forked from OSchip/llvm-project
2587 lines
92 KiB
C++
2587 lines
92 KiB
C++
//===- Writer.cpp ---------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Writer.h"
|
|
#include "AArch64ErrataFix.h"
|
|
#include "CallGraphSort.h"
|
|
#include "Config.h"
|
|
#include "LinkerScript.h"
|
|
#include "MapFile.h"
|
|
#include "OutputSections.h"
|
|
#include "Relocations.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "lld/Common/Filesystem.h"
|
|
#include "lld/Common/Memory.h"
|
|
#include "lld/Common/Strings.h"
|
|
#include "lld/Common/Threads.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Support/RandomNumberGenerator.h"
|
|
#include "llvm/Support/SHA1.h"
|
|
#include "llvm/Support/xxhash.h"
|
|
#include <climits>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::ELF;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support;
|
|
using namespace llvm::support::endian;
|
|
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
namespace {
|
|
// The writer writes a SymbolTable result to a file.
|
|
template <class ELFT> class Writer {
|
|
public:
|
|
Writer() : Buffer(errorHandler().OutputBuffer) {}
|
|
using Elf_Shdr = typename ELFT::Shdr;
|
|
using Elf_Ehdr = typename ELFT::Ehdr;
|
|
using Elf_Phdr = typename ELFT::Phdr;
|
|
|
|
void run();
|
|
|
|
private:
|
|
void copyLocalSymbols();
|
|
void addSectionSymbols();
|
|
void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> Fn);
|
|
void sortSections();
|
|
void resolveShfLinkOrder();
|
|
void finalizeAddressDependentContent();
|
|
void sortInputSections();
|
|
void finalizeSections();
|
|
void checkExecuteOnly();
|
|
void setReservedSymbolSections();
|
|
|
|
std::vector<PhdrEntry *> createPhdrs();
|
|
void removeEmptyPTLoad();
|
|
void addPhdrForSection(std::vector<PhdrEntry *> &Phdrs, unsigned ShType,
|
|
unsigned PType, unsigned PFlags);
|
|
void assignFileOffsets();
|
|
void assignFileOffsetsBinary();
|
|
void setPhdrs();
|
|
void checkSections();
|
|
void fixSectionAlignments();
|
|
void openFile();
|
|
void writeTrapInstr();
|
|
void writeHeader();
|
|
void writeSections();
|
|
void writeSectionsBinary();
|
|
void writeBuildId();
|
|
|
|
std::unique_ptr<FileOutputBuffer> &Buffer;
|
|
|
|
void addRelIpltSymbols();
|
|
void addStartEndSymbols();
|
|
void addStartStopSymbols(OutputSection *Sec);
|
|
|
|
std::vector<PhdrEntry *> Phdrs;
|
|
|
|
uint64_t FileSize;
|
|
uint64_t SectionHeaderOff;
|
|
};
|
|
} // anonymous namespace
|
|
|
|
static bool isSectionPrefix(StringRef Prefix, StringRef Name) {
|
|
return Name.startswith(Prefix) || Name == Prefix.drop_back();
|
|
}
|
|
|
|
StringRef elf::getOutputSectionName(const InputSectionBase *S) {
|
|
if (Config->Relocatable)
|
|
return S->Name;
|
|
|
|
// This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
|
|
// to emit .rela.text.foo as .rela.text.bar for consistency (this is not
|
|
// technically required, but not doing it is odd). This code guarantees that.
|
|
if (auto *IS = dyn_cast<InputSection>(S)) {
|
|
if (InputSectionBase *Rel = IS->getRelocatedSection()) {
|
|
OutputSection *Out = Rel->getOutputSection();
|
|
if (S->Type == SHT_RELA)
|
|
return Saver.save(".rela" + Out->Name);
|
|
return Saver.save(".rel" + Out->Name);
|
|
}
|
|
}
|
|
|
|
// This check is for -z keep-text-section-prefix. This option separates text
|
|
// sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or
|
|
// ".text.exit".
|
|
// When enabled, this allows identifying the hot code region (.text.hot) in
|
|
// the final binary which can be selectively mapped to huge pages or mlocked,
|
|
// for instance.
|
|
if (Config->ZKeepTextSectionPrefix)
|
|
for (StringRef V :
|
|
{".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."})
|
|
if (isSectionPrefix(V, S->Name))
|
|
return V.drop_back();
|
|
|
|
for (StringRef V :
|
|
{".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
|
|
".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
|
|
".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."})
|
|
if (isSectionPrefix(V, S->Name))
|
|
return V.drop_back();
|
|
|
|
// CommonSection is identified as "COMMON" in linker scripts.
|
|
// By default, it should go to .bss section.
|
|
if (S->Name == "COMMON")
|
|
return ".bss";
|
|
|
|
return S->Name;
|
|
}
|
|
|
|
static bool needsInterpSection() {
|
|
return !SharedFiles.empty() && !Config->DynamicLinker.empty() &&
|
|
Script->needsInterpSection();
|
|
}
|
|
|
|
template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); }
|
|
|
|
template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() {
|
|
llvm::erase_if(Phdrs, [&](const PhdrEntry *P) {
|
|
if (P->p_type != PT_LOAD)
|
|
return false;
|
|
if (!P->FirstSec)
|
|
return true;
|
|
uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr;
|
|
return Size == 0;
|
|
});
|
|
}
|
|
|
|
template <class ELFT> static void combineEhSections() {
|
|
for (InputSectionBase *&S : InputSections) {
|
|
if (!S->Live)
|
|
continue;
|
|
|
|
if (auto *ES = dyn_cast<EhInputSection>(S)) {
|
|
In.EhFrame->addSection<ELFT>(ES);
|
|
S = nullptr;
|
|
} else if (S->kind() == SectionBase::Regular && In.ARMExidx &&
|
|
In.ARMExidx->addSection(cast<InputSection>(S))) {
|
|
S = nullptr;
|
|
}
|
|
}
|
|
|
|
std::vector<InputSectionBase *> &V = InputSections;
|
|
V.erase(std::remove(V.begin(), V.end(), nullptr), V.end());
|
|
}
|
|
|
|
static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec,
|
|
uint64_t Val, uint8_t StOther = STV_HIDDEN,
|
|
uint8_t Binding = STB_GLOBAL) {
|
|
Symbol *S = Symtab->find(Name);
|
|
if (!S || S->isDefined())
|
|
return nullptr;
|
|
return Symtab->addDefined(Name, StOther, STT_NOTYPE, Val,
|
|
/*Size=*/0, Binding, Sec,
|
|
/*File=*/nullptr);
|
|
}
|
|
|
|
static Defined *addAbsolute(StringRef Name) {
|
|
return Symtab->addDefined(Name, STV_HIDDEN, STT_NOTYPE, 0, 0, STB_GLOBAL,
|
|
nullptr, nullptr);
|
|
}
|
|
|
|
// The linker is expected to define some symbols depending on
|
|
// the linking result. This function defines such symbols.
|
|
void elf::addReservedSymbols() {
|
|
if (Config->EMachine == EM_MIPS) {
|
|
// Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
|
|
// so that it points to an absolute address which by default is relative
|
|
// to GOT. Default offset is 0x7ff0.
|
|
// See "Global Data Symbols" in Chapter 6 in the following document:
|
|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
|
|
ElfSym::MipsGp = addAbsolute("_gp");
|
|
|
|
// On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
|
|
// start of function and 'gp' pointer into GOT.
|
|
if (Symtab->find("_gp_disp"))
|
|
ElfSym::MipsGpDisp = addAbsolute("_gp_disp");
|
|
|
|
// The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
|
|
// pointer. This symbol is used in the code generated by .cpload pseudo-op
|
|
// in case of using -mno-shared option.
