llvm-project/llvm/lib/Support/YAMLTraits.cpp

895 lines
22 KiB
C++

//===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/YAMLTraits.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/YAMLParser.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
#include <cstring>
using namespace llvm;
using namespace yaml;
//===----------------------------------------------------------------------===//
// IO
//===----------------------------------------------------------------------===//
IO::IO(void *Context) : Ctxt(Context) {
}
IO::~IO() {
}
void *IO::getContext() {
return Ctxt;
}
void IO::setContext(void *Context) {
Ctxt = Context;
}
//===----------------------------------------------------------------------===//
// Input
//===----------------------------------------------------------------------===//
Input::Input(StringRef InputContent,
void *Ctxt,
SourceMgr::DiagHandlerTy DiagHandler,
void *DiagHandlerCtxt)
: IO(Ctxt),
Strm(new Stream(InputContent, SrcMgr)),
CurrentNode(nullptr) {
if (DiagHandler)
SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
DocIterator = Strm->begin();
}
Input::~Input() {
}
error_code Input::error() {
return EC;
}
// Pin the vtables to this file.
void Input::HNode::anchor() {}
void Input::EmptyHNode::anchor() {}
void Input::ScalarHNode::anchor() {}
bool Input::outputting() {
return false;
}
bool Input::setCurrentDocument() {
if (DocIterator != Strm->end()) {
Node *N = DocIterator->getRoot();
if (!N) {
assert(Strm->failed() && "Root is NULL iff parsing failed");
EC = std::make_error_code(std::errc::invalid_argument);
return false;
}
if (isa<NullNode>(N)) {
// Empty files are allowed and ignored
++DocIterator;
return setCurrentDocument();
}
TopNode.reset(this->createHNodes(N));
CurrentNode = TopNode.get();
return true;
}
return false;
}
bool Input::nextDocument() {
return ++DocIterator != Strm->end();
}
bool Input::mapTag(StringRef Tag, bool Default) {
std::string foundTag = CurrentNode->_node->getVerbatimTag();
if (foundTag.empty()) {
// If no tag found and 'Tag' is the default, say it was found.
return Default;
}
// Return true iff found tag matches supplied tag.
return Tag.equals(foundTag);
}
void Input::beginMapping() {
if (EC)
return;
// CurrentNode can be null if the document is empty.
MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
if (MN) {
MN->ValidKeys.clear();
}
}
bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
void *&SaveInfo) {
UseDefault = false;
if (EC)
return false;
// CurrentNode is null for empty documents, which is an error in case required
// nodes are present.
if (!CurrentNode) {
if (Required)
EC = std::make_error_code(std::errc::invalid_argument);
return false;
}
MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
if (!MN) {
setError(CurrentNode, "not a mapping");
return false;
}
MN->ValidKeys.push_back(Key);
HNode *Value = MN->Mapping[Key];
if (!Value) {
if (Required)
setError(CurrentNode, Twine("missing required key '") + Key + "'");
else
UseDefault = true;
return false;
}
SaveInfo = CurrentNode;
CurrentNode = Value;
return true;
}
void Input::postflightKey(void *saveInfo) {
CurrentNode = reinterpret_cast<HNode *>(saveInfo);
}
void Input::endMapping() {
if (EC)
return;
// CurrentNode can be null if the document is empty.
MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
if (!MN)
return;
for (const auto &NN : MN->Mapping) {
if (!MN->isValidKey(NN.first())) {
setError(NN.second, Twine("unknown key '") + NN.first() + "'");
break;
}
}
}
unsigned Input::beginSequence() {
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
return SQ->Entries.size();
}
return 0;
}
void Input::endSequence() {
}
bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
if (EC)
return false;
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
SaveInfo = CurrentNode;
CurrentNode = SQ->Entries[Index];
return true;
}
return false;
}
void Input::postflightElement(void *SaveInfo) {
CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
}
unsigned Input::beginFlowSequence() {
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
return SQ->Entries.size();
}
