llvm-project/polly/lib/Support/SCEVAffinator.cpp

355 lines
12 KiB
C++

//===--------- SCEVAffinator.cpp - Create Scops from LLVM IR -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a SCEV value.
//
//===----------------------------------------------------------------------===//
#include "polly/Support/SCEVAffinator.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/SCEVValidator.h"
#include "polly/Support/ScopHelper.h"
#include "isl/aff.h"
#include "isl/local_space.h"
#include "isl/set.h"
#include "isl/val.h"
using namespace llvm;
using namespace polly;
SCEVAffinator::SCEVAffinator(Scop *S)
: S(S), Ctx(S->getIslCtx()), R(S->getRegion()), SE(*S->getSE()),
TD(R.getEntry()->getParent()->getParent()->getDataLayout()) {}
SCEVAffinator::~SCEVAffinator() {
for (const auto &CachedPair : CachedExpressions)
isl_pw_aff_free(CachedPair.second);
}
__isl_give isl_pw_aff *SCEVAffinator::getPwAff(const SCEV *Expr,
BasicBlock *BB) {
this->BB = BB;
if (BB) {
auto *DC = S->getDomainConditions(BB);
NumIterators = isl_set_n_dim(DC);
isl_set_free(DC);
} else
NumIterators = 0;
S->addParams(getParamsInAffineExpr(&R, Expr, SE));
return visit(Expr);
}
__isl_give isl_set *
SCEVAffinator::getWrappingContext(SCEV::NoWrapFlags Flags, Type *ExprType,
__isl_keep isl_pw_aff *PWA,
__isl_take isl_set *ExprDomain) const {
// If the SCEV flags do contain NSW (no signed wrap) then PWA already
// represents Expr in modulo semantic (it is not allowed to overflow), thus we
// are done. Otherwise, we will compute:
// PWA = ((PWA + 2^(n-1)) mod (2 ^ n)) - 2^(n-1)
// whereas n is the number of bits of the Expr, hence:
// n = bitwidth(ExprType)
if (Flags & SCEV::FlagNSW)
return nullptr;
isl_pw_aff *PWAMod = addModuloSemantic(isl_pw_aff_copy(PWA), ExprType);
if (isl_pw_aff_is_equal(PWA, PWAMod)) {
isl_pw_aff_free(PWAMod);
return nullptr;
}
PWA = isl_pw_aff_copy(PWA);
auto *NotEqualSet = isl_pw_aff_ne_set(PWA, PWAMod);
NotEqualSet = isl_set_intersect(NotEqualSet, isl_set_copy(ExprDomain));
NotEqualSet = isl_set_gist_params(NotEqualSet, S->getContext());
NotEqualSet = isl_set_params(NotEqualSet);
return NotEqualSet;
}
__isl_give isl_set *SCEVAffinator::getWrappingContext() const {
isl_set *WrappingCtx = isl_set_empty(S->getParamSpace());
for (const auto &CachedPair : CachedExpressions) {
const SCEV *Expr = CachedPair.first.first;
SCEV::NoWrapFlags Flags;
switch (Expr->getSCEVType()) {
case scAddExpr:
Flags = cast<SCEVAddExpr>(Expr)->getNoWrapFlags();
break;
case scMulExpr:
Flags = cast<SCEVMulExpr>(Expr)->getNoWrapFlags();
break;
case scAddRecExpr:
Flags = cast<SCEVAddRecExpr>(Expr)->getNoWrapFlags();
break;
default:
continue;
}
isl_pw_aff *PWA = CachedPair.second;
BasicBlock *BB = CachedPair.first.second;
isl_set *ExprDomain = BB ? S->getDomainConditions(BB) : nullptr;
isl_set *WPWACtx =
getWrappingContext(Flags, Expr->getType(), PWA, ExprDomain);
isl_set_free(ExprDomain);
WrappingCtx = WPWACtx ? isl_set_union(WrappingCtx, WPWACtx) : WrappingCtx;
}
return WrappingCtx;
}
__isl_give isl_pw_aff *
SCEVAffinator::addModuloSemantic(__isl_take isl_pw_aff *PWA,
Type *ExprType) const {
unsigned Width = TD.getTypeStoreSizeInBits(ExprType);
isl_ctx *Ctx = isl_pw_aff_get_ctx(PWA);
isl_val *ModVal = isl_val_int_from_ui(Ctx, Width);
ModVal = isl_val_2exp(ModVal);
isl_val *AddVal = isl_val_int_from_ui(Ctx, Width - 1);
AddVal = isl_val_2exp(AddVal);
isl_set *Domain = isl_pw_aff_domain(isl_pw_aff_copy(PWA));
isl_pw_aff *AddPW = isl_pw_aff_val_on_domain(Domain, AddVal);
PWA = isl_pw_aff_add(PWA, isl_pw_aff_copy(AddPW));
PWA = isl_pw_aff_mod_val(PWA, ModVal);
PWA = isl_pw_aff_sub(PWA, AddPW);
return PWA;
}
bool SCEVAffinator::hasNSWAddRecForLoop(Loop *L) const {
for (const auto &CachedPair : CachedExpressions) {
auto *AddRec = dyn_cast<SCEVAddRecExpr>(CachedPair.first.first);
if (!AddRec)
continue;
if (AddRec->getLoop() != L)
continue;
if (AddRec->getNoWrapFlags() & SCEV::FlagNSW)
return true;
}
return false;
}
__isl_give isl_pw_aff *SCEVAffinator::visit(const SCEV *Expr) {
auto Key = std::make_pair(Expr, BB);
isl_pw_aff *PWA = CachedExpressions[Key];
if (PWA)
return isl_pw_aff_copy(PWA);
// In case the scev is a valid parameter, we do not further analyze this
// expression, but create a new parameter in the isl_pw_aff. This allows us
// to treat subexpressions that we cannot translate into an piecewise affine
// expression, as constant parameters of the piecewise affine expression.