|
|
// https://sourceware.org/ml/binutils/2004-12/msg00094.html
|
|
if (Symtab->find("__gnu_local_gp"))
|
|
ElfSym::MipsLocalGp = addAbsolute("__gnu_local_gp");
|
|
}
|
|
|
|
// The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
|
|
// combines the typical ELF GOT with the small data sections. It commonly
|
|
// includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
|
|
// _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
|
|
// represent the TOC base which is offset by 0x8000 bytes from the start of
|
|
// the .got section.
|
|
// We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
|
|
// correctness of some relocations depends on its value.
|
|
StringRef GotSymName =
|
|
(Config->EMachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
|
|
|
|
if (Symbol *S = Symtab->find(GotSymName)) {
|
|
if (S->isDefined()) {
|
|
error(toString(S->File) + " cannot redefine linker defined symbol '" +
|
|
GotSymName + "'");
|
|
return;
|
|
}
|
|
|
|
uint64_t GotOff = 0;
|
|
if (Config->EMachine == EM_PPC || Config->EMachine == EM_PPC64)
|
|
GotOff = 0x8000;
|
|
|
|
ElfSym::GlobalOffsetTable =
|
|
Symtab->addDefined(GotSymName, STV_HIDDEN, STT_NOTYPE, GotOff,
|
|
/*Size=*/0, STB_GLOBAL, Out::ElfHeader,
|
|
/*File=*/nullptr);
|
|
}
|
|
|
|
// __ehdr_start is the location of ELF file headers. Note that we define
|
|
// this symbol unconditionally even when using a linker script, which
|
|
// differs from the behavior implemented by GNU linker which only define
|
|
// this symbol if ELF headers are in the memory mapped segment.
|
|
addOptionalRegular("__ehdr_start", Out::ElfHeader, 0, STV_HIDDEN);
|
|
|
|
// __executable_start is not documented, but the expectation of at
|
|
// least the Android libc is that it points to the ELF header.
|
|
addOptionalRegular("__executable_start", Out::ElfHeader, 0, STV_HIDDEN);
|
|
|
|
// __dso_handle symbol is passed to cxa_finalize as a marker to identify
|
|
// each DSO. The address of the symbol doesn't matter as long as they are
|
|
// different in different DSOs, so we chose the start address of the DSO.
|
|
addOptionalRegular("__dso_handle", Out::ElfHeader, 0, STV_HIDDEN);
|
|
|
|
// If linker script do layout we do not need to create any standart symbols.
|
|
if (Script->HasSectionsCommand)
|
|
return;
|
|
|
|
auto Add = [](StringRef S, int64_t Pos) {
|
|
return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT);
|
|
};
|
|
|
|
ElfSym::Bss = Add("__bss_start", 0);
|
|
ElfSym::End1 = Add("end", -1);
|
|
ElfSym::End2 = Add("_end", -1);
|
|
ElfSym::Etext1 = Add("etext", -1);
|
|
ElfSym::Etext2 = Add("_etext", -1);
|
|
ElfSym::Edata1 = Add("edata", -1);
|
|
ElfSym::Edata2 = Add("_edata", -1);
|
|
}
|
|
|
|
static OutputSection *findSection(StringRef Name) {
|
|
for (BaseCommand *Base : Script->SectionCommands)
|
|
if (auto *Sec = dyn_cast<OutputSection>(Base))
|
|
if (Sec->Name == Name)
|
|
return Sec;
|
|
return nullptr;
|
|
}
|
|
|
|
// Initialize Out members.
|
|
template <class ELFT> static void createSyntheticSections() {
|
|
// Initialize all pointers with NULL. This is needed because
|
|
// you can call lld::elf::main more than once as a library.
|
|
memset(&Out::First, 0, sizeof(Out));
|
|
|
|
auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); };
|
|
|
|
In.DynStrTab = make<StringTableSection>(".dynstr", true);
|
|
In.Dynamic = make<DynamicSection<ELFT>>();
|
|
if (Config->AndroidPackDynRelocs) {
|
|
In.RelaDyn = make<AndroidPackedRelocationSection<ELFT>>(
|
|
Config->IsRela ? ".rela.dyn" : ".rel.dyn");
|
|
} else {
|
|
In.RelaDyn = make<RelocationSection<ELFT>>(
|
|
Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc);
|
|
}
|
|
In.ShStrTab = make<StringTableSection>(".shstrtab", false);
|
|
|
|
Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC);
|
|
Out::ProgramHeaders->Alignment = Config->Wordsize;
|
|
|
|
if (needsInterpSection())
|
|
Add(createInterpSection());
|
|
|
|
if (Config->Strip != StripPolicy::All) {
|
|
In.StrTab = make<StringTableSection>(".strtab", false);
|
|
In.SymTab = make<SymbolTableSection<ELFT>>(*In.StrTab);
|
|
In.SymTabShndx = make<SymtabShndxSection>();
|
|
}
|
|
|
|
if (Config->BuildId != BuildIdKind::None) {
|
|
In.BuildId = make<BuildIdSection>();
|
|
Add(In.BuildId);
|
|
}
|
|
|
|
In.Bss = make<BssSection>(".bss", 0, 1);
|
|
Add(In.Bss);
|
|
|
|
// If there is a SECTIONS command and a .data.rel.ro section name use name
|
|
// .data.rel.ro.bss so that we match in the .data.rel.ro output section.
|
|
// This makes sure our relro is contiguous.
|
|
bool HasDataRelRo = Script->HasSectionsCommand && findSection(".data.rel.ro");
|
|
In.BssRelRo =
|
|
make<BssSection>(HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
|
|
Add(In.BssRelRo);
|
|
|
|
// Add MIPS-specific sections.
|
|
if (Config->EMachine == EM_MIPS) {
|
|
if (!Config->Shared && Config->HasDynSymTab) {
|
|
In.MipsRldMap = make<MipsRldMapSection>();
|
|
Add(In.MipsRldMap);
|
|
}
|
|
if (auto *Sec = MipsAbiFlagsSection<ELFT>::create())
|
|
Add(Sec);
|
|
if (auto *Sec = MipsOptionsSection<ELFT>::create())
|
|
Add(Sec);
|
|
if (auto *Sec = MipsReginfoSection<ELFT>::create())
|
|
Add(Sec);
|
|
}
|
|
|
|
if (Config->HasDynSymTab) {
|
|
In.DynSymTab = make<SymbolTableSection<ELFT>>(*In.DynStrTab);
|
|
Add(In.DynSymTab);
|
|
|
|
In.VerSym = make<VersionTableSection>();
|
|
Add(In.VerSym);
|
|
|
|
if (!Config->VersionDefinitions.empty()) {
|
|
In.VerDef = make<VersionDefinitionSection>();
|
|
Add(In.VerDef);
|
|
}
|
|
|
|
In.VerNeed = make<VersionNeedSection<ELFT>>();
|
|
Add(In.VerNeed);
|
|
|
|
if (Config->GnuHash) {
|
|
In.GnuHashTab = make<GnuHashTableSection>();
|
|
Add(In.GnuHashTab);
|
|
}
|
|
|
|
if (Config->SysvHash) {
|
|
In.HashTab = make<HashTableSection>();
|
|
Add(In.HashTab);
|
|
}
|
|
|
|
Add(In.Dynamic);
|
|
Add(In.DynStrTab);
|
|
Add(In.RelaDyn);
|
|
}
|
|
|
|
if (Config->RelrPackDynRelocs) {
|
|
In.RelrDyn = make<RelrSection<ELFT>>();
|
|
Add(In.RelrDyn);
|
|
}
|
|
|
|
// Add .got. MIPS' .got is so different from the other archs,
|
|
// it has its own class.