return 0;
}
bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
if (EC)
return false;
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
SaveInfo = CurrentNode;
CurrentNode = SQ->Entries[index];
return true;
}
return false;
}
void Input::postflightFlowElement(void *SaveInfo) {
CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
}
void Input::endFlowSequence() {
}
void Input::beginEnumScalar() {
ScalarMatchFound = false;
}
bool Input::matchEnumScalar(const char *Str, bool) {
if (ScalarMatchFound)
return false;
if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
if (SN->value().equals(Str)) {
ScalarMatchFound = true;
return true;
}
}
return false;
}
void Input::endEnumScalar() {
if (!ScalarMatchFound) {
setError(CurrentNode, "unknown enumerated scalar");
}
}
bool Input::beginBitSetScalar(bool &DoClear) {
BitValuesUsed.clear();
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
} else {
setError(CurrentNode, "expected sequence of bit values");
}
DoClear = true;
return true;
}
bool Input::bitSetMatch(const char *Str, bool) {
if (EC)
return false;
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
unsigned Index = 0;
for (HNode *N : SQ->Entries) {
if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N)) {
if (SN->value().equals(Str)) {
BitValuesUsed[Index] = true;
return true;
}
} else {
setError(CurrentNode, "unexpected scalar in sequence of bit values");
}
++Index;
}
} else {
setError(CurrentNode, "expected sequence of bit values");
}
return false;
}
void Input::endBitSetScalar() {
if (EC)
return;
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
assert(BitValuesUsed.size() == SQ->Entries.size());
for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
if (!BitValuesUsed[i]) {
setError(SQ->Entries[i], "unknown bit value");
return;
}
}
}
}
void Input::scalarString(StringRef &S, bool) {
if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
S = SN->value();
} else {
setError(CurrentNode, "unexpected scalar");
}
}
void Input::setError(HNode *hnode, const Twine &message) {
assert(hnode && "HNode must not be NULL");
this->setError(hnode->_node, message);
}
void Input::setError(Node *node, const Twine &message) {
Strm->printError(node, message);
EC = std::make_error_code(std::errc::invalid_argument);
}
Input::HNode *Input::createHNodes(Node *N) {
SmallString<128> StringStorage;
if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
StringRef KeyStr = SN->getValue(StringStorage);
if (!StringStorage.empty()) {
// Copy string to permanent storage
unsigned Len = StringStorage.size();
char *Buf = StringAllocator.Allocate<char>(Len);
memcpy(Buf, &StringStorage[0], Len);
KeyStr = StringRef(Buf, Len);
}
return new ScalarHNode(N, KeyStr);
} else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
SequenceHNode *SQHNode = new SequenceHNode(N);
for (Node &SN : *SQ) {
HNode *Entry = this->createHNodes(&SN);
if (EC)
break;
SQHNode->Entries.push_back(Entry);
}
return SQHNode;
} else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
MapHNode *mapHNode = new MapHNode(N);
for (KeyValueNode &KVN : *Map) {
ScalarNode *KeyScalar = dyn_cast<ScalarNode>(KVN.getKey());
StringStorage.clear();
StringRef KeyStr = KeyScalar->getValue(StringStorage);
if (!StringStorage.empty()) {
// Copy string to permanent storage
unsigned Len = StringStorage.size();
char *Buf = StringAllocator.Allocate<char>(Len);
memcpy(Buf, &StringStorage[0], Len);
KeyStr = StringRef(Buf, Len);
}
HNode *ValueHNode = this->createHNodes(KVN.getValue());
if (EC)
break;
mapHNode->Mapping[KeyStr] = ValueHNode;
}
return mapHNode;
} else if (isa<NullNode>(N)) {
return new EmptyHNode(N);
} else {
setError(N, "unknown node kind");
return nullptr;
}
}
bool Input::MapHNode::isValidKey(StringRef Key) {
for (const char *K : ValidKeys) {
if (Key.equals(K))
return true;
}
return false;
}
void Input::setError(const Twine &Message) {
this->setError(CurrentNode, Message);
}
bool Input::canElideEmptySequence() {
return false;
}
Input::MapHNode::~MapHNode() {
for (auto &N : Mapping)
delete N.second;
}
Input::SequenceHNode::~SequenceHNode() {
for (HNode *N : Entries)
