forked from OSchip/llvm-project
133 lines
3.9 KiB
C
133 lines
3.9 KiB
C
//===-- lib/comparedf2.c - Double-precision comparisons -----------*- C -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is dual licensed under the MIT and the University of Illinois Open
|
|
// Source Licenses. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// // This file implements the following soft-float comparison routines:
|
|
//
|
|
// __eqdf2 __gedf2 __unorddf2
|
|
// __ledf2 __gtdf2
|
|
// __ltdf2
|
|
// __nedf2
|
|
//
|
|
// The semantics of the routines grouped in each column are identical, so there
|
|
// is a single implementation for each, and wrappers to provide the other names.
|
|
//
|
|
// The main routines behave as follows:
|
|
//
|
|
// __ledf2(a,b) returns -1 if a < b
|
|
// 0 if a == b
|
|
// 1 if a > b
|
|
// 1 if either a or b is NaN
|
|
//
|
|
// __gedf2(a,b) returns -1 if a < b
|
|
// 0 if a == b
|
|
// 1 if a > b
|
|
// -1 if either a or b is NaN
|
|
//
|
|
// __unorddf2(a,b) returns 0 if both a and b are numbers
|
|
// 1 if either a or b is NaN
|
|
//
|
|
// Note that __ledf2( ) and __gedf2( ) are identical except in their handling of
|
|
// NaN values.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DOUBLE_PRECISION
|
|
#include "fp_lib.h"
|
|
|
|
enum LE_RESULT {
|
|
LE_LESS = -1,
|
|
LE_EQUAL = 0,
|
|
LE_GREATER = 1,
|
|
LE_UNORDERED = 1
|
|
};
|
|
|
|
enum LE_RESULT __ledf2(fp_t a, fp_t b) {
|
|
|
|
const srep_t aInt = toRep(a);
|
|
const srep_t bInt = toRep(b);
|
|
const rep_t aAbs = aInt & absMask;
|
|
const rep_t bAbs = bInt & absMask;
|
|
|
|
// If either a or b is NaN, they are unordered.
|
|
if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
|
|
|
|
// If a and b are both zeros, they are equal.
|
|
if ((aAbs | bAbs) == 0) return LE_EQUAL;
|
|
|
|
// If at least one of a and b is positive, we get the same result comparing
|
|
// a and b as signed integers as we would with a floating-point compare.
|
|
if ((aInt & bInt) >= 0) {
|
|
if (aInt < bInt) return LE_LESS;
|
|
else if (aInt == bInt) return LE_EQUAL;
|
|
else return LE_GREATER;
|
|
}
|
|
|
|
// Otherwise, both are negative, so we need to flip the sense of the
|
|
// comparison to get the correct result. (This assumes a twos- or ones-
|
|
// complement integer representation; if integers are represented in a
|
|
// sign-magnitude representation, then this flip is incorrect).
|
|
else {
|
|
if (aInt > bInt) return LE_LESS;
|
|
else if (aInt == bInt) return LE_EQUAL;
|
|
else return LE_GREATER;
|
|
}
|
|
}
|
|
|
|
enum GE_RESULT {
|
|
GE_LESS = -1,
|
|
GE_EQUAL = 0,
|
|
GE_GREATER = 1,
|
|
GE_UNORDERED = -1 // Note: different from LE_UNORDERED
|
|
};
|
|
|
|
enum GE_RESULT __gedf2(fp_t a, fp_t b) {
|
|
|
|
const srep_t aInt = toRep(a);
|
|
const srep_t bInt = toRep(b);
|
|
const rep_t aAbs = aInt & absMask;
|
|
const rep_t bAbs = bInt & absMask;
|
|
|
|
if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
|
|
if ((aAbs | bAbs) == 0) return GE_EQUAL;
|
|
if ((aInt & bInt) >= 0) {
|
|
if (aInt < bInt) return GE_LESS;
|
|
else if (aInt == bInt) return GE_EQUAL;
|
|
else return GE_GREATER;
|
|
} else {
|
|
if (aInt > bInt) return GE_LESS;
|
|
else if (aInt == bInt) return GE_EQUAL;
|
|
else return GE_GREATER;
|
|
}
|
|
}
|
|
|
|
int __unorddf2(fp_t a, fp_t b) {
|
|
const rep_t aAbs = toRep(a) & absMask;
|
|
const rep_t bAbs = toRep(b) & absMask;
|
|
return aAbs > infRep || bAbs > infRep;
|
|
}
|
|
|
|
// The following are alternative names for the preceeding routines.
|
|
|
|
enum LE_RESULT __eqdf2(fp_t a, fp_t b) {
|
|
return __ledf2(a, b);
|
|
}
|
|
|
|
enum LE_RESULT __ltdf2(fp_t a, fp_t b) {
|
|
return __ledf2(a, b);
|
|
}
|
|
|
|
enum LE_RESULT __nedf2(fp_t a, fp_t b) {
|
|
return __ledf2(a, b);
|
|
}
|
|
|
|
enum GE_RESULT __gtdf2(fp_t a, fp_t b) {
|
|
return __gedf2(a, b);
|
|
}
|
|
|