|
|
if (Config->EMachine == EM_MIPS) {
|
|
In.MipsGot = make<MipsGotSection>();
|
|
Add(In.MipsGot);
|
|
} else {
|
|
In.Got = make<GotSection>();
|
|
Add(In.Got);
|
|
}
|
|
|
|
if (Config->EMachine == EM_PPC64) {
|
|
In.PPC64LongBranchTarget = make<PPC64LongBranchTargetSection>();
|
|
Add(In.PPC64LongBranchTarget);
|
|
}
|
|
|
|
In.GotPlt = make<GotPltSection>();
|
|
Add(In.GotPlt);
|
|
In.IgotPlt = make<IgotPltSection>();
|
|
Add(In.IgotPlt);
|
|
|
|
// _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
|
|
// it as a relocation and ensure the referenced section is created.
|
|
if (ElfSym::GlobalOffsetTable && Config->EMachine != EM_MIPS) {
|
|
if (Target->GotBaseSymInGotPlt)
|
|
In.GotPlt->HasGotPltOffRel = true;
|
|
else
|
|
In.Got->HasGotOffRel = true;
|
|
}
|
|
|
|
if (Config->GdbIndex)
|
|
Add(GdbIndexSection::create<ELFT>());
|
|
|
|
// We always need to add rel[a].plt to output if it has entries.
|
|
// Even for static linking it can contain R_[*]_IRELATIVE relocations.
|
|
In.RelaPlt = make<RelocationSection<ELFT>>(
|
|
Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/);
|
|
Add(In.RelaPlt);
|
|
|
|
// The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure
|
|
// that the IRelative relocations are processed last by the dynamic loader.
|
|
// We cannot place the iplt section in .rel.dyn when Android relocation
|
|
// packing is enabled because that would cause a section type mismatch.
|
|
// However, because the Android dynamic loader reads .rel.plt after .rel.dyn,
|
|
// we can get the desired behaviour by placing the iplt section in .rel.plt.
|
|
In.RelaIplt = make<RelocationSection<ELFT>>(
|
|
(Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs)
|
|
? ".rel.dyn"
|
|
: In.RelaPlt->Name,
|
|
false /*Sort*/);
|
|
Add(In.RelaIplt);
|
|
|
|
In.Plt = make<PltSection>(false);
|
|
Add(In.Plt);
|
|
In.Iplt = make<PltSection>(true);
|
|
Add(In.Iplt);
|
|
|
|
// .note.GNU-stack is always added when we are creating a re-linkable
|
|
// object file. Other linkers are using the presence of this marker
|
|
// section to control the executable-ness of the stack area, but that
|
|
// is irrelevant these days. Stack area should always be non-executable
|
|
// by default. So we emit this section unconditionally.
|
|
if (Config->Relocatable)
|
|
Add(make<GnuStackSection>());
|
|
|
|
if (!Config->Relocatable) {
|
|
if (Config->EhFrameHdr) {
|
|
In.EhFrameHdr = make<EhFrameHeader>();
|
|
Add(In.EhFrameHdr);
|
|
}
|
|
In.EhFrame = make<EhFrameSection>();
|
|
Add(In.EhFrame);
|
|
}
|
|
|
|
if (In.SymTab)
|
|
Add(In.SymTab);
|
|
if (In.SymTabShndx)
|
|
Add(In.SymTabShndx);
|
|
Add(In.ShStrTab);
|
|
if (In.StrTab)
|
|
Add(In.StrTab);
|
|
|
|
if (Config->EMachine == EM_ARM && !Config->Relocatable) {
|
|
// The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
|
|
// InputSections.
|
|
In.ARMExidx = make<ARMExidxSyntheticSection>();
|
|
Add(In.ARMExidx);
|
|
}
|
|
}
|
|
|
|
// The main function of the writer.
|
|
template <class ELFT> void Writer<ELFT>::run() {
|
|
// Create linker-synthesized sections such as .got or .plt.
|
|
// Such sections are of type input section.
|
|
createSyntheticSections<ELFT>();
|
|
|
|
// Some input sections that are used for exception handling need to be moved
|
|
// into synthetic sections. Do that now so that they aren't assigned to
|
|
// output sections in the usual way.
|
|
if (!Config->Relocatable)
|
|
combineEhSections<ELFT>();
|
|
|
|
// We want to process linker script commands. When SECTIONS command
|
|
// is given we let it create sections.
|
|
Script->processSectionCommands();
|
|
|
|
// Linker scripts controls how input sections are assigned to output sections.
|
|
// Input sections that were not handled by scripts are called "orphans", and
|
|
// they are assigned to output sections by the default rule. Process that.
|
|
Script->addOrphanSections();
|
|
|
|
if (Config->Discard != DiscardPolicy::All)
|
|
copyLocalSymbols();
|
|
|
|
if (Config->CopyRelocs)
|
|
addSectionSymbols();
|
|
|
|
// Now that we have a complete set of output sections. This function
|
|
// completes section contents. For example, we need to add strings
|
|
// to the string table, and add entries to .got and .plt.
|
|
// finalizeSections does that.
|
|
finalizeSections();
|
|
checkExecuteOnly();
|
|
if (errorCount())
|
|
return;
|
|
|
|
Script->assignAddresses();
|
|
|
|
// If -compressed-debug-sections is specified, we need to compress
|
|
// .debug_* sections. Do it right now because it changes the size of
|
|
// output sections.
|
|
for (OutputSection *Sec : OutputSections)
|
|
Sec->maybeCompress<ELFT>();
|
|
|
|
Script->allocateHeaders(Phdrs);
|
|
|
|
// Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
|
|
// 0 sized region. This has to be done late since only after assignAddresses
|
|
// we know the size of the sections.
|
|
removeEmptyPTLoad();
|
|
|
|
if (!Config->OFormatBinary)
|
|
assignFileOffsets();
|
|
else
|
|
assignFileOffsetsBinary();
|
|
|
|
setPhdrs();
|
|
|
|
if (Config->Relocatable)
|
|
for (OutputSection *Sec : OutputSections)
|
|
Sec->Addr = 0;
|
|
|
|
if (Config->CheckSections)
|
|
checkSections();
|
|
|
|
// It does not make sense try to open the file if we have error already.
|
|
if (errorCount())
|
|
return;
|
|
// Write the result down to a file.
|
|
openFile();
|
|
if (errorCount())
|
|
return;
|
|
|
|
if (!Config->OFormatBinary) {
|
|
writeTrapInstr();
|
|
writeHeader();
|
|
writeSections();
|
|
} else {
|
|
writeSectionsBinary();
|
|
}
|
|
|
|
// Backfill .note.gnu.build-id section content. This is done at last
|
|
// because the content is usually a hash value of the entire output file.
|
|
writeBuildId();
|
|
if (errorCount())
|
|
return;
|
|
|
|
// Handle -Map and -cref options.
|
|
writeMapFile();
|
|
writeCrossReferenceTable();
|
|
if (errorCount())
|
|
return;
|
|
|
|
if (auto E = Buffer->commit())
|
|
error("failed to write to the output file: " + toString(std::move(E)));
|
|
}
|
|
|
|
static bool shouldKeepInSymtab(const Defined &Sym) {
|
|
if (Sym.isSection())
|
|
return false;
|
|
|
|
if (Config->Discard == DiscardPolicy::None)
|
|
return true;
|
|
|
|
// If -emit-reloc is given, all symbols including local ones need to be
|
|
// copied because they may be referenced by relocations.
