llvm-project/mlir/lib/ExecutionEngine/AsyncRuntime.cpp

431 lines
15 KiB
C++

//===- AsyncRuntime.cpp - Async runtime reference implementation ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements basic Async runtime API for supporting Async dialect
// to LLVM dialect lowering.
//
//===----------------------------------------------------------------------===//
#include "mlir/ExecutionEngine/AsyncRuntime.h"
#ifdef MLIR_ASYNCRUNTIME_DEFINE_FUNCTIONS
#include <atomic>
#include <cassert>
#include <condition_variable>
#include <functional>
#include <iostream>
#include <mutex>
#include <thread>
#include <vector>
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/ThreadPool.h"
using namespace mlir::runtime;
//===----------------------------------------------------------------------===//
// Async runtime API.
//===----------------------------------------------------------------------===//
namespace mlir {
namespace runtime {
namespace {
// Forward declare class defined below.
class RefCounted;
// -------------------------------------------------------------------------- //
// AsyncRuntime orchestrates all async operations and Async runtime API is built
// on top of the default runtime instance.
// -------------------------------------------------------------------------- //
class AsyncRuntime {
public:
AsyncRuntime() : numRefCountedObjects(0) {}
~AsyncRuntime() {
threadPool.wait(); // wait for the completion of all async tasks
assert(getNumRefCountedObjects() == 0 &&
"all ref counted objects must be destroyed");
}
int32_t getNumRefCountedObjects() {
return numRefCountedObjects.load(std::memory_order_relaxed);
}
llvm::ThreadPool &getThreadPool() { return threadPool; }
private:
friend class RefCounted;
// Count the total number of reference counted objects in this instance
// of an AsyncRuntime. For debugging purposes only.
void addNumRefCountedObjects() {
numRefCountedObjects.fetch_add(1, std::memory_order_relaxed);
}
void dropNumRefCountedObjects() {
numRefCountedObjects.fetch_sub(1, std::memory_order_relaxed);
}
std::atomic<int32_t> numRefCountedObjects;
llvm::ThreadPool threadPool;
};
// -------------------------------------------------------------------------- //
// A base class for all reference counted objects created by the async runtime.
// -------------------------------------------------------------------------- //
class RefCounted {
public:
RefCounted(AsyncRuntime *runtime, int32_t refCount = 1)
: runtime(runtime), refCount(refCount) {
runtime->addNumRefCountedObjects();
}
virtual ~RefCounted() {
assert(refCount.load() == 0 && "reference count must be zero");
runtime->dropNumRefCountedObjects();
}
RefCounted(const RefCounted &) = delete;
RefCounted &operator=(const RefCounted &) = delete;
void addRef(int32_t count = 1) { refCount.fetch_add(count); }
void dropRef(int32_t count = 1) {
int32_t previous = refCount.fetch_sub(count);
assert(previous >= count && "reference count should not go below zero");
if (previous == count)
destroy();
}
protected:
virtual void destroy() { delete this; }
private:
AsyncRuntime *runtime;
std::atomic<int32_t> refCount;
};
} // namespace
// Returns the default per-process instance of an async runtime.
static std::unique_ptr<AsyncRuntime> &getDefaultAsyncRuntimeInstance() {
static auto runtime = std::make_unique<AsyncRuntime>();
return runtime;
}
static void resetDefaultAsyncRuntime() {
return getDefaultAsyncRuntimeInstance().reset();
}
static AsyncRuntime *getDefaultAsyncRuntime() {
return getDefaultAsyncRuntimeInstance().get();
}
// Async token provides a mechanism to signal asynchronous operation completion.
struct AsyncToken : public RefCounted {
// AsyncToken created with a reference count of 2 because it will be returned
// to the `async.execute` caller and also will be later on emplaced by the
// asynchronously executed task. If the caller immediately will drop its
// reference we must ensure that the token will be alive until the
// asynchronous operation is completed.
