llvm-project/mlir/lib/ExecutionEngine/JitRunner.cpp

400 lines
16 KiB
C++

//===- jit-runner.cpp - MLIR CPU Execution Driver Library -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is a library that provides a shared implementation for command line
// utilities that execute an MLIR file on the CPU by translating MLIR to LLVM
// IR before JIT-compiling and executing the latter.
//
// The translation can be customized by providing an MLIR to MLIR
// transformation.
//===----------------------------------------------------------------------===//
#include "mlir/ExecutionEngine/JitRunner.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/ExecutionEngine/ExecutionEngine.h"
#include "mlir/ExecutionEngine/OptUtils.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/Parser.h"
#include "mlir/Support/FileUtilities.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassNameParser.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/ToolOutputFile.h"
#include <cstdint>
#include <numeric>
using namespace mlir;
using llvm::Error;
namespace {
/// This options struct prevents the need for global static initializers, and
/// is only initialized if the JITRunner is invoked.
struct Options {
llvm::cl::opt<std::string> inputFilename{llvm::cl::Positional,
llvm::cl::desc("<input file>"),
llvm::cl::init("-")};
llvm::cl::opt<std::string> mainFuncName{
"e", llvm::cl::desc("The function to be called"),
llvm::cl::value_desc("<function name>"), llvm::cl::init("main")};
llvm::cl::opt<std::string> mainFuncType{
"entry-point-result",
llvm::cl::desc("Textual description of the function type to be called"),
llvm::cl::value_desc("f32 | i32 | i64 | void"), llvm::cl::init("f32")};
llvm::cl::OptionCategory optFlags{"opt-like flags"};
// CLI list of pass information
llvm::cl::list<const llvm::PassInfo *, bool, llvm::PassNameParser> llvmPasses{
llvm::cl::desc("LLVM optimizing passes to run"), llvm::cl::cat(optFlags)};
// CLI variables for -On options.
llvm::cl::opt<bool> optO0{"O0",
llvm::cl::desc("Run opt passes and codegen at O0"),
llvm::cl::cat(optFlags)};
llvm::cl::opt<bool> optO1{"O1",
llvm::cl::desc("Run opt passes and codegen at O1"),
llvm::cl::cat(optFlags)};
llvm::cl::opt<bool> optO2{"O2",
llvm::cl::desc("Run opt passes and codegen at O2"),
llvm::cl::cat(optFlags)};
llvm::cl::opt<bool> optO3{"O3",
llvm::cl::desc("Run opt passes and codegen at O3"),
llvm::cl::cat(optFlags)};
llvm::cl::OptionCategory clOptionsCategory{"linking options"};
llvm::cl::list<std::string> clSharedLibs{
"shared-libs", llvm::cl::desc("Libraries to link dynamically"),
llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated,
llvm::cl::cat(clOptionsCategory)};
/// CLI variables for debugging.
llvm::cl::opt<bool> dumpObjectFile{
"dump-object-file",
llvm::cl::desc("Dump JITted-compiled object to file specified with "
"-object-filename (<input file>.o by default).")};
llvm::cl::opt<std::string> objectFilename{
"object-filename",
llvm::cl::desc("Dump JITted-compiled object to file <input file>.o")};
};
struct CompileAndExecuteConfig {
/// LLVM module transformer that is passed to ExecutionEngine.
llvm::function_ref<llvm::Error(llvm::Module *)> transformer;
/// A custom function that is passed to ExecutionEngine. It processes MLIR
/// module and creates LLVM IR module.
llvm::function_ref<std::unique_ptr<llvm::Module>(ModuleOp,
llvm::LLVMContext &)>
llvmModuleBuilder;
/// A custom function that is passed to ExecutinEngine to register symbols at
/// runtime.
llvm::function_ref<llvm::orc::SymbolMap(llvm::orc::MangleAndInterner)>
runtimeSymbolMap;
};
} // end anonymous namespace
static OwningModuleRef parseMLIRInput(StringRef inputFilename,
MLIRContext *context) {
// Set up the input file.
std::string errorMessage;
auto file = openInputFile(inputFilename, &errorMessage);
if (!file) {
llvm::errs() << errorMessage << "\n";
return nullptr;
}
llvm::SourceMgr sourceMgr;
sourceMgr.AddNewSourceBuffer(std::move(file), llvm::SMLoc());
return OwningModuleRef(parseSourceFile(sourceMgr, context));
}
static inline Error make_string_error(const Twine &message) {
return llvm::make_error<llvm::StringError>(message.str(),
llvm::inconvertibleErrorCode());
}
static Optional<unsigned> getCommandLineOptLevel(Options &options) {
Optional<unsigned> optLevel;
SmallVector<std::reference_wrapper<llvm::cl::opt<bool>>, 4> optFlags{
options.optO0, options.optO1, options.optO2, options.optO3};
// Determine if there is an optimization flag present.
for (unsigned j = 0; j < 4; ++j) {
auto &flag = optFlags[j].get();
if (flag) {
optLevel = j;
break;
}
}
return optLevel;
}
// JIT-compile the given module and run "entryPoint" with "args" as arguments.
static Error compileAndExecute(Options &options, ModuleOp module,
StringRef entryPoint,
CompileAndExecuteConfig config, void **args) {
Optional<llvm::CodeGenOpt::Level> jitCodeGenOptLevel;
if (auto clOptLevel = getCommandLineOptLevel(options))
jitCodeGenOptLevel =
static_cast<llvm::CodeGenOpt::Level>(clOptLevel.getValue());
// If shared library implements custom mlir-runner library init and destroy
// functions, we'll use them to register the library with the execution
// engine. Otherwise we'll pass library directly to the execution engine.