|
|
if (Config->EmitRelocs)
|
|
return true;
|
|
|
|
// In ELF assembly .L symbols are normally discarded by the assembler.
|
|
// If the assembler fails to do so, the linker discards them if
|
|
// * --discard-locals is used.
|
|
// * The symbol is in a SHF_MERGE section, which is normally the reason for
|
|
// the assembler keeping the .L symbol.
|
|
StringRef Name = Sym.getName();
|
|
bool IsLocal = Name.startswith(".L") || Name.empty();
|
|
if (!IsLocal)
|
|
return true;
|
|
|
|
if (Config->Discard == DiscardPolicy::Locals)
|
|
return false;
|
|
|
|
SectionBase *Sec = Sym.Section;
|
|
return !Sec || !(Sec->Flags & SHF_MERGE);
|
|
}
|
|
|
|
static bool includeInSymtab(const Symbol &B) {
|
|
if (!B.isLocal() && !B.IsUsedInRegularObj)
|
|
return false;
|
|
|
|
if (auto *D = dyn_cast<Defined>(&B)) {
|
|
// Always include absolute symbols.
|
|
SectionBase *Sec = D->Section;
|
|
if (!Sec)
|
|
return true;
|
|
Sec = Sec->Repl;
|
|
|
|
// Exclude symbols pointing to garbage-collected sections.
|
|
if (isa<InputSectionBase>(Sec) && !Sec->Live)
|
|
return false;
|
|
|
|
if (auto *S = dyn_cast<MergeInputSection>(Sec))
|
|
if (!S->getSectionPiece(D->Value)->Live)
|
|
return false;
|
|
return true;
|
|
}
|
|
return B.Used;
|
|
}
|
|
|
|
// Local symbols are not in the linker's symbol table. This function scans
|
|
// each object file's symbol table to copy local symbols to the output.
|
|
template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
|
|
if (!In.SymTab)
|
|
return;
|
|
for (InputFile *File : ObjectFiles) {
|
|
ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File);
|
|
for (Symbol *B : F->getLocalSymbols()) {
|
|
if (!B->isLocal())
|
|
fatal(toString(F) +
|
|
": broken object: getLocalSymbols returns a non-local symbol");
|
|
auto *DR = dyn_cast<Defined>(B);
|
|
|
|
// No reason to keep local undefined symbol in symtab.
|
|
if (!DR)
|
|
continue;
|
|
if (!includeInSymtab(*B))
|
|
continue;
|
|
if (!shouldKeepInSymtab(*DR))
|
|
continue;
|
|
In.SymTab->addSymbol(B);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create a section symbol for each output section so that we can represent
|
|
// relocations that point to the section. If we know that no relocation is
|
|
// referring to a section (that happens if the section is a synthetic one), we
|
|
// don't create a section symbol for that section.
|
|
template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
|
|
for (BaseCommand *Base : Script->SectionCommands) {
|
|
auto *Sec = dyn_cast<OutputSection>(Base);
|
|
if (!Sec)
|
|
continue;
|
|
auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) {
|
|
if (auto *ISD = dyn_cast<InputSectionDescription>(Base))
|
|
return !ISD->Sections.empty();
|
|
return false;
|
|
});
|
|
if (I == Sec->SectionCommands.end())
|
|
continue;
|
|
InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0];
|
|
|
|
// Relocations are not using REL[A] section symbols.
|
|
if (IS->Type == SHT_REL || IS->Type == SHT_RELA)
|
|
continue;
|
|
|
|
// Unlike other synthetic sections, mergeable output sections contain data
|
|
// copied from input sections, and there may be a relocation pointing to its
|
|
// contents if -r or -emit-reloc are given.
|
|
if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE))
|
|
continue;
|
|
|
|
auto *Sym =
|
|
make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION,
|
|
/*Value=*/0, /*Size=*/0, IS);
|
|
In.SymTab->addSymbol(Sym);
|
|
}
|
|
}
|
|
|
|
// Today's loaders have a feature to make segments read-only after
|
|
// processing dynamic relocations to enhance security. PT_GNU_RELRO
|
|
// is defined for that.
|
|
//
|
|
// This function returns true if a section needs to be put into a
|
|
// PT_GNU_RELRO segment.
|
|
static bool isRelroSection(const OutputSection *Sec) {
|
|
if (!Config->ZRelro)
|
|
return false;
|
|
|
|
uint64_t Flags = Sec->Flags;
|
|
|
|
// Non-allocatable or non-writable sections don't need RELRO because
|
|
// they are not writable or not even mapped to memory in the first place.
|
|
// RELRO is for sections that are essentially read-only but need to
|
|
// be writable only at process startup to allow dynamic linker to
|
|
// apply relocations.
|
|
if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE))
|
|
return false;
|
|
|
|
// Once initialized, TLS data segments are used as data templates
|
|
// for a thread-local storage. For each new thread, runtime
|
|
// allocates memory for a TLS and copy templates there. No thread
|
|
// are supposed to use templates directly. Thus, it can be in RELRO.
|
|
if (Flags & SHF_TLS)
|
|
return true;
|
|
|
|
// .init_array, .preinit_array and .fini_array contain pointers to
|
|
// functions that are executed on process startup or exit. These
|
|
// pointers are set by the static linker, and they are not expected
|
|
// to change at runtime. But if you are an attacker, you could do
|
|
// interesting things by manipulating pointers in .fini_array, for
|
|
// example. So they are put into RELRO.
|
|
uint32_t Type = Sec->Type;
|
|
if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY ||
|
|
Type == SHT_PREINIT_ARRAY)
|
|
return true;
|
|
|
|
// .got contains pointers to external symbols. They are resolved by
|
|
// the dynamic linker when a module is loaded into memory, and after
|
|
// that they are not expected to change. So, it can be in RELRO.
|
|
if (In.Got && Sec == In.Got->getParent())
|
|
return true;
|
|
|
|
// .toc is a GOT-ish section for PowerPC64. Their contents are accessed
|
|
// through r2 register, which is reserved for that purpose. Since r2 is used
|
|
// for accessing .got as well, .got and .toc need to be close enough in the
|
|
// virtual address space. Usually, .toc comes just after .got. Since we place
|
|
// .got into RELRO, .toc needs to be placed into RELRO too.
|
|
if (Sec->Name.equals(".toc"))
|
|
return true;
|
|
|
|
// .got.plt contains pointers to external function symbols. They are
|
|
// by default resolved lazily, so we usually cannot put it into RELRO.
|
|
// However, if "-z now" is given, the lazy symbol resolution is
|
|
// disabled, which enables us to put it into RELRO.
|
|
if (Sec == In.GotPlt->getParent())
|
|
return Config->ZNow;
|
|
|
|
// .dynamic section contains data for the dynamic linker, and
|
|
// there's no need to write to it at runtime, so it's better to put
|
|
// it into RELRO.
|
|
if (Sec == In.Dynamic->getParent())
|
|
return true;
|
|
|
|
// Sections with some special names are put into RELRO. This is a
|
|
// bit unfortunate because section names shouldn't be significant in
|
|
// ELF in spirit. But in reality many linker features depend on
|
|
// magic section names.
|
|
StringRef S = Sec->Name;
|
|
return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" ||
|
|
S == ".dtors" || S == ".jcr" || S == ".eh_frame" ||
|
|
S == ".openbsd.randomdata";
|
|
}
|
|
|
|
// We compute a rank for each section. The rank indicates where the
|
|
// section should be placed in the file. Instead of using simple
|
|
// numbers (0,1,2...), we use a series of flags. One for each decision
|
|
// point when placing the section.
|
|
// Using flags has two key properties:
|
|
// * It is easy to check if a give branch was taken.