AsyncToken(AsyncRuntime *runtime)
: RefCounted(runtime, /*count=*/2), ready(false) {}
std::atomic<bool> ready;
// Pending awaiters are guarded by a mutex.
std::mutex mu;
std::condition_variable cv;
std::vector<std::function<void()>> awaiters;
};
// Async value provides a mechanism to access the result of asynchronous
// operations. It owns the storage that is used to store/load the value of the
// underlying type, and a flag to signal if the value is ready or not.
struct AsyncValue : public RefCounted {
// AsyncValue similar to an AsyncToken created with a reference count of 2.
AsyncValue(AsyncRuntime *runtime, int32_t size)
: RefCounted(runtime, /*count=*/2), ready(false), storage(size) {}
std::atomic<bool> ready;
// Use vector of bytes to store async value payload.
std::vector<int8_t> storage;
// Pending awaiters are guarded by a mutex.
std::mutex mu;
std::condition_variable cv;
std::vector<std::function<void()>> awaiters;
};
// Async group provides a mechanism to group together multiple async tokens or
// values to await on all of them together (wait for the completion of all
// tokens or values added to the group).
struct AsyncGroup : public RefCounted {
AsyncGroup(AsyncRuntime *runtime)
: RefCounted(runtime), pendingTokens(0), rank(0) {}
std::atomic<int> pendingTokens;
std::atomic<int> rank;
// Pending awaiters are guarded by a mutex.
std::mutex mu;
std::condition_variable cv;
std::vector<std::function<void()>> awaiters;
};
// Adds references to reference counted runtime object.
extern "C" void mlirAsyncRuntimeAddRef(RefCountedObjPtr ptr, int32_t count) {
RefCounted *refCounted = static_cast<RefCounted *>(ptr);
refCounted->addRef(count);
}
// Drops references from reference counted runtime object.
extern "C" void mlirAsyncRuntimeDropRef(RefCountedObjPtr ptr, int32_t count) {
RefCounted *refCounted = static_cast<RefCounted *>(ptr);
refCounted->dropRef(count);
}
// Creates a new `async.token` in not-ready state.
extern "C" AsyncToken *mlirAsyncRuntimeCreateToken() {
AsyncToken *token = new AsyncToken(getDefaultAsyncRuntime());
return token;
}
// Creates a new `async.value` in not-ready state.
extern "C" AsyncValue *mlirAsyncRuntimeCreateValue(int32_t size) {
AsyncValue *value = new AsyncValue(getDefaultAsyncRuntime(), size);
return value;
}
// Create a new `async.group` in empty state.
extern "C" AsyncGroup *mlirAsyncRuntimeCreateGroup() {
AsyncGroup *group = new AsyncGroup(getDefaultAsyncRuntime());
return group;
}
extern "C" int64_t mlirAsyncRuntimeAddTokenToGroup(AsyncToken *token,
AsyncGroup *group) {
std::unique_lock<std::mutex> lockToken(token->mu);
std::unique_lock<std::mutex> lockGroup(group->mu);
// Get the rank of the token inside the group before we drop the reference.
int rank = group->rank.fetch_add(1);
group->pendingTokens.fetch_add(1);
auto onTokenReady = [group]() {
// Run all group awaiters if it was the last token in the group.
if (group->pendingTokens.fetch_sub(1) == 1) {
group->cv.notify_all();
for (auto &awaiter : group->awaiters)
awaiter();
}
};
if (token->ready) {
// Update group pending tokens immediately and maybe run awaiters.
onTokenReady();
} else {
// Update group pending tokens when token will become ready. Because this
// will happen asynchronously we must ensure that `group` is alive until
// then, and re-ackquire the lock.
group->addRef();
token->awaiters.push_back([group, onTokenReady]() {
// Make sure that `dropRef` does not destroy the mutex owned by the lock.
