llvm-project/llvm/unittests/Support/AlignmentTest.cpp

403 lines
12 KiB
C++

//=== - llvm/unittest/Support/Alignment.cpp - Alignment utility tests -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Alignment.h"
#include "gtest/gtest.h"
#include <vector>
#ifdef _MSC_VER
// Disable warnings about potential divide by 0.
#pragma warning(push)
#pragma warning(disable : 4723)
#endif
using namespace llvm;
namespace {
TEST(AlignmentTest, AlignOfConstant) {
EXPECT_EQ(Align::Of<uint8_t>(), Align(alignof(uint8_t)));
EXPECT_EQ(Align::Of<uint16_t>(), Align(alignof(uint16_t)));
EXPECT_EQ(Align::Of<uint32_t>(), Align(alignof(uint32_t)));
EXPECT_EQ(Align::Of<uint64_t>(), Align(alignof(uint64_t)));
}
TEST(AlignmentTest, AlignConstant) {
EXPECT_EQ(Align::Constant<1>(), Align(1));
EXPECT_EQ(Align::Constant<2>(), Align(2));
EXPECT_EQ(Align::Constant<4>(), Align(4));
EXPECT_EQ(Align::Constant<8>(), Align(8));
EXPECT_EQ(Align::Constant<16>(), Align(16));
EXPECT_EQ(Align::Constant<32>(), Align(32));
EXPECT_EQ(Align::Constant<64>(), Align(64));
}
TEST(AlignmentTest, AlignConstexprConstant) {
constexpr Align kConstantAlign = Align::Of<uint64_t>();
EXPECT_EQ(Align(alignof(uint64_t)), kConstantAlign);
}
std::vector<uint64_t> getValidAlignments() {
std::vector<uint64_t> Out;
for (size_t Shift = 0; Shift < 64; ++Shift)
Out.push_back(1ULL << Shift);
return Out;
}
TEST(AlignmentTest, AlignDefaultCTor) {
EXPECT_EQ(Align().value(), 1ULL);
}
TEST(AlignmentTest, MaybeAlignDefaultCTor) {
EXPECT_FALSE(MaybeAlign().hasValue());
}
TEST(AlignmentTest, ValidCTors) {
for (uint64_t Value : getValidAlignments()) {
EXPECT_EQ(Align(Value).value(), Value);
EXPECT_EQ((*MaybeAlign(Value)).value(), Value);
}
}
TEST(AlignmentTest, CheckMaybeAlignHasValue) {
EXPECT_TRUE(MaybeAlign(1));
EXPECT_TRUE(MaybeAlign(1).hasValue());
EXPECT_FALSE(MaybeAlign(0));
EXPECT_FALSE(MaybeAlign(0).hasValue());
EXPECT_FALSE(MaybeAlign());
EXPECT_FALSE(MaybeAlign().hasValue());
}
TEST(AlignmentTest, Division) {
for (uint64_t Value : getValidAlignments()) {
if (Value > 1) {
EXPECT_EQ(Align(Value) / 2, Value / 2);
EXPECT_EQ(MaybeAlign(Value) / 2, Value / 2);
}
}
EXPECT_EQ(MaybeAlign(0) / 2, MaybeAlign(0));
}
TEST(AlignmentTest, AlignTo) {
struct {
uint64_t alignment;
uint64_t offset;
uint64_t rounded;
const void *forgedAddr() const {
// A value of any integral or enumeration type can be converted to a
// pointer type.