|
|
// * It is easy two see how similar two ranks are (see getRankProximity).
|
|
enum RankFlags {
|
|
RF_NOT_ADDR_SET = 1 << 17,
|
|
RF_NOT_ALLOC = 1 << 16,
|
|
RF_NOT_INTERP = 1 << 15,
|
|
RF_NOT_NOTE = 1 << 14,
|
|
RF_WRITE = 1 << 13,
|
|
RF_EXEC_WRITE = 1 << 12,
|
|
RF_EXEC = 1 << 11,
|
|
RF_RODATA = 1 << 10,
|
|
RF_NOT_RELRO = 1 << 9,
|
|
RF_NOT_TLS = 1 << 8,
|
|
RF_BSS = 1 << 7,
|
|
RF_PPC_NOT_TOCBSS = 1 << 6,
|
|
RF_PPC_TOCL = 1 << 5,
|
|
RF_PPC_TOC = 1 << 4,
|
|
RF_PPC_GOT = 1 << 3,
|
|
RF_PPC_BRANCH_LT = 1 << 2,
|
|
RF_MIPS_GPREL = 1 << 1,
|
|
RF_MIPS_NOT_GOT = 1 << 0
|
|
};
|
|
|
|
static unsigned getSectionRank(const OutputSection *Sec) {
|
|
unsigned Rank = 0;
|
|
|
|
// We want to put section specified by -T option first, so we
|
|
// can start assigning VA starting from them later.
|
|
if (Config->SectionStartMap.count(Sec->Name))
|
|
return Rank;
|
|
Rank |= RF_NOT_ADDR_SET;
|
|
|
|
// Allocatable sections go first to reduce the total PT_LOAD size and
|
|
// so debug info doesn't change addresses in actual code.
|
|
if (!(Sec->Flags & SHF_ALLOC))
|
|
return Rank | RF_NOT_ALLOC;
|
|
|
|
// Put .interp first because some loaders want to see that section
|
|
// on the first page of the executable file when loaded into memory.
|
|
if (Sec->Name == ".interp")
|
|
return Rank;
|
|
Rank |= RF_NOT_INTERP;
|
|
|
|
// Put .note sections (which make up one PT_NOTE) at the beginning so that
|
|
// they are likely to be included in a core file even if core file size is
|
|
// limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
|
|
// included in a core to match core files with executables.
|
|
if (Sec->Type == SHT_NOTE)
|
|
return Rank;
|
|
Rank |= RF_NOT_NOTE;
|
|
|
|
// Sort sections based on their access permission in the following
|
|
// order: R, RX, RWX, RW. This order is based on the following
|
|
// considerations:
|
|
// * Read-only sections come first such that they go in the
|
|
// PT_LOAD covering the program headers at the start of the file.
|
|
// * Read-only, executable sections come next.
|
|
// * Writable, executable sections follow such that .plt on
|
|
// architectures where it needs to be writable will be placed
|
|
// between .text and .data.
|
|
// * Writable sections come last, such that .bss lands at the very
|
|
// end of the last PT_LOAD.
|
|
bool IsExec = Sec->Flags & SHF_EXECINSTR;
|
|
bool IsWrite = Sec->Flags & SHF_WRITE;
|
|
|
|
if (IsExec) {
|
|
if (IsWrite)
|
|
Rank |= RF_EXEC_WRITE;
|
|
else
|
|
Rank |= RF_EXEC;
|
|
} else if (IsWrite) {
|
|
Rank |= RF_WRITE;
|
|
} else if (Sec->Type == SHT_PROGBITS) {
|
|
// Make non-executable and non-writable PROGBITS sections (e.g .rodata
|
|
// .eh_frame) closer to .text. They likely contain PC or GOT relative
|
|
// relocations and there could be relocation overflow if other huge sections
|
|
// (.dynstr .dynsym) were placed in between.
|
|
Rank |= RF_RODATA;
|
|
}
|
|
|
|
// Place RelRo sections first. After considering SHT_NOBITS below, the
|
|
// ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
|
|
// where | marks where page alignment happens. An alternative ordering is
|
|
// PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
|
|
// waste more bytes due to 2 alignment places.
|
|
if (!isRelroSection(Sec))
|
|
Rank |= RF_NOT_RELRO;
|
|
|
|
// If we got here we know that both A and B are in the same PT_LOAD.
|
|
|
|
// The TLS initialization block needs to be a single contiguous block in a R/W
|
|
// PT_LOAD, so stick TLS sections directly before the other RelRo R/W
|
|
// sections. Since p_filesz can be less than p_memsz, place NOBITS sections
|
|
// after PROGBITS.
|
|
if (!(Sec->Flags & SHF_TLS))
|
|
Rank |= RF_NOT_TLS;
|
|
|
|
// Within TLS sections, or within other RelRo sections, or within non-RelRo
|
|
// sections, place non-NOBITS sections first.
|
|
if (Sec->Type == SHT_NOBITS)
|
|
Rank |= RF_BSS;
|
|
|
|
// Some architectures have additional ordering restrictions for sections
|
|
// within the same PT_LOAD.
|
|
if (Config->EMachine == EM_PPC64) {
|
|
// PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
|
|
// that we would like to make sure appear is a specific order to maximize
|
|
// their coverage by a single signed 16-bit offset from the TOC base
|
|
// pointer. Conversely, the special .tocbss section should be first among
|
|
// all SHT_NOBITS sections. This will put it next to the loaded special
|
|
// PPC64 sections (and, thus, within reach of the TOC base pointer).
|
|
StringRef Name = Sec->Name;
|
|
if (Name != ".tocbss")
|
|
Rank |= RF_PPC_NOT_TOCBSS;
|
|
|
|
if (Name == ".toc1")
|
|
Rank |= RF_PPC_TOCL;
|
|
|
|
if (Name == ".toc")
|
|
Rank |= RF_PPC_TOC;
|
|
|
|
if (Name == ".got")
|
|
Rank |= RF_PPC_GOT;
|
|
|
|
if (Name == ".branch_lt")
|
|
Rank |= RF_PPC_BRANCH_LT;
|
|
}
|
|
|
|
if (Config->EMachine == EM_MIPS) {
|
|
// All sections with SHF_MIPS_GPREL flag should be grouped together
|
|
// because data in these sections is addressable with a gp relative address.
|
|
if (Sec->Flags & SHF_MIPS_GPREL)
|
|
Rank |= RF_MIPS_GPREL;
|
|
|
|
if (Sec->Name != ".got")
|
|
Rank |= RF_MIPS_NOT_GOT;
|
|
}
|
|
|
|
return Rank;
|
|
}
|
|
|
|
static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) {
|
|
const OutputSection *A = cast<OutputSection>(ACmd);
|
|
const OutputSection *B = cast<OutputSection>(BCmd);
|
|
|
|
if (A->SortRank != B->SortRank)
|
|
return A->SortRank < B->SortRank;
|
|
|
|
if (!(A->SortRank & RF_NOT_ADDR_SET))
|
|
return Config->SectionStartMap.lookup(A->Name) <
|
|
Config->SectionStartMap.lookup(B->Name);
|
|
return false;
|
|
}
|
|
|
|
void PhdrEntry::add(OutputSection *Sec) {
|
|
LastSec = Sec;
|
|
if (!FirstSec)
|
|
FirstSec = Sec;
|
|
p_align = std::max(p_align, Sec->Alignment);
|
|
if (p_type == PT_LOAD)
|
|
Sec->PtLoad = this;
|
|
}
|
|
|
|
// The beginning and the ending of .rel[a].plt section are marked
|
|
// with __rel[a]_iplt_{start,end} symbols if it is a statically linked
|
|
// executable. The runtime needs these symbols in order to resolve
|
|
// all IRELATIVE relocs on startup. For dynamic executables, we don't
|
|
// need these symbols, since IRELATIVE relocs are resolved through GOT
|
|
// and PLT. For details, see http://www.airs.com/blog/archives/403.