SmallVector<SmallString<256>, 4> libPaths;
// Use absolute library path so that gdb can find the symbol table.
transform(
options.clSharedLibs, std::back_inserter(libPaths),
[](std::string libPath) {
SmallString<256> absPath(libPath.begin(), libPath.end());
cantFail(llvm::errorCodeToError(llvm::sys::fs::make_absolute(absPath)));
return absPath;
});
// Libraries that we'll pass to the ExecutionEngine for loading.
SmallVector<StringRef, 4> executionEngineLibs;
using MlirRunnerInitFn = void (*)(llvm::StringMap<void *> &);
using MlirRunnerDestroyFn = void (*)();
llvm::StringMap<void *> exportSymbols;
SmallVector<MlirRunnerDestroyFn> destroyFns;
// Handle libraries that do support mlir-runner init/destroy callbacks.
for (auto &libPath : libPaths) {
auto lib = llvm::sys::DynamicLibrary::getPermanentLibrary(libPath.c_str());
void *initSym = lib.getAddressOfSymbol("__mlir_runner_init");
void *destroySim = lib.getAddressOfSymbol("__mlir_runner_destroy");
// Library does not support mlir runner, load it with ExecutionEngine.
if (!initSym || !destroySim) {
executionEngineLibs.push_back(libPath);
continue;
}
auto initFn = reinterpret_cast<MlirRunnerInitFn>(initSym);
initFn(exportSymbols);
auto destroyFn = reinterpret_cast<MlirRunnerDestroyFn>(destroySim);
destroyFns.push_back(destroyFn);
}
// Build a runtime symbol map from the config and exported symbols.
auto runtimeSymbolMap = [&](llvm::orc::MangleAndInterner interner) {
auto symbolMap = config.runtimeSymbolMap ? config.runtimeSymbolMap(interner)
: llvm::orc::SymbolMap();
for (auto &exportSymbol : exportSymbols)
symbolMap[interner(exportSymbol.getKey())] =
llvm::JITEvaluatedSymbol::fromPointer(exportSymbol.getValue());
return symbolMap;
};
auto expectedEngine = mlir::ExecutionEngine::create(
module, config.llvmModuleBuilder, config.transformer, jitCodeGenOptLevel,
executionEngineLibs);
if (!expectedEngine)
return expectedEngine.takeError();
auto engine = std::move(*expectedEngine);
engine->registerSymbols(runtimeSymbolMap);
auto expectedFPtr = engine->lookup(entryPoint);
if (!expectedFPtr)
return expectedFPtr.takeError();
if (options.dumpObjectFile)
engine->dumpToObjectFile(options.objectFilename.empty()
? options.inputFilename + ".o"
: options.objectFilename);
void (*fptr)(void **) = *expectedFPtr;
(*fptr)(args);
// Run all dynamic library destroy callbacks to prepare for the shutdown.
llvm::for_each(destroyFns, [](MlirRunnerDestroyFn destroy) { destroy(); });
return Error::success();
}
static Error compileAndExecuteVoidFunction(Options &options, ModuleOp module,
StringRef entryPoint,
CompileAndExecuteConfig config) {
auto mainFunction = module.lookupSymbol<LLVM::LLVMFuncOp>(entryPoint);
if (!mainFunction || mainFunction.empty())
return make_string_error("entry point not found");
void *empty = nullptr;
return compileAndExecute(options, module, entryPoint, config, &empty);
}
template <typename Type>
Error checkCompatibleReturnType(LLVM::LLVMFuncOp mainFunction);
template <>
Error checkCompatibleReturnType<int32_t>(LLVM::LLVMFuncOp mainFunction) {
auto resultType = mainFunction.getType()
.cast<LLVM::LLVMFunctionType>()
.getReturnType()
.dyn_cast<IntegerType>();
if (!resultType || resultType.getWidth() != 32)
return make_string_error("only single i32 function result supported");
return Error::success();
}
template <>
Error checkCompatibleReturnType<int64_t>(LLVM::LLVMFuncOp mainFunction) {
auto resultType = mainFunction.getType()
.cast<LLVM::LLVMFunctionType>()
.getReturnType()
.dyn_cast<IntegerType>();
if (!resultType || resultType.getWidth() != 64)
return make_string_error("only single i64 function result supported");
return Error::success();
}
template <>
Error checkCompatibleReturnType<float>(LLVM::LLVMFuncOp mainFunction) {
if (!mainFunction.getType()
.cast<LLVM::LLVMFunctionType>()
.getReturnType()
.isa<Float32Type>())
return make_string_error("only single f32 function result supported");
return Error::success();
}
template <typename Type>
Error compileAndExecuteSingleReturnFunction(Options &options, ModuleOp module,
StringRef entryPoint,
CompileAndExecuteConfig config) {
auto mainFunction = module.lookupSymbol<LLVM::LLVMFuncOp>(entryPoint);
if (!mainFunction || mainFunction.isExternal())
return make_string_error("entry point not found");
if (mainFunction.getType().cast<LLVM::LLVMFunctionType>().getNumParams() != 0)
return make_string_error("function inputs not supported");
if (Error error = checkCompatibleReturnType<Type>(mainFunction))
return error;
Type res;
struct {
void *data;
} data;
data.data = &res;
if (auto error = compileAndExecute(options, module, entryPoint, config,
(void **)&data))
return error;
// Intentional printing of the output so we can test.