return reinterpret_cast<const void *>(offset);
}
} kTests[] = {
// MaybeAlign
{0, 0, 0},
{0, 1, 1},
{0, 5, 5},
// MaybeAlign / Align
{1, 0, 0},
{1, 1, 1},
{1, 5, 5},
{2, 0, 0},
{2, 1, 2},
{2, 2, 2},
{2, 7, 8},
{2, 16, 16},
{4, 0, 0},
{4, 1, 4},
{4, 4, 4},
{4, 6, 8},
};
for (const auto &T : kTests) {
MaybeAlign A(T.alignment);
// Test MaybeAlign
EXPECT_EQ(alignTo(T.offset, A), T.rounded);
// Test Align
if (A) {
EXPECT_EQ(alignTo(T.offset, A.getValue()), T.rounded);
EXPECT_EQ(alignAddr(T.forgedAddr(), A.getValue()), T.rounded);
}
}
}
TEST(AlignmentTest, AlignToWithSkew) {
EXPECT_EQ(alignTo(5, Align(8), 0), alignTo(5, Align(8)));
EXPECT_EQ(alignTo(5, Align(8), 7), 7U);
EXPECT_EQ(alignTo(17, Align(8), 1), 17U);
EXPECT_EQ(alignTo(~0LL, Align(8), 3), 3U);
}
TEST(AlignmentTest, Log2) {
for (uint64_t Value : getValidAlignments()) {
EXPECT_EQ(Log2(Align(Value)), Log2_64(Value));
EXPECT_EQ(Log2(MaybeAlign(Value)), Log2_64(Value));
}
}
TEST(AlignmentTest, MinAlign) {
struct {
uint64_t A;
uint64_t B;
uint64_t MinAlign;
} kTests[] = {
// MaybeAlign
{0, 0, 0},
{0, 8, 8},
{2, 0, 2},
// MaybeAlign / Align
{1, 2, 1},
{8, 4, 4},
};
for (const auto &T : kTests) {
EXPECT_EQ(commonAlignment(MaybeAlign(T.A), MaybeAlign(T.B)), T.MinAlign);
EXPECT_EQ(MinAlign(T.A, T.B), T.MinAlign);
if (T.A) {
EXPECT_EQ(commonAlignment(Align(T.A), MaybeAlign(T.B)), T.MinAlign);
}
if (T.B) {
EXPECT_EQ(commonAlignment(MaybeAlign(T.A), Align(T.B)), T.MinAlign);
}
if (T.A && T.B) {
EXPECT_EQ(commonAlignment(Align(T.A), Align(T.B)), T.MinAlign);
}
}
}
TEST(AlignmentTest, Encode_Decode) {
for (uint64_t Value : getValidAlignments()) {
{
Align Actual(Value);
Align Expected = decodeMaybeAlign(encode(Actual)).getValue();
EXPECT_EQ(Expected, Actual);
}
{
MaybeAlign Actual(Value);
MaybeAlign Expected = decodeMaybeAlign(encode(Actual));
EXPECT_EQ(Expected, Actual);
}
}
MaybeAlign Actual(0);
MaybeAlign Expected = decodeMaybeAlign(encode(Actual));
EXPECT_EQ(Expected, Actual);
}
TEST(AlignmentTest, isAligned_isAddrAligned) {
struct {
uint64_t alignment;
uint64_t offset;
bool isAligned;
const void *forgedAddr() const {
// A value of any integral or enumeration type can be converted to a
// pointer type.
return reinterpret_cast<const void *>(offset);
}
} kTests[] = {
{1, 0, true}, {1, 1, true}, {1, 5, true}, {2, 0, true},
{2, 1, false}, {2, 2, true}, {2, 7, false}, {2, 16, true},
{4, 0, true}, {4, 1, false}, {4, 4, true}, {4, 6, false},
};
for (const auto &T : kTests) {
MaybeAlign A(T.alignment);
// Test MaybeAlign
EXPECT_EQ(isAligned(A, T.offset), T.isAligned);
// Test Align
if (A) {
EXPECT_EQ(isAligned(A.getValue(), T.offset), T.isAligned);
EXPECT_EQ(isAddrAligned(A.getValue(), T.forgedAddr()), T.isAligned);
}
}
}
TEST(AlignmentTest, offsetToAlignment) {
struct {
uint64_t alignment;
uint64_t offset;
uint64_t alignedOffset;
const void *forgedAddr() const {
// A value of any integral or enumeration type can be converted to a
// pointer type.