{
std::unique_lock<std::mutex> lockGroup(group->mu);
onTokenReady();
}
group->dropRef();
});
}
return rank;
}
// Switches `async.token` to ready state and runs all awaiters.
extern "C" void mlirAsyncRuntimeEmplaceToken(AsyncToken *token) {
// Make sure that `dropRef` does not destroy the mutex owned by the lock.
{
std::unique_lock<std::mutex> lock(token->mu);
token->ready = true;
token->cv.notify_all();
for (auto &awaiter : token->awaiters)
awaiter();
}
// Async tokens created with a ref count `2` to keep token alive until the
// async task completes. Drop this reference explicitly when token emplaced.
token->dropRef();
}
// Switches `async.value` to ready state and runs all awaiters.
extern "C" void mlirAsyncRuntimeEmplaceValue(AsyncValue *value) {
// Make sure that `dropRef` does not destroy the mutex owned by the lock.
{
std::unique_lock<std::mutex> lock(value->mu);
value->ready = true;
value->cv.notify_all();
for (auto &awaiter : value->awaiters)
awaiter();
}
// Async values created with a ref count `2` to keep value alive until the
// async task completes. Drop this reference explicitly when value emplaced.
value->dropRef();
}
extern "C" void mlirAsyncRuntimeAwaitToken(AsyncToken *token) {
std::unique_lock<std::mutex> lock(token->mu);
if (!token->ready)
token->cv.wait(lock, [token] { return token->ready.load(); });
}
extern "C" void mlirAsyncRuntimeAwaitValue(AsyncValue *value) {
std::unique_lock<std::mutex> lock(value->mu);
if (!value->ready)
value->cv.wait(lock, [value] { return value->ready.load(); });
}
extern "C" void mlirAsyncRuntimeAwaitAllInGroup(AsyncGroup *group) {
std::unique_lock<std::mutex> lock(group->mu);
if (group->pendingTokens != 0)
group->cv.wait(lock, [group] { return group->pendingTokens == 0; });
}
// Returns a pointer to the storage owned by the async value.
extern "C" ValueStorage mlirAsyncRuntimeGetValueStorage(AsyncValue *value) {
return value->storage.data();
}
extern "C" void mlirAsyncRuntimeExecute(CoroHandle handle, CoroResume resume) {
auto *runtime = getDefaultAsyncRuntime();
runtime->getThreadPool().async([handle, resume]() { (*resume)(handle); });
}
extern "C" void mlirAsyncRuntimeAwaitTokenAndExecute(AsyncToken *token,
CoroHandle handle,
CoroResume resume) {
auto execute = [handle, resume]() { (*resume)(handle); };
std::unique_lock<std::mutex> lock(token->mu);
if (token->ready) {
lock.unlock();
execute();
} else {
token->awaiters.push_back([execute]() { execute(); });
}
}
extern "C" void mlirAsyncRuntimeAwaitValueAndExecute(AsyncValue *value,
CoroHandle handle,
CoroResume resume) {
auto execute = [handle, resume]() { (*resume)(handle); };
std::unique_lock<std::mutex> lock(value->mu);
if (value->ready) {
lock.unlock();
execute();
} else {
value->awaiters.push_back([execute]() { execute(); });
}
}
extern "C" void mlirAsyncRuntimeAwaitAllInGroupAndExecute(AsyncGroup *group,
CoroHandle handle,
CoroResume resume) {
auto execute = [handle, resume]() { (*resume)(handle); };
std::unique_lock<std::mutex> lock(group->mu);
if (group->pendingTokens == 0) {
lock.unlock();
execute();
} else {
group->awaiters.push_back([execute]() { execute(); });
}
}
//===----------------------------------------------------------------------===//
// Small async runtime support library for testing.
//===----------------------------------------------------------------------===//
extern "C" void mlirAsyncRuntimePrintCurrentThreadId() {
static thread_local std::thread::id thisId = std::this_thread::get_id();
std::cout << "Current thread id: " << thisId << std::endl;
}
//===----------------------------------------------------------------------===//
// MLIR Runner (JitRunner) dynamic library integration.
