemplatedDecl();
FunctionDecl *FD2 = FT2->getTemplatedDecl();
const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
assert(Proto1 && Proto2 && "Function templates must have prototypes");
TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
Deduced.resize(TemplateParams->size());
// C++0x [temp.deduct.partial]p3:
// The types used to determine the ordering depend on the context in which
// the partial ordering is done:
TemplateDeductionInfo Info(S.Context, Loc);
switch (TPOC) {
case TPOC_Call: {
// - In the context of a function call, the function parameter types are
// used.
unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
for (unsigned I = 0; I != NumParams; ++I)
if (DeduceTemplateArgumentsDuringPartialOrdering(S,
TemplateParams,
Proto2->getArgType(I),
Proto1->getArgType(I),
Info,
Deduced,
QualifierComparisons))
return false;
break;
}
case TPOC_Conversion:
// - In the context of a call to a conversion operator, the return types
// of the conversion function templates are used.
if (DeduceTemplateArgumentsDuringPartialOrdering(S,
TemplateParams,
Proto2->getResultType(),
Proto1->getResultType(),
Info,
Deduced,
QualifierComparisons))
return false;
break;
case TPOC_Other:
// - In other contexts (14.6.6.2) the function templates function type
// is used.
if (DeduceTemplateArgumentsDuringPartialOrdering(S,
TemplateParams,
FD2->getType(),
FD1->getType(),
Info,
Deduced,
QualifierComparisons))
return false;
break;
}
// C++0x [temp.deduct.partial]p11:
// In most cases, all template parameters must have values in order for
// deduction to succeed, but for partial ordering purposes a template
// parameter may remain without a value provided it is not used in the
// types being used for partial ordering. [ Note: a template parameter used
// in a non-deduced context is considered used. -end note]
unsigned ArgIdx = 0, NumArgs = Deduced.size();
for (; ArgIdx != NumArgs; ++ArgIdx)
if (Deduced[ArgIdx].isNull())
break;
if (ArgIdx == NumArgs) {
// All template arguments were deduced. FT1 is at least as specialized
// as FT2.
return true;
}
// Figure out which template parameters were used.
llvm::SmallVector<bool, 4> UsedParameters;
UsedParameters.resize(TemplateParams->size());
switch (TPOC) {
case TPOC_Call: {
unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
for (unsigned I = 0; I != NumParams; ++I)
::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false,
TemplateParams->getDepth(),
UsedParameters);
break;
}
case TPOC_Conversion:
::MarkUsedTemplateParameters(S, Proto2->getResultType(), false,
TemplateParams->getDepth(),
UsedParameters);
break;
case TPOC_Other:
::MarkUsedTemplateParameters(S, FD2->getType(), false,
TemplateParams->getDepth(),
UsedParameters);
break;
}
for (; ArgIdx != NumArgs; ++ArgIdx)
// If this argument had no value deduced but was used in one of the types
// used for partial ordering, then deduction fails.
if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
return false;
return true;
}
/// \brief Returns the more specialized function template according
/// to the rules of function template partial ordering (C++ [temp.func.order]).
///
/// \param FT1 the first function template
///
/// \param FT2 the second function template
///
/// \param TPOC the context in which we are performing partial ordering of
/// function templates.
///
/// \returns the more specialized function template. If neither
/// template is more specialized, returns NULL.
FunctionTemplateDecl *
Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
FunctionTemplateDecl *FT2,
SourceLocation Loc,
TemplatePartialOrderingContext TPOC) {
llvm::SmallVector<DeductionQualifierComparison, 4> QualifierComparisons;
bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 0);
bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
&QualifierComparisons);
if (Better1 != Better2) // We have a clear winner
return Better1? FT1 : FT2;
if (!Better1 && !Better2) // Neither is better than the other
return 0;
// C++0x [temp.deduct.partial]p10:
// If for each type being considered a given template is at least as
// specialized for all types and more specialized for some set of types and
// the other template is not more specialized for any types or is not at
// least as specialized for any types, then the given template is more
// specialized than the other template. Otherwise, neither template is more
// specialized than the other.