if (isl_id *Id = S->getIdForParam(Expr)) {
isl_space *Space = isl_space_set_alloc(Ctx, 1, NumIterators);
Space = isl_space_set_dim_id(Space, isl_dim_param, 0, Id);
isl_set *Domain = isl_set_universe(isl_space_copy(Space));
isl_aff *Affine = isl_aff_zero_on_domain(isl_local_space_from_space(Space));
Affine = isl_aff_add_coefficient_si(Affine, isl_dim_param, 0, 1);
PWA = isl_pw_aff_alloc(Domain, Affine);
CachedExpressions[Key] = PWA;
return isl_pw_aff_copy(PWA);
}
PWA = SCEVVisitor<SCEVAffinator, isl_pw_aff *>::visit(Expr);
// For compile time reasons we need to simplify the PWA before we cache and
// return it.
PWA = isl_pw_aff_coalesce(PWA);
CachedExpressions[Key] = PWA;
return isl_pw_aff_copy(PWA);
}
__isl_give isl_pw_aff *SCEVAffinator::visitConstant(const SCEVConstant *Expr) {
ConstantInt *Value = Expr->getValue();
isl_val *v;
// LLVM does not define if an integer value is interpreted as a signed or
// unsigned value. Hence, without further information, it is unknown how
// this value needs to be converted to GMP. At the moment, we only support
// signed operations. So we just interpret it as signed. Later, there are
// two options:
//
// 1. We always interpret any value as signed and convert the values on
// demand.
// 2. We pass down the signedness of the calculation and use it to interpret
// this constant correctly.
v = isl_valFromAPInt(Ctx, Value->getValue(), /* isSigned */ true);
isl_space *Space = isl_space_set_alloc(Ctx, 0, NumIterators);
isl_local_space *ls = isl_local_space_from_space(Space);
return isl_pw_aff_from_aff(isl_aff_val_on_domain(ls, v));
}
__isl_give isl_pw_aff *
SCEVAffinator::visitTruncateExpr(const SCEVTruncateExpr *Expr) {
llvm_unreachable("SCEVTruncateExpr not yet supported");
}
__isl_give isl_pw_aff *
SCEVAffinator::visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
llvm_unreachable("SCEVZeroExtendExpr not yet supported");
}
__isl_give isl_pw_aff *
SCEVAffinator::visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
// Assuming the value is signed, a sign extension is basically a noop.
// TODO: Reconsider this as soon as we support unsigned values.
return visit(Expr->getOperand());
}
__isl_give isl_pw_aff *SCEVAffinator::visitAddExpr(const SCEVAddExpr *Expr) {
isl_pw_aff *Sum = visit(Expr->getOperand(0));
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
isl_pw_aff *NextSummand = visit(Expr->getOperand(i));
Sum = isl_pw_aff_add(Sum, NextSummand);
}
return Sum;
}
__isl_give isl_pw_aff *SCEVAffinator::visitMulExpr(const SCEVMulExpr *Expr) {
// Divide Expr into a constant part and the rest. Then visit both and multiply
// the result to obtain the representation for Expr. While the second part of
// ConstantAndLeftOverPair might still be a SCEVMulExpr we will not get to
// this point again. The reason is that if it is a multiplication it consists
// only of parameters and we will stop in the visit(const SCEV *) function and
// return the isl_pw_aff for that parameter.