delete N;
}
//===----------------------------------------------------------------------===//
// Output
//===----------------------------------------------------------------------===//
Output::Output(raw_ostream &yout, void *context)
: IO(context),
Out(yout),
Column(0),
ColumnAtFlowStart(0),
NeedBitValueComma(false),
NeedFlowSequenceComma(false),
EnumerationMatchFound(false),
NeedsNewLine(false) {
}
Output::~Output() {
}
bool Output::outputting() {
return true;
}
void Output::beginMapping() {
StateStack.push_back(inMapFirstKey);
NeedsNewLine = true;
}
bool Output::mapTag(StringRef Tag, bool Use) {
if (Use) {
this->output(" ");
this->output(Tag);
}
return Use;
}
void Output::endMapping() {
StateStack.pop_back();
}
bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
bool &UseDefault, void *&) {
UseDefault = false;
if (Required || !SameAsDefault) {
this->newLineCheck();
this->paddedKey(Key);
return true;
}
return false;
}
void Output::postflightKey(void *) {
if (StateStack.back() == inMapFirstKey) {
StateStack.pop_back();
StateStack.push_back(inMapOtherKey);
}
}
void Output::beginDocuments() {
this->outputUpToEndOfLine("---");
}
bool Output::preflightDocument(unsigned index) {
if (index > 0)
this->outputUpToEndOfLine("\n---");
return true;
}
void Output::postflightDocument() {
}
void Output::endDocuments() {
output("\n...\n");
}
unsigned Output::beginSequence() {
StateStack.push_back(inSeq);
NeedsNewLine = true;
return 0;
}
void Output::endSequence() {
StateStack.pop_back();
}
bool Output::preflightElement(unsigned, void *&) {
return true;
}
void Output::postflightElement(void *) {
}
unsigned Output::beginFlowSequence() {
StateStack.push_back(inFlowSeq);
this->newLineCheck();
ColumnAtFlowStart = Column;
output("[ ");
NeedFlowSequenceComma = false;
return 0;
}
void Output::endFlowSequence() {
StateStack.pop_back();
this->outputUpToEndOfLine(" ]");
}
bool Output::preflightFlowElement(unsigned, void *&) {
if (NeedFlowSequenceComma)
output(", ");
if (Column > 70) {
output("\n");
for (int i = 0; i < ColumnAtFlowStart; ++i)
output(" ");
Column = ColumnAtFlowStart;
output(" ");
}
return true;
}
void Output::postflightFlowElement(void *) {
NeedFlowSequenceComma = true;
}
void Output::beginEnumScalar() {
EnumerationMatchFound = false;
}
bool Output::matchEnumScalar(const char *Str, bool Match) {
if (Match && !EnumerationMatchFound) {
this->newLineCheck();
this->outputUpToEndOfLine(Str);
EnumerationMatchFound = true;
}
return false;
}
void Output::endEnumScalar() {
if (!EnumerationMatchFound)
llvm_unreachable("bad runtime enum value");
}
bool Output::beginBitSetScalar(bool &DoClear) {
this->newLineCheck();
output("[ ");
NeedBitValueComma = false;
DoClear = false;
return true;
}
bool Output::bitSetMatch(const char *Str, bool Matches) {
if (Matches) {
if (NeedBitValueComma)
output(", ");
this->output(Str);
NeedBitValueComma = true;
}
return false;
}
void Output::endBitSetScalar() {
this->outputUpToEndOfLine(" ]");
}
void Output::scalarString(StringRef &S, bool MustQuote) {
this->newLineCheck();
if (S.empty()) {
// Print '' for the empty string because leaving the field empty is not
// allowed.
this->outputUpToEndOfLine("''");
return;
}
if (!MustQuote) {
// Only quote if we must.
this->outputUpToEndOfLine(S);
return;
}
unsigned i = 0;
unsigned j = 0;
unsigned End = S.size();
output("'"); // Starting single quote.
const char *Base = S.data();
while (j < End) {
// Escape a single quote by doubling it.
if (S[j] == '\'') {
output(StringRef(&Base[i], j - i + 1));
output("'");
i = j + 1;
}
++j;
}
output(StringRef(&Base[i], j - i));
this->outputUpToEndOfLine("'"); // Ending single quote.
}
void Output::setError(const Twine &message) {
}
bool Output::canElideEmptySequence() {
// Normally, with an optional key/value where the value is an empty sequence,
// the whole key/value can be not written. But, that produces wrong yaml
// if the key/value is the only thing in the map and the map is used in
// a sequence. This detects if the this sequence is the first key/value
// in map that itself is embedded in a sequnce.