|
|
template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
|
|
if (Config->Relocatable || needsInterpSection())
|
|
return;
|
|
|
|
// By default, __rela_iplt_{start,end} belong to a dummy section 0
|
|
// because .rela.plt might be empty and thus removed from output.
|
|
// We'll override Out::ElfHeader with In.RelaIplt later when we are
|
|
// sure that .rela.plt exists in output.
|
|
ElfSym::RelaIpltStart = addOptionalRegular(
|
|
Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start",
|
|
Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK);
|
|
|
|
ElfSym::RelaIpltEnd = addOptionalRegular(
|
|
Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end",
|
|
Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void Writer<ELFT>::forEachRelSec(
|
|
llvm::function_ref<void(InputSectionBase &)> Fn) {
|
|
// Scan all relocations. Each relocation goes through a series
|
|
// of tests to determine if it needs special treatment, such as
|
|
// creating GOT, PLT, copy relocations, etc.
|
|
// Note that relocations for non-alloc sections are directly
|
|
// processed by InputSection::relocateNonAlloc.
|
|
for (InputSectionBase *IS : InputSections)
|
|
if (IS->Live && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC))
|
|
Fn(*IS);
|
|
for (EhInputSection *ES : In.EhFrame->Sections)
|
|
Fn(*ES);
|
|
if (In.ARMExidx && In.ARMExidx->Live)
|
|
for (InputSection *Ex : In.ARMExidx->ExidxSections)
|
|
Fn(*Ex);
|
|
}
|
|
|
|
// This function generates assignments for predefined symbols (e.g. _end or
|
|
// _etext) and inserts them into the commands sequence to be processed at the
|
|
// appropriate time. This ensures that the value is going to be correct by the
|
|
// time any references to these symbols are processed and is equivalent to
|
|
// defining these symbols explicitly in the linker script.
|
|
template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
|
|
if (ElfSym::GlobalOffsetTable) {
|
|
// The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
|
|
// to the start of the .got or .got.plt section.
|
|
InputSection *GotSection = In.GotPlt;
|
|
if (!Target->GotBaseSymInGotPlt)
|
|
GotSection = In.MipsGot ? cast<InputSection>(In.MipsGot)
|
|
: cast<InputSection>(In.Got);
|
|
ElfSym::GlobalOffsetTable->Section = GotSection;
|
|
}
|
|
|
|
// .rela_iplt_{start,end} mark the start and the end of .rela.plt section.
|
|
if (ElfSym::RelaIpltStart && In.RelaIplt->isNeeded()) {
|
|
ElfSym::RelaIpltStart->Section = In.RelaIplt;
|
|
ElfSym::RelaIpltEnd->Section = In.RelaIplt;
|
|
ElfSym::RelaIpltEnd->Value = In.RelaIplt->getSize();
|
|
}
|
|
|
|
PhdrEntry *Last = nullptr;
|
|
PhdrEntry *LastRO = nullptr;
|
|
|
|
for (PhdrEntry *P : Phdrs) {
|
|
if (P->p_type != PT_LOAD)
|
|
continue;
|
|
Last = P;
|
|
if (!(P->p_flags & PF_W))
|
|
LastRO = P;
|
|
}
|
|
|
|
if (LastRO) {
|
|
// _etext is the first location after the last read-only loadable segment.
|
|
if (ElfSym::Etext1)
|
|
ElfSym::Etext1->Section = LastRO->LastSec;
|
|
if (ElfSym::Etext2)
|
|
ElfSym::Etext2->Section = LastRO->LastSec;
|
|
}
|
|
|
|
if (Last) {
|
|
// _edata points to the end of the last mapped initialized section.
|
|
OutputSection *Edata = nullptr;
|
|
for (OutputSection *OS : OutputSections) {
|
|
if (OS->Type != SHT_NOBITS)
|
|
Edata = OS;
|
|
if (OS == Last->LastSec)
|
|
break;
|
|
}
|
|
|
|
if (ElfSym::Edata1)
|
|
ElfSym::Edata1->Section = Edata;
|
|
if (ElfSym::Edata2)
|
|
ElfSym::Edata2->Section = Edata;
|
|
|
|
// _end is the first location after the uninitialized data region.
|
|
if (ElfSym::End1)
|
|
ElfSym::End1->Section = Last->LastSec;
|
|
if (ElfSym::End2)
|
|
ElfSym::End2->Section = Last->LastSec;
|
|
}
|
|
|
|
if (ElfSym::Bss)
|
|
ElfSym::Bss->Section = findSection(".bss");
|
|
|
|
// Setup MIPS _gp_disp/__gnu_local_gp symbols which should
|
|
// be equal to the _gp symbol's value.
|
|
if (ElfSym::MipsGp) {
|
|
// Find GP-relative section with the lowest address
|
|
// and use this address to calculate default _gp value.
|
|
for (OutputSection *OS : OutputSections) {
|
|
if (OS->Flags & SHF_MIPS_GPREL) {
|
|
ElfSym::MipsGp->Section = OS;
|
|
ElfSym::MipsGp->Value = 0x7ff0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We want to find how similar two ranks are.
|
|
// The more branches in getSectionRank that match, the more similar they are.
|
|
// Since each branch corresponds to a bit flag, we can just use
|
|
// countLeadingZeros.
|
|
static int getRankProximityAux(OutputSection *A, OutputSection *B) {
|
|
return countLeadingZeros(A->SortRank ^ B->SortRank);
|
|
}
|
|
|
|
static int getRankProximity(OutputSection *A, BaseCommand *B) {
|
|
auto *Sec = dyn_cast<OutputSection>(B);
|
|
return (Sec && Sec->Live) ? getRankProximityAux(A, Sec) : -1;
|
|
}
|
|
|
|
// When placing orphan sections, we want to place them after symbol assignments
|
|
// so that an orphan after
|
|
// begin_foo = .;
|
|
// foo : { *(foo) }
|
|
// end_foo = .;
|
|
// doesn't break the intended meaning of the begin/end symbols.
|
|
// We don't want to go over sections since findOrphanPos is the
|
|
// one in charge of deciding the order of the sections.
|
|
// We don't want to go over changes to '.', since doing so in
|
|
// rx_sec : { *(rx_sec) }
|
|
// . = ALIGN(0x1000);
|
|
// /* The RW PT_LOAD starts here*/
|
|
// rw_sec : { *(rw_sec) }
|
|
// would mean that the RW PT_LOAD would become unaligned.
|
|
static bool shouldSkip(BaseCommand *Cmd) {
|
|
if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd))
|
|
return Assign->Name != ".";
|
|
return false;
|
|
}
|
|
|
|
// We want to place orphan sections so that they share as much
|
|
// characteristics with their neighbors as possible. For example, if
|
|
// both are rw, or both are tls.
|
|
static std::vector<BaseCommand *>::iterator
|
|
findOrphanPos(std::vector<BaseCommand *>::iterator B,
|
|
std::vector<BaseCommand *>::iterator E) {
|
|
OutputSection *Sec = cast<OutputSection>(*E);
|
|
|
|
// Find the first element that has as close a rank as possible.
|
|
auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) {
|
|
return getRankProximity(Sec, A) < getRankProximity(Sec, B);
|
|
});
|
|
if (I == E)
|
|
return E;
|
|
|
|
// Consider all existing sections with the same proximity.