return reinterpret_cast<const void *>(offset);
}
} kTests[] = {
{1, 0, 0}, {1, 1, 0}, {1, 5, 0}, {2, 0, 0}, {2, 1, 1}, {2, 2, 0},
{2, 7, 1}, {2, 16, 0}, {4, 0, 0}, {4, 1, 3}, {4, 4, 0}, {4, 6, 2},
};
for (const auto &T : kTests) {
const Align A(T.alignment);
EXPECT_EQ(offsetToAlignment(T.offset, A), T.alignedOffset);
EXPECT_EQ(offsetToAlignedAddr(T.forgedAddr(), A), T.alignedOffset);
}
}
TEST(AlignmentTest, AlignComparisons) {
std::vector<uint64_t> ValidAlignments = getValidAlignments();
std::sort(ValidAlignments.begin(), ValidAlignments.end());
for (size_t I = 1; I < ValidAlignments.size(); ++I) {
assert(I >= 1);
const Align A(ValidAlignments[I - 1]);
const Align B(ValidAlignments[I]);
EXPECT_EQ(A, A);
EXPECT_NE(A, B);
EXPECT_LT(A, B);
EXPECT_GT(B, A);
EXPECT_LE(A, B);
EXPECT_GE(B, A);
EXPECT_LE(A, A);
EXPECT_GE(A, A);
EXPECT_EQ(A, A.value());
EXPECT_NE(A, B.value());
EXPECT_LT(A, B.value());
EXPECT_GT(B, A.value());
EXPECT_LE(A, B.value());
EXPECT_GE(B, A.value());
EXPECT_LE(A, A.value());
EXPECT_GE(A, A.value());
EXPECT_EQ(std::max(A, B), B);
EXPECT_EQ(std::min(A, B), A);
const MaybeAlign MA(ValidAlignments[I - 1]);
const MaybeAlign MB(ValidAlignments[I]);
EXPECT_EQ(MA, MA);
EXPECT_NE(MA, MB);
EXPECT_LT(MA, MB);
EXPECT_GT(MB, MA);
EXPECT_LE(MA, MB);
EXPECT_GE(MB, MA);
EXPECT_LE(MA, MA);
EXPECT_GE(MA, MA);
EXPECT_EQ(MA, MA ? (*MA).value() : 0);
EXPECT_NE(MA, MB ? (*MB).value() : 0);
EXPECT_LT(MA, MB ? (*MB).value() : 0);
EXPECT_GT(MB, MA ? (*MA).value() : 0);
EXPECT_LE(MA, MB ? (*MB).value() : 0);
EXPECT_GE(MB, MA ? (*MA).value() : 0);
EXPECT_LE(MA, MA ? (*MA).value() : 0);
EXPECT_GE(MA, MA ? (*MA).value() : 0);
EXPECT_EQ(std::max(A, B), B);
EXPECT_EQ(std::min(A, B), A);
}
}
TEST(AlignmentTest, Max) {
// We introduce std::max here to test ADL.
using std::max;
// Uses llvm::max.
EXPECT_EQ(max(MaybeAlign(), Align(2)), Align(2));
EXPECT_EQ(max(Align(2), MaybeAlign()), Align(2));
EXPECT_EQ(max(MaybeAlign(1), Align(2)), Align(2));
EXPECT_EQ(max(Align(2), MaybeAlign(1)), Align(2));
EXPECT_EQ(max(MaybeAlign(2), Align(2)), Align(2));
EXPECT_EQ(max(Align(2), MaybeAlign(2)), Align(2));
EXPECT_EQ(max(MaybeAlign(4), Align(2)), Align(4));
EXPECT_EQ(max(Align(2), MaybeAlign(4)), Align(4));
// Uses std::max.
EXPECT_EQ(max(Align(2), Align(4)), Align(4));
EXPECT_EQ(max(MaybeAlign(2), MaybeAlign(4)), MaybeAlign(4));
EXPECT_EQ(max(MaybeAlign(), MaybeAlign()), MaybeAlign());
}
TEST(AlignmentTest, AssumeAligned) {
EXPECT_EQ(assumeAligned(0), Align(1));
EXPECT_EQ(assumeAligned(0), Align());
EXPECT_EQ(assumeAligned(1), Align(1));
EXPECT_EQ(assumeAligned(1), Align());
}
// Death tests reply on assert which is disabled in release mode.