if (StateStack.size() < 2)
return true;
if (StateStack.back() != inMapFirstKey)
return true;
return (StateStack[StateStack.size()-2] != inSeq);
}
void Output::output(StringRef s) {
Column += s.size();
Out << s;
}
void Output::outputUpToEndOfLine(StringRef s) {
this->output(s);
if (StateStack.empty() || StateStack.back() != inFlowSeq)
NeedsNewLine = true;
}
void Output::outputNewLine() {
Out << "\n";
Column = 0;
}
// if seq at top, indent as if map, then add "- "
// if seq in middle, use "- " if firstKey, else use " "
//
void Output::newLineCheck() {
if (!NeedsNewLine)
return;
NeedsNewLine = false;
this->outputNewLine();
assert(StateStack.size() > 0);
unsigned Indent = StateStack.size() - 1;
bool OutputDash = false;
if (StateStack.back() == inSeq) {
OutputDash = true;
} else if ((StateStack.size() > 1) && (StateStack.back() == inMapFirstKey) &&
(StateStack[StateStack.size() - 2] == inSeq)) {
--Indent;
OutputDash = true;
}
for (unsigned i = 0; i < Indent; ++i) {
output(" ");
}
if (OutputDash) {
output("- ");
}
}
void Output::paddedKey(StringRef key) {
output(key);
output(":");
const char *spaces = " ";
if (key.size() < strlen(spaces))
output(&spaces[key.size()]);
else
output(" ");
}
//===----------------------------------------------------------------------===//
// traits for built-in types
//===----------------------------------------------------------------------===//
void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
Out << (Val ? "true" : "false");
}
StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
if (Scalar.equals("true")) {
Val = true;
return StringRef();
} else if (Scalar.equals("false")) {
Val = false;
return StringRef();
}
return "invalid boolean";
}
void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
raw_ostream &Out) {
Out << Val;
}
StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
StringRef &Val) {
Val = Scalar;
return StringRef();
}
void ScalarTraits<std::string>::output(const std::string &Val, void *,
raw_ostream &Out) {
Out << Val;
}
StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
std::string &Val) {
Val = Scalar.str();
return StringRef();
}
void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
raw_ostream &Out) {
// use temp uin32_t because ostream thinks uint8_t is a character
uint32_t Num = Val;
Out << Num;
}
StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
unsigned long long n;
if (getAsUnsignedInteger(Scalar, 0, n))
return "invalid number";
if (n > 0xFF)
return "out of range number";
Val = n;
return StringRef();
}
void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
raw_ostream &Out) {
Out << Val;
}
StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
uint16_t &Val) {
unsigned long long n;
if (getAsUnsignedInteger(Scalar, 0, n))
return "invalid number";
if (n > 0xFFFF)
return "out of range number";
Val = n;
return StringRef();
}
void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
raw_ostream &Out) {
Out << Val;
}
StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
uint32_t &Val) {
unsigned long long n;
if (getAsUnsignedInteger(Scalar, 0, n))
return "invalid number";
if (n > 0xFFFFFFFFUL)
return "out of range number";
Val = n;
return StringRef();
}
void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
raw_ostream &Out) {
Out << Val;
}
StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
uint64_t &Val) {
unsigned long long N;
if (getAsUnsignedInteger(Scalar, 0, N))
return "invalid number";
Val = N;
return StringRef();
}
void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
// use temp in32_t because ostream thinks int8_t is a character
int32_t Num = Val;
Out << Num;
}
StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
long long N;
if (getAsSignedInteger(Scalar, 0, N))
return "invalid number";
if ((N > 127) || (N < -128))
return "out of range number";
Val = N;
return StringRef();
}
void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
raw_ostream &Out) {
Out << Val;
}
StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
long long N;
if (getAsSignedInteger(Scalar, 0, N))
return "invalid number";
if ((N > INT16_MAX) || (N < INT16_MIN))
return "out of range number";
Val = N;
return StringRef();
}
void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
raw_ostream &Out) {
Out << Val;
}
StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
long long N;
if (getAsSignedInteger(Scalar, 0, N))
return "invalid number";
if ((N > INT32_MAX) || (N < INT32_MIN))
return "out of range number";
Val = N;
return StringRef();
}
void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
raw_ostream &Out) {
Out << Val;
}
StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
long long N;
if (getAsSignedInteger(Scalar, 0, N))
return "invalid number";
Val = N;
return StringRef();
}
void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
Out << format("%g", Val);
}
StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
SmallString<32> buff(Scalar.begin(), Scalar.end());
char *end;
Val = strtod(buff.c_str(), &end);
if (*end != '\0')
return "invalid floating point number";
return StringRef();
}
void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
Out << format("%g", Val);
}
StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
SmallString<32> buff(Scalar.begin(), Scalar.end());
char *end;
Val = strtod(buff.c_str(), &end);
if (*end != '\0')
return "invalid floating point number";
return StringRef();
}
void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
uint8_t Num = Val;
Out << format("0x%02X", Num);
}
StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
unsigned long long n;
if (getAsUnsignedInteger(Scalar, 0, n))
return "invalid hex8 number";
if (n > 0xFF)
return "out of range hex8 number";
Val = n;
return StringRef();
}
void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
uint16_t Num = Val;
Out << format("0x%04X", Num);
}
StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
unsigned long long n;
if (getAsUnsignedInteger(Scalar, 0, n))
return "invalid hex16 number";
if (n > 0xFFFF)
return "out of range hex16 number";
Val = n;
return StringRef();
}
void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
uint32_t Num = Val;
Out << format("0x%08X", Num);
}
StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
unsigned long long n;
if (getAsUnsignedInteger(Scalar, 0, n))
return "invalid hex32 number";
if (n > 0xFFFFFFFFUL)
return "out of range hex32 number";
Val = n;
return StringRef();
}
void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
uint64_t Num = Val;
Out << format("0x%016llX", Num);
}
StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
unsigned long long Num;
if (getAsUnsignedInteger(Scalar, 0, Num))
return "invalid hex64 number";
Val = Num;
return StringRef();
}