|
|
int Proximity = getRankProximity(Sec, *I);
|
|
for (; I != E; ++I) {
|
|
auto *CurSec = dyn_cast<OutputSection>(*I);
|
|
if (!CurSec || !CurSec->Live)
|
|
continue;
|
|
if (getRankProximity(Sec, CurSec) != Proximity ||
|
|
Sec->SortRank < CurSec->SortRank)
|
|
break;
|
|
}
|
|
|
|
auto IsLiveOutputSec = [](BaseCommand *Cmd) {
|
|
auto *OS = dyn_cast<OutputSection>(Cmd);
|
|
return OS && OS->Live;
|
|
};
|
|
auto J = std::find_if(llvm::make_reverse_iterator(I),
|
|
llvm::make_reverse_iterator(B), IsLiveOutputSec);
|
|
I = J.base();
|
|
|
|
// As a special case, if the orphan section is the last section, put
|
|
// it at the very end, past any other commands.
|
|
// This matches bfd's behavior and is convenient when the linker script fully
|
|
// specifies the start of the file, but doesn't care about the end (the non
|
|
// alloc sections for example).
|
|
auto NextSec = std::find_if(I, E, IsLiveOutputSec);
|
|
if (NextSec == E)
|
|
return E;
|
|
|
|
while (I != E && shouldSkip(*I))
|
|
++I;
|
|
return I;
|
|
}
|
|
|
|
// Builds section order for handling --symbol-ordering-file.
|
|
static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
|
|
DenseMap<const InputSectionBase *, int> SectionOrder;
|
|
// Use the rarely used option -call-graph-ordering-file to sort sections.
|
|
if (!Config->CallGraphProfile.empty())
|
|
return computeCallGraphProfileOrder();
|
|
|
|
if (Config->SymbolOrderingFile.empty())
|
|
return SectionOrder;
|
|
|
|
struct SymbolOrderEntry {
|
|
int Priority;
|
|
bool Present;
|
|
};
|
|
|
|
// Build a map from symbols to their priorities. Symbols that didn't
|
|
// appear in the symbol ordering file have the lowest priority 0.
|
|
// All explicitly mentioned symbols have negative (higher) priorities.
|
|
DenseMap<StringRef, SymbolOrderEntry> SymbolOrder;
|
|
int Priority = -Config->SymbolOrderingFile.size();
|
|
for (StringRef S : Config->SymbolOrderingFile)
|
|
SymbolOrder.insert({S, {Priority++, false}});
|
|
|
|
// Build a map from sections to their priorities.
|
|
auto AddSym = [&](Symbol &Sym) {
|
|
auto It = SymbolOrder.find(Sym.getName());
|
|
if (It == SymbolOrder.end())
|
|
return;
|
|
SymbolOrderEntry &Ent = It->second;
|
|
Ent.Present = true;
|
|
|
|
maybeWarnUnorderableSymbol(&Sym);
|
|
|
|
if (auto *D = dyn_cast<Defined>(&Sym)) {
|
|
if (auto *Sec = dyn_cast_or_null<InputSectionBase>(D->Section)) {
|
|
int &Priority = SectionOrder[cast<InputSectionBase>(Sec->Repl)];
|
|
Priority = std::min(Priority, Ent.Priority);
|
|
}
|
|
}
|
|
};
|
|
|
|
// We want both global and local symbols. We get the global ones from the
|
|
// symbol table and iterate the object files for the local ones.
|
|
for (Symbol *Sym : Symtab->getSymbols())
|
|
if (!Sym->isLazy())
|
|
AddSym(*Sym);
|
|
for (InputFile *File : ObjectFiles)
|
|
for (Symbol *Sym : File->getSymbols())
|
|
if (Sym->isLocal())
|
|
AddSym(*Sym);
|
|
|
|
if (Config->WarnSymbolOrdering)
|
|
for (auto OrderEntry : SymbolOrder)
|
|
if (!OrderEntry.second.Present)
|
|
warn("symbol ordering file: no such symbol: " + OrderEntry.first);
|
|
|
|
return SectionOrder;
|
|
}
|
|
|
|
// Sorts the sections in ISD according to the provided section order.
|
|
static void
|
|
sortISDBySectionOrder(InputSectionDescription *ISD,
|
|
const DenseMap<const InputSectionBase *, int> &Order) {
|
|
std::vector<InputSection *> UnorderedSections;
|
|
std::vector<std::pair<InputSection *, int>> OrderedSections;
|
|
uint64_t UnorderedSize = 0;
|
|
|
|
for (InputSection *IS : ISD->Sections) {
|
|
auto I = Order.find(IS);
|
|
if (I == Order.end()) {
|
|
UnorderedSections.push_back(IS);
|
|
UnorderedSize += IS->getSize();
|
|
continue;
|
|
}
|
|
OrderedSections.push_back({IS, I->second});
|
|
}
|
|
llvm::sort(OrderedSections, [&](std::pair<InputSection *, int> A,
|
|
std::pair<InputSection *, int> B) {
|
|
return A.second < B.second;
|
|
});
|
|
|
|
// Find an insertion point for the ordered section list in the unordered
|
|
// section list. On targets with limited-range branches, this is the mid-point
|
|
// of the unordered section list. This decreases the likelihood that a range
|
|
// extension thunk will be needed to enter or exit the ordered region. If the
|
|
// ordered section list is a list of hot functions, we can generally expect
|
|
// the ordered functions to be called more often than the unordered functions,
|
|
// making it more likely that any particular call will be within range, and
|
|
// therefore reducing the number of thunks required.
|
|
//
|
|
// For example, imagine that you have 8MB of hot code and 32MB of cold code.
|
|
// If the layout is:
|
|
//
|
|
// 8MB hot
|
|
// 32MB cold
|
|
//
|
|
// only the first 8-16MB of the cold code (depending on which hot function it
|
|
// is actually calling) can call the hot code without a range extension thunk.
|
|
// However, if we use this layout:
|
|
//
|
|
// 16MB cold
|
|
// 8MB hot
|
|
// 16MB cold
|
|
//
|
|
// both the last 8-16MB of the first block of cold code and the first 8-16MB
|
|
// of the second block of cold code can call the hot code without a thunk. So
|
|
// we effectively double the amount of code that could potentially call into
|
|
// the hot code without a thunk.
|
|
size_t InsPt = 0;
|
|
if (Target->getThunkSectionSpacing() && !OrderedSections.empty()) {
|
|
uint64_t UnorderedPos = 0;
|
|
for (; InsPt != UnorderedSections.size(); ++InsPt) {
|
|
UnorderedPos += UnorderedSections[InsPt]->getSize();
|
|
if (UnorderedPos > UnorderedSize / 2)
|
|
break;
|
|
}
|
|
}
|
|
|
|
ISD->Sections.clear();
|
|
for (InputSection *IS : makeArrayRef(UnorderedSections).slice(0, InsPt))
|
|
ISD->Sections.push_back(IS);
|
|
for (std::pair<InputSection *, int> P : OrderedSections)
|
|
ISD->Sections.push_back(P.first);
|
|
for (InputSection *IS : makeArrayRef(UnorderedSections).slice(InsPt))
|
|
ISD->Sections.push_back(IS);
|
|
}
|
|
|
|
static void sortSection(OutputSection *Sec,
|
|
const DenseMap<const InputSectionBase *, int> &Order) {
|
|
StringRef Name = Sec->Name;
|
|
|
|
// Sort input sections by section name suffixes for
|
|
// __attribute__((init_priority(N))).