Better1 = false;
Better2 = false;
for (unsigned I = 0, N = QualifierComparisons.size(); I != N; ++I) {
// C++0x [temp.deduct.partial]p9:
// If, for a given type, deduction succeeds in both directions (i.e., the
// types are identical after the transformations above) and if the type
// from the argument template is more cv-qualified than the type from the
// parameter template (as described above) that type is considered to be
// more specialized than the other. If neither type is more cv-qualified
// than the other then neither type is more specialized than the other.
switch (QualifierComparisons[I]) {
case NeitherMoreQualified:
break;
case ParamMoreQualified:
Better1 = true;
if (Better2)
return 0;
break;
case ArgMoreQualified:
Better2 = true;
if (Better1)
return 0;
break;
}
}
assert(!(Better1 && Better2) && "Should have broken out in the loop above");
if (Better1)
return FT1;
else if (Better2)
return FT2;
else
return 0;
}
/// \brief Determine if the two templates are equivalent.
static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
if (T1 == T2)
return true;
if (!T1 || !T2)
return false;
return T1->getCanonicalDecl() == T2->getCanonicalDecl();
}
/// \brief Retrieve the most specialized of the given function template
/// specializations.
///
/// \param SpecBegin the start iterator of the function template
/// specializations that we will be comparing.
///
/// \param SpecEnd the end iterator of the function template
/// specializations, paired with \p SpecBegin.
///
/// \param TPOC the partial ordering context to use to compare the function
/// template specializations.
///
/// \param Loc the location where the ambiguity or no-specializations
/// diagnostic should occur.
///
/// \param NoneDiag partial diagnostic used to diagnose cases where there are
/// no matching candidates.
///
/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
/// occurs.
///
/// \param CandidateDiag partial diagnostic used for each function template
/// specialization that is a candidate in the ambiguous ordering. One parameter
/// in this diagnostic should be unbound, which will correspond to the string
/// describing the template arguments for the function template specialization.
///
/// \param Index if non-NULL and the result of this function is non-nULL,
/// receives the index corresponding to the resulting function template
/// specialization.
///
/// \returns the most specialized function template specialization, if
/// found. Otherwise, returns SpecEnd.
///
/// \todo FIXME: Consider passing in the "also-ran" candidates that failed
/// template argument deduction.
UnresolvedSetIterator
Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
UnresolvedSetIterator SpecEnd,
TemplatePartialOrderingContext TPOC,
SourceLocation Loc,
const PartialDiagnostic &NoneDiag,
const PartialDiagnostic &AmbigDiag,
const PartialDiagnostic &CandidateDiag) {
if (SpecBegin == SpecEnd) {
Diag(Loc, NoneDiag);
return SpecEnd;
}
if (SpecBegin + 1 == SpecEnd)
return SpecBegin;
// Find the function template that is better than all of the templates it
// has been compared to.
UnresolvedSetIterator Best = SpecBegin;
FunctionTemplateDecl *BestTemplate
= cast<FunctionDecl>(*Best)->getPrimaryTemplate();
assert(BestTemplate && "Not a function template specialization?");
for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
FunctionTemplateDecl *Challenger
= cast<FunctionDecl>(*I)->getPrimaryTemplate();
assert(Challenger && "Not a function template specialization?");
if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
Loc, TPOC),
Challenger)) {
Best = I;
BestTemplate = Challenger;
}
}
// Make sure that the "best" function template is more specialized than all
// of the others.
bool Ambiguous = false;
for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
FunctionTemplateDecl *Challenger
= cast<FunctionDecl>(*I)->getPrimaryTemplate();
if (I != Best &&
!isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
Loc, TPOC),
BestTemplate)) {
Ambiguous = true;
break;
}
}
if (!Ambiguous) {
// We found an answer. Return it.
return Best;
}
// Diagnose the ambiguity.
Diag(Loc, AmbigDiag);
// FIXME: Can we order the candidates in some sane way?
for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I)
Diag((*I)->getLocation(), CandidateDiag)
<< getTemplateArgumentBindingsText(
cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
*cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
return SpecEnd;
}
/// \brief Returns the more specialized class template partial specialization
/// according to the rules of partial ordering of class template partial
/// specializations (C++ [temp.class.order]).
///
/// \param PS1 the first class template partial specialization
///
/// \param PS2 the second class template partial specialization
///
/// \returns the more specialized class template partial specialization. If
/// neither partial specialization is more specialized, returns NULL.
ClassTemplatePartialSpecializationDecl *
Sema::getMoreSpecializedPartialSpecialization(
ClassTemplatePartialSpecializationDecl *PS1,
ClassTemplatePartialSpecializationDecl *PS2,
SourceLocation Loc) {
// C++ [temp.class.order]p1:
// For two class template partial specializations, the first is at least as
// specialized as the second if, given the following rewrite to two
// function templates, the first function template is at least as
// specialized as the second according to the ordering rules for function
// templates (14.6.6.2):
// - the first function template has the same template parameters as the
// first partial specialization and has a single function parameter
// whose type is a class template specialization with the template
// arguments of the first partial specialization, and
// - the second function template has the same template parameters as the
// second partial specialization and has a single function parameter
// whose type is a class template specialization with the template
// arguments of the second partial specialization.
//
// Rather than synthesize function templates, we merely perform the
// equivalent partial ordering by performing deduction directly on
// the template arguments of the class template partial
// specializations. This computation is slightly simpler than the
// general problem of function template partial ordering, because
// class template partial specializations are more constrained. We
// know that every template parameter is deducible from the class
// template partial specialization's template arguments, for
// example.
llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
TemplateDeductionInfo Info(Context, Loc);
QualType PT1 = PS1->getInjectedSpecializationType();
QualType PT2 = PS2->getInjectedSpecializationType();
// Determine whether PS1 is at least as specialized as PS2
Deduced.resize(PS2->getTemplateParameters()->size());
bool Better1 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
PS2->getTemplateParameters(),
PT2,
PT1,
Info,
Deduced,
0);
if (Better1)
Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
PS1->getTemplateArgs(),
Deduced, Info);
// Determine whether PS2 is at least as specialized as PS1
Deduced.clear();
Deduced.resize(PS1->getTemplateParameters()->size());
bool Better2 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
PS1->getTemplateParameters(),
PT1,
PT2,
Info,
Deduced,
0);
if (Better2)
Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
PS2->getTemplateArgs(),
Deduced, Info);
if (Better1 == Better2)
return 0;
return Better1? PS1 : PS2;
}
static void
MarkUsedTemplateParameters(Sema &SemaRef,
const TemplateArgument &TemplateArg,
bool OnlyDeduced,
unsigned Depth,
llvm::SmallVectorImpl<bool> &Used);
/// \brief Mark the template parameters that are used by the given
/// expression.
static void
MarkUsedTemplateParameters(Sema &SemaRef,
const Expr *E,
bool OnlyDeduced,
unsigned Depth,
llvm::SmallVectorImpl<bool> &Used) {
// FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
// find other occurrences of template parameters.
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
if (!DRE)
return;
const NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
if (!NTTP)
return;
if (NTTP->getDepth() == Depth)
Used[NTTP->getIndex()] = true;
}
/// \brief Mark the template parameters that are used by the given
/// nested name specifier.
static void
MarkUsedTemplateParameters(Sema &SemaRef,
NestedNameSpecifier *NNS,
bool OnlyDeduced,
unsigned Depth,
llvm::SmallVectorImpl<bool> &Used) {
if (!NNS)
return;
MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth,
Used);
MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0),
OnlyDeduced, Depth, Used);
}
/// \brief Mark the template parameters that are used by the given
/// template name.
static void
MarkUsedTemplateParameters(Sema &SemaRef,
TemplateName Name,
bool OnlyDeduced,
unsigned Depth,
llvm::SmallVectorImpl<bool> &Used) {
if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
if (TemplateTemplateParmDecl *TTP
= dyn_cast<TemplateTemplateParmDecl>(Template)) {
if (TTP->getDepth() == Depth)
Used[TTP->getIndex()] = true;
}
return;
}
if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced,
Depth, Used);
if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced,
Depth, Used);
}
/// \brief Mark the template parameters that are used by the given
/// type.