llvm::outs() << res << '\n';
return Error::success();
}
/// Entry point for all CPU runners. Expects the common argc/argv arguments for
/// standard C++ main functions.
int mlir::JitRunnerMain(int argc, char **argv, const DialectRegistry &registry,
JitRunnerConfig config) {
// Create the options struct containing the command line options for the
// runner. This must come before the command line options are parsed.
Options options;
llvm::cl::ParseCommandLineOptions(argc, argv, "MLIR CPU execution driver\n");
Optional<unsigned> optLevel = getCommandLineOptLevel(options);
SmallVector<std::reference_wrapper<llvm::cl::opt<bool>>, 4> optFlags{
options.optO0, options.optO1, options.optO2, options.optO3};
unsigned optCLIPosition = 0;
// Determine if there is an optimization flag present, and its CLI position
// (optCLIPosition).
for (unsigned j = 0; j < 4; ++j) {
auto &flag = optFlags[j].get();
if (flag) {
optCLIPosition = flag.getPosition();
break;
}
}
// Generate vector of pass information, plus the index at which we should
// insert any optimization passes in that vector (optPosition).
SmallVector<const llvm::PassInfo *, 4> passes;
unsigned optPosition = 0;
for (unsigned i = 0, e = options.llvmPasses.size(); i < e; ++i) {
passes.push_back(options.llvmPasses[i]);
if (optCLIPosition < options.llvmPasses.getPosition(i)) {
optPosition = i;
optCLIPosition = UINT_MAX; // To ensure we never insert again
}
}
MLIRContext context(registry);
auto m = parseMLIRInput(options.inputFilename, &context);
if (!m) {
llvm::errs() << "could not parse the input IR\n";
return 1;
}
if (config.mlirTransformer)
if (failed(config.mlirTransformer(m.get())))
return EXIT_FAILURE;
auto tmBuilderOrError = llvm::orc::JITTargetMachineBuilder::detectHost();
if (!tmBuilderOrError) {
llvm::errs() << "Failed to create a JITTargetMachineBuilder for the host\n";
return EXIT_FAILURE;
}
auto tmOrError = tmBuilderOrError->createTargetMachine();
if (!tmOrError) {
llvm::errs() << "Failed to create a TargetMachine for the host\n";
return EXIT_FAILURE;
}
auto transformer = mlir::makeLLVMPassesTransformer(
passes, optLevel, /*targetMachine=*/tmOrError->get(), optPosition);
CompileAndExecuteConfig compileAndExecuteConfig;
compileAndExecuteConfig.transformer = transformer;
compileAndExecuteConfig.llvmModuleBuilder = config.llvmModuleBuilder;
compileAndExecuteConfig.runtimeSymbolMap = config.runtimesymbolMap;
// Get the function used to compile and execute the module.
using CompileAndExecuteFnT =
Error (*)(Options &, ModuleOp, StringRef, CompileAndExecuteConfig);
auto compileAndExecuteFn =
StringSwitch<CompileAndExecuteFnT>(options.mainFuncType.getValue())
.Case("i32", compileAndExecuteSingleReturnFunction<int32_t>)
.Case("i64", compileAndExecuteSingleReturnFunction<int64_t>)
.Case("f32", compileAndExecuteSingleReturnFunction<float>)
.Case("void", compileAndExecuteVoidFunction)
.Default(nullptr);
Error error = compileAndExecuteFn
? compileAndExecuteFn(options, m.get(),
options.mainFuncName.getValue(),
compileAndExecuteConfig)
: make_string_error("unsupported function type");
int exitCode = EXIT_SUCCESS;
llvm::handleAllErrors(std::move(error),
[&exitCode](const llvm::ErrorInfoBase &info) {
llvm::errs() << "Error: ";
info.log(llvm::errs());
llvm::errs() << '\n';
exitCode = EXIT_FAILURE;
});
return exitCode;
}