|
|
if (Name == ".init_array" || Name == ".fini_array") {
|
|
if (!Script->HasSectionsCommand)
|
|
Sec->sortInitFini();
|
|
return;
|
|
}
|
|
|
|
// Sort input sections by the special rule for .ctors and .dtors.
|
|
if (Name == ".ctors" || Name == ".dtors") {
|
|
if (!Script->HasSectionsCommand)
|
|
Sec->sortCtorsDtors();
|
|
return;
|
|
}
|
|
|
|
// Never sort these.
|
|
if (Name == ".init" || Name == ".fini")
|
|
return;
|
|
|
|
// .toc is allocated just after .got and is accessed using GOT-relative
|
|
// relocations. Object files compiled with small code model have an
|
|
// addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
|
|
// To reduce the risk of relocation overflow, .toc contents are sorted so that
|
|
// sections having smaller relocation offsets are at beginning of .toc
|
|
if (Config->EMachine == EM_PPC64 && Name == ".toc") {
|
|
if (Script->HasSectionsCommand)
|
|
return;
|
|
assert(Sec->SectionCommands.size() == 1);
|
|
auto *ISD = cast<InputSectionDescription>(Sec->SectionCommands[0]);
|
|
llvm::stable_sort(ISD->Sections,
|
|
[](const InputSection *A, const InputSection *B) -> bool {
|
|
return A->File->PPC64SmallCodeModelTocRelocs &&
|
|
!B->File->PPC64SmallCodeModelTocRelocs;
|
|
});
|
|
return;
|
|
}
|
|
|
|
// Sort input sections by priority using the list provided
|
|
// by --symbol-ordering-file.
|
|
if (!Order.empty())
|
|
for (BaseCommand *B : Sec->SectionCommands)
|
|
if (auto *ISD = dyn_cast<InputSectionDescription>(B))
|
|
sortISDBySectionOrder(ISD, Order);
|
|
}
|
|
|
|
// If no layout was provided by linker script, we want to apply default
|
|
// sorting for special input sections. This also handles --symbol-ordering-file.
|
|
template <class ELFT> void Writer<ELFT>::sortInputSections() {
|
|
// Build the order once since it is expensive.
|
|
DenseMap<const InputSectionBase *, int> Order = buildSectionOrder();
|
|
for (BaseCommand *Base : Script->SectionCommands)
|
|
if (auto *Sec = dyn_cast<OutputSection>(Base))
|
|
sortSection(Sec, Order);
|
|
}
|
|
|
|
template <class ELFT> void Writer<ELFT>::sortSections() {
|
|
Script->adjustSectionsBeforeSorting();
|
|
|
|
// Don't sort if using -r. It is not necessary and we want to preserve the
|
|
// relative order for SHF_LINK_ORDER sections.
|
|
if (Config->Relocatable)
|
|
return;
|
|
|
|
sortInputSections();
|
|
|
|
for (BaseCommand *Base : Script->SectionCommands) {
|
|
auto *OS = dyn_cast<OutputSection>(Base);
|
|
if (!OS)
|
|
continue;
|
|
OS->SortRank = getSectionRank(OS);
|
|
|
|
// We want to assign rude approximation values to OutSecOff fields
|
|
// to know the relative order of the input sections. We use it for
|
|
// sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
|
|
uint64_t I = 0;
|
|
for (InputSection *Sec : getInputSections(OS))
|
|
Sec->OutSecOff = I++;
|
|
}
|
|
|
|
if (!Script->HasSectionsCommand) {
|
|
// We know that all the OutputSections are contiguous in this case.
|
|
auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); };
|
|
std::stable_sort(
|
|
llvm::find_if(Script->SectionCommands, IsSection),
|
|
llvm::find_if(llvm::reverse(Script->SectionCommands), IsSection).base(),
|
|
compareSections);
|
|
return;
|
|
}
|
|
|
|
// Orphan sections are sections present in the input files which are
|
|
// not explicitly placed into the output file by the linker script.
|
|
//
|
|
// The sections in the linker script are already in the correct
|
|
// order. We have to figuere out where to insert the orphan
|
|
// sections.
|
|
//
|
|
// The order of the sections in the script is arbitrary and may not agree with
|
|
// compareSections. This means that we cannot easily define a strict weak
|
|
// ordering. To see why, consider a comparison of a section in the script and
|
|
// one not in the script. We have a two simple options:
|
|
// * Make them equivalent (a is not less than b, and b is not less than a).
|
|
// The problem is then that equivalence has to be transitive and we can
|
|
// have sections a, b and c with only b in a script and a less than c
|
|
// which breaks this property.
|
|
// * Use compareSectionsNonScript. Given that the script order doesn't have
|
|
// to match, we can end up with sections a, b, c, d where b and c are in the
|
|
// script and c is compareSectionsNonScript less than b. In which case d
|
|
// can be equivalent to c, a to b and d < a. As a concrete example:
|
|
// .a (rx) # not in script
|
|
// .b (rx) # in script
|
|
// .c (ro) # in script
|
|
// .d (ro) # not in script
|
|
//
|
|
// The way we define an order then is:
|
|
// * Sort only the orphan sections. They are in the end right now.
|
|
// * Move each orphan section to its preferred position. We try
|
|
// to put each section in the last position where it can share
|
|
// a PT_LOAD.
|
|
//
|
|
// There is some ambiguity as to where exactly a new entry should be
|
|
// inserted, because Commands contains not only output section
|
|
// commands but also other types of commands such as symbol assignment
|
|
// expressions. There's no correct answer here due to the lack of the
|
|
// formal specification of the linker script. We use heuristics to
|
|
// determine whether a new output command should be added before or
|
|
// after another commands. For the details, look at shouldSkip
|
|
// function.
|
|
|
|
auto I = Script->SectionCommands.begin();
|
|
auto E = Script->SectionCommands.end();
|
|
auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) {
|
|
if (auto *Sec = dyn_cast<OutputSection>(Base))
|
|
return Sec->SectionIndex == UINT32_MAX;
|
|
return false;
|
|
});
|
|
|
|
// Sort the orphan sections.
|
|
std::stable_sort(NonScriptI, E, compareSections);
|
|
|
|
// As a horrible special case, skip the first . assignment if it is before any
|
|
// section. We do this because it is common to set a load address by starting
|
|
// the script with ". = 0xabcd" and the expectation is that every section is
|
|
// after that.
|
|
auto FirstSectionOrDotAssignment =
|
|
std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); });
|
|
if (FirstSectionOrDotAssignment != E &&
|
|
isa<SymbolAssignment>(**FirstSectionOrDotAssignment))
|
|
++FirstSectionOrDotAssignment;
|
|
I = FirstSectionOrDotAssignment;
|
|
|
|
while (NonScriptI != E) {
|
|
auto Pos = findOrphanPos(I, NonScriptI);
|
|
OutputSection *Orphan = cast<OutputSection>(*NonScriptI);
|
|
|
|
// As an optimization, find all sections with the same sort rank
|
|
// and insert them with one rotate.
|
|
unsigned Rank = Orphan->SortRank;
|
|
auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) {
|
|
return cast<OutputSection>(Cmd)->SortRank != Rank;
|
|
});
|
|
std::rotate(Pos, NonScriptI, End);
|
|
NonScriptI = End;
|
|
}
|
|
|
|
Script->adjustSectionsAfterSorting();
|
|
}
|
|
|
|
static bool compareByFilePosition(InputSection *A, InputSection *B) {
|
|
InputSection *LA = A->getLinkOrderDep();
|
|
InputSection *LB = B->getLinkOrderDep();
|
|
OutputSection *AOut = LA->getParent();
|
|
OutputSection *BOut = LB->getParent();
|
|
|
|
if (AOut != BOut