#ifndef NDEBUG
// We use a subset of valid alignments for DEATH_TESTs as they are particularly
// slow.
std::vector<uint64_t> getValidAlignmentsForDeathTest() {
return {1, 1ULL << 31, 1ULL << 63};
}
std::vector<uint64_t> getNonPowerOfTwo() { return {3, 10, 15}; }
TEST(AlignmentDeathTest, Log2) {
EXPECT_DEATH(Log2(MaybeAlign(0)), ".* should be defined");
}
TEST(AlignmentDeathTest, CantConvertUnsetMaybe) {
EXPECT_DEATH((MaybeAlign(0).getValue()), ".*");
}
TEST(AlignmentDeathTest, Division) {
EXPECT_DEATH(Align(1) / 2, "Can't halve byte alignment");
EXPECT_DEATH(MaybeAlign(1) / 2, "Can't halve byte alignment");
EXPECT_DEATH(Align(8) / 0, "Divisor must be positive and a power of 2");
EXPECT_DEATH(Align(8) / 3, "Divisor must be positive and a power of 2");
}
TEST(AlignmentDeathTest, InvalidCTors) {
EXPECT_DEATH((Align(0)), "Value must not be 0");
for (uint64_t Value : getNonPowerOfTwo()) {
EXPECT_DEATH((Align(Value)), "Alignment is not a power of 2");
EXPECT_DEATH((MaybeAlign(Value)),
"Alignment is neither 0 nor a power of 2");
}
}
TEST(AlignmentDeathTest, ComparisonsWithZero) {
for (uint64_t Value : getValidAlignmentsForDeathTest()) {
EXPECT_DEATH((void)(Align(Value) == 0), ".* should be defined");
EXPECT_DEATH((void)(Align(Value) != 0), ".* should be defined");
EXPECT_DEATH((void)(Align(Value) >= 0), ".* should be defined");
EXPECT_DEATH((void)(Align(Value) <= 0), ".* should be defined");
EXPECT_DEATH((void)(Align(Value) > 0), ".* should be defined");
EXPECT_DEATH((void)(Align(Value) < 0), ".* should be defined");
}
}
TEST(AlignmentDeathTest, CompareMaybeAlignToZero) {
for (uint64_t Value : getValidAlignmentsForDeathTest()) {
// MaybeAlign is allowed to be == or != 0
(void)(MaybeAlign(Value) == 0);
(void)(MaybeAlign(Value) != 0);
EXPECT_DEATH((void)(MaybeAlign(Value) >= 0), ".* should be defined");
EXPECT_DEATH((void)(MaybeAlign(Value) <= 0), ".* should be defined");
EXPECT_DEATH((void)(MaybeAlign(Value) > 0), ".* should be defined");
EXPECT_DEATH((void)(MaybeAlign(Value) < 0), ".* should be defined");
}
}
TEST(AlignmentDeathTest, CompareAlignToUndefMaybeAlign) {
for (uint64_t Value : getValidAlignmentsForDeathTest()) {
EXPECT_DEATH((void)(Align(Value) == MaybeAlign(0)), ".* should be defined");
EXPECT_DEATH((void)(Align(Value) != MaybeAlign(0)), ".* should be defined");
EXPECT_DEATH((void)(Align(Value) >= MaybeAlign(0)), ".* should be defined");
EXPECT_DEATH((void)(Align(Value) <= MaybeAlign(0)), ".* should be defined");
EXPECT_DEATH((void)(Align(Value) > MaybeAlign(0)), ".* should be defined");
EXPECT_DEATH((void)(Align(Value) < MaybeAlign(0)), ".* should be defined");
}
}
TEST(AlignmentDeathTest, AlignAddr) {
const void *const unaligned_high_ptr =
reinterpret_cast<const void *>(std::numeric_limits<uintptr_t>::max() - 1);
EXPECT_DEATH(alignAddr(unaligned_high_ptr, Align(16)), "Overflow");
}
#endif // NDEBUG
} // end anonymous namespace
#ifdef _MSC_VER
#pragma warning(pop)
#endif