//===----------------------------------------------------------------------===//
// Export symbols for the MLIR runner integration. All other symbols are hidden.
#ifdef _WIN32
#define API __declspec(dllexport)
#else
#define API __attribute__((visibility("default")))
#endif
// Visual Studio had a bug that fails to compile nested generic lambdas
// inside an `extern "C"` function.
// https://developercommunity.visualstudio.com/content/problem/475494/clexe-error-with-lambda-inside-function-templates.html
// The bug is fixed in VS2019 16.1. Separating the declaration and definition is
// a work around for older versions of Visual Studio.
extern "C" API void __mlir_runner_init(llvm::StringMap<void *> &exportSymbols);
void __mlir_runner_init(llvm::StringMap<void *> &exportSymbols) {
auto exportSymbol = [&](llvm::StringRef name, auto ptr) {
assert(exportSymbols.count(name) == 0 && "symbol already exists");
exportSymbols[name] = reinterpret_cast<void *>(ptr);
};
exportSymbol("mlirAsyncRuntimeAddRef",
&mlir::runtime::mlirAsyncRuntimeAddRef);
exportSymbol("mlirAsyncRuntimeDropRef",
&mlir::runtime::mlirAsyncRuntimeDropRef);
exportSymbol("mlirAsyncRuntimeExecute",
&mlir::runtime::mlirAsyncRuntimeExecute);
exportSymbol("mlirAsyncRuntimeGetValueStorage",
&mlir::runtime::mlirAsyncRuntimeGetValueStorage);
exportSymbol("mlirAsyncRuntimeCreateToken",
&mlir::runtime::mlirAsyncRuntimeCreateToken);
exportSymbol("mlirAsyncRuntimeCreateValue",
&mlir::runtime::mlirAsyncRuntimeCreateValue);
exportSymbol("mlirAsyncRuntimeEmplaceToken",
&mlir::runtime::mlirAsyncRuntimeEmplaceToken);
exportSymbol("mlirAsyncRuntimeEmplaceValue",
&mlir::runtime::mlirAsyncRuntimeEmplaceValue);
exportSymbol("mlirAsyncRuntimeAwaitToken",
&mlir::runtime::mlirAsyncRuntimeAwaitToken);
exportSymbol("mlirAsyncRuntimeAwaitValue",
&mlir::runtime::mlirAsyncRuntimeAwaitValue);
exportSymbol("mlirAsyncRuntimeAwaitTokenAndExecute",
&mlir::runtime::mlirAsyncRuntimeAwaitTokenAndExecute);
exportSymbol("mlirAsyncRuntimeAwaitValueAndExecute",
&mlir::runtime::mlirAsyncRuntimeAwaitValueAndExecute);
exportSymbol("mlirAsyncRuntimeCreateGroup",
&mlir::runtime::mlirAsyncRuntimeCreateGroup);
exportSymbol("mlirAsyncRuntimeAddTokenToGroup",
&mlir::runtime::mlirAsyncRuntimeAddTokenToGroup);
exportSymbol("mlirAsyncRuntimeAwaitAllInGroup",
&mlir::runtime::mlirAsyncRuntimeAwaitAllInGroup);
exportSymbol("mlirAsyncRuntimeAwaitAllInGroupAndExecute",
&mlir::runtime::mlirAsyncRuntimeAwaitAllInGroupAndExecute);
exportSymbol("mlirAsyncRuntimePrintCurrentThreadId",
&mlir::runtime::mlirAsyncRuntimePrintCurrentThreadId);
}
extern "C" API void __mlir_runner_destroy() { resetDefaultAsyncRuntime(); }
} // namespace runtime
} // namespace mlir
#endif // MLIR_ASYNCRUNTIME_DEFINE_FUNCTIONS