static void
MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
bool OnlyDeduced,
unsigned Depth,
llvm::SmallVectorImpl<bool> &Used) {
if (T.isNull())
return;
// Non-dependent types have nothing deducible
if (!T->isDependentType())
return;
T = SemaRef.Context.getCanonicalType(T);
switch (T->getTypeClass()) {
case Type::Pointer:
MarkUsedTemplateParameters(SemaRef,
cast<PointerType>(T)->getPointeeType(),
OnlyDeduced,
Depth,
Used);
break;
case Type::BlockPointer:
MarkUsedTemplateParameters(SemaRef,
cast<BlockPointerType>(T)->getPointeeType(),
OnlyDeduced,
Depth,
Used);
break;
case Type::LValueReference:
case Type::RValueReference:
MarkUsedTemplateParameters(SemaRef,
cast<ReferenceType>(T)->getPointeeType(),
OnlyDeduced,
Depth,
Used);
break;
case Type::MemberPointer: {
const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced,
Depth, Used);
MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
OnlyDeduced, Depth, Used);
break;
}
case Type::DependentSizedArray:
MarkUsedTemplateParameters(SemaRef,
cast<DependentSizedArrayType>(T)->getSizeExpr(),
OnlyDeduced, Depth, Used);
// Fall through to check the element type
case Type::ConstantArray:
case Type::IncompleteArray:
MarkUsedTemplateParameters(SemaRef,
cast<ArrayType>(T)->getElementType(),
OnlyDeduced, Depth, Used);
break;
case Type::Vector:
case Type::ExtVector:
MarkUsedTemplateParameters(SemaRef,
cast<VectorType>(T)->getElementType(),
OnlyDeduced, Depth, Used);
break;
case Type::DependentSizedExtVector: {
const DependentSizedExtVectorType *VecType
= cast<DependentSizedExtVectorType>(T);
MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced,
Depth, Used);
MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced,
Depth, Used);
break;
}
case Type::FunctionProto: {
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced,
Depth, Used);
for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced,
Depth, Used);
break;
}
case Type::TemplateTypeParm: {
const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
if (TTP->getDepth() == Depth)
Used[TTP->getIndex()] = true;
break;
}
case Type::InjectedClassName:
T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
// fall through
case Type::TemplateSpecialization: {
const TemplateSpecializationType *Spec
= cast<TemplateSpecializationType>(T);
MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced,
Depth, Used);
for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
Used);
break;
}
case Type::Complex:
if (!OnlyDeduced)
MarkUsedTemplateParameters(SemaRef,
cast<ComplexType>(T)->getElementType(),
OnlyDeduced, Depth, Used);
break;
case Type::DependentName:
if (!OnlyDeduced)
MarkUsedTemplateParameters(SemaRef,
cast<DependentNameType>(T)->getQualifier(),
OnlyDeduced, Depth, Used);
break;
case Type::DependentTemplateSpecialization: {
const DependentTemplateSpecializationType *Spec
= cast<DependentTemplateSpecializationType>(T);
if (!OnlyDeduced)
MarkUsedTemplateParameters(SemaRef, Spec->getQualifier(),
OnlyDeduced, Depth, Used);
for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
Used);
break;
}
case Type::TypeOf:
if (!OnlyDeduced)
MarkUsedTemplateParameters(SemaRef,
cast<TypeOfType>(T)->getUnderlyingType(),
OnlyDeduced, Depth, Used);
break;
case Type::TypeOfExpr:
if (!OnlyDeduced)
MarkUsedTemplateParameters(SemaRef,
cast<TypeOfExprType>(T)->getUnderlyingExpr(),
OnlyDeduced, Depth, Used);
break;
case Type::Decltype:
if (!OnlyDeduced)
MarkUsedTemplateParameters(SemaRef,
cast<DecltypeType>(T)->getUnderlyingExpr(),
OnlyDeduced, Depth, Used);
break;
// None of these types have any template parameters in them.
case Type::Builtin:
case Type::VariableArray:
case Type::FunctionNoProto:
case Type::Record:
case Type::Enum:
case Type::ObjCInterface:
case Type::ObjCObject:
case Type::ObjCObjectPointer:
case Type::UnresolvedUsing:
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define DEPENDENT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
break;
}
}
/// \brief Mark the template parameters that are used by this
/// template argument.
static void
MarkUsedTemplateParameters(Sema &SemaRef,
const TemplateArgument &TemplateArg,
bool OnlyDeduced,
unsigned Depth,
llvm::SmallVectorImpl<bool> &Used) {
switch (TemplateArg.getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Integral:
case TemplateArgument::Declaration:
break;
case TemplateArgument::Type:
MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced,
Depth, Used);
break;
case TemplateArgument::Template:
MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsTemplate(),
OnlyDeduced, Depth, Used);
break;
case TemplateArgument::Expression:
MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced,
Depth, Used);
break;
case TemplateArgument::Pack:
for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
PEnd = TemplateArg.pack_end();
P != PEnd; ++P)
MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used);
break;
}
}
/// \brief Mark the template parameters can be deduced by the given
/// template argument list.
///
/// \param TemplateArgs the template argument list from which template
/// parameters will be deduced.
///
/// \param Deduced a bit vector whose elements will be set to \c true
/// to indicate when the corresponding template parameter will be
/// deduced.
void
Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
bool OnlyDeduced, unsigned Depth,
llvm::SmallVectorImpl<bool> &Used) {
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced,
Depth, Used);
}
/// \brief Marks all of the template parameters that will be deduced by a
/// call to the given function template.
void
Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
llvm::SmallVectorImpl<bool> &Deduced) {
TemplateParameterList *TemplateParams
= FunctionTemplate->getTemplateParameters();
Deduced.clear();
Deduced.resize(TemplateParams->size());
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(),
true, TemplateParams->getDepth(), Deduced);
}