auto ConstantAndLeftOverPair = extractConstantFactor(Expr, *S->getSE());
return isl_pw_aff_mul(visit(ConstantAndLeftOverPair.first),
visit(ConstantAndLeftOverPair.second));
}
__isl_give isl_pw_aff *SCEVAffinator::visitUDivExpr(const SCEVUDivExpr *Expr) {
llvm_unreachable("SCEVUDivExpr not yet supported");
}
__isl_give isl_pw_aff *
SCEVAffinator::visitAddRecExpr(const SCEVAddRecExpr *Expr) {
assert(Expr->isAffine() && "Only affine AddRecurrences allowed");
auto Flags = Expr->getNoWrapFlags();
// Directly generate isl_pw_aff for Expr if 'start' is zero.
if (Expr->getStart()->isZero()) {
assert(S->getRegion().contains(Expr->getLoop()) &&
"Scop does not contain the loop referenced in this AddRec");
isl_pw_aff *Step = visit(Expr->getOperand(1));
isl_space *Space = isl_space_set_alloc(Ctx, 0, NumIterators);
isl_local_space *LocalSpace = isl_local_space_from_space(Space);
unsigned loopDimension = S->getRelativeLoopDepth(Expr->getLoop());
isl_aff *LAff = isl_aff_set_coefficient_si(
isl_aff_zero_on_domain(LocalSpace), isl_dim_in, loopDimension, 1);
isl_pw_aff *LPwAff = isl_pw_aff_from_aff(LAff);
return isl_pw_aff_mul(Step, LPwAff);
}
// Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
// if 'start' is not zero.
// TODO: Using the original SCEV no-wrap flags is not always safe, however
// as our code generation is reordering the expression anyway it doesn't
// really matter.
ScalarEvolution &SE = *S->getSE();
const SCEV *ZeroStartExpr =
SE.getAddRecExpr(SE.getConstant(Expr->getStart()->getType(), 0),
Expr->getStepRecurrence(SE), Expr->getLoop(), Flags);
isl_pw_aff *ZeroStartResult = visit(ZeroStartExpr);
isl_pw_aff *Start = visit(Expr->getStart());
return isl_pw_aff_add(ZeroStartResult, Start);
}
__isl_give isl_pw_aff *SCEVAffinator::visitSMaxExpr(const SCEVSMaxExpr *Expr) {
isl_pw_aff *Max = visit(Expr->getOperand(0));
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
isl_pw_aff *NextOperand = visit(Expr->getOperand(i));
Max = isl_pw_aff_max(Max, NextOperand);
}
return Max;
}
__isl_give isl_pw_aff *SCEVAffinator::visitUMaxExpr(const SCEVUMaxExpr *Expr) {
llvm_unreachable("SCEVUMaxExpr not yet supported");
}
__isl_give isl_pw_aff *SCEVAffinator::visitSDivInstruction(Instruction *SDiv) {
assert(SDiv->getOpcode() == Instruction::SDiv && "Assumed SDiv instruction!");
auto *SE = S->getSE();
auto *Divisor = SDiv->getOperand(1);
auto *DivisorSCEV = SE->getSCEV(Divisor);
auto *DivisorPWA = visit(DivisorSCEV);
assert(isa<ConstantInt>(Divisor) &&
"SDiv is no parameter but has a non-constant RHS.");
auto *Dividend = SDiv->getOperand(0);
auto *DividendSCEV = SE->getSCEV(Dividend);
auto *DividendPWA = visit(DividendSCEV);
return isl_pw_aff_tdiv_q(DividendPWA, DivisorPWA);
}
__isl_give isl_pw_aff *SCEVAffinator::visitSRemInstruction(Instruction *SRem) {
assert(SRem->getOpcode() == Instruction::SRem && "Assumed SRem instruction!");
auto *SE = S->getSE();
auto *Divisor = dyn_cast<ConstantInt>(SRem->getOperand(1));
assert(Divisor && "SRem is no parameter but has a non-constant RHS.");
auto *DivisorVal = isl_valFromAPInt(Ctx, Divisor->getValue(),
/* isSigned */ true);
auto *Dividend = SRem->getOperand(0);
auto *DividendSCEV = SE->getSCEV(Dividend);
auto *DividendPWA = visit(DividendSCEV);
return isl_pw_aff_mod_val(DividendPWA, isl_val_abs(DivisorVal));
}
__isl_give isl_pw_aff *SCEVAffinator::visitUnknown(const SCEVUnknown *Expr) {
if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
switch (I->getOpcode()) {
case Instruction::SDiv:
return visitSDivInstruction(I);
case Instruction::SRem:
return visitSRemInstruction(I);
default:
break; // Fall through.
}
}
llvm_unreachable(
"Unknowns SCEV was neither parameter nor a valid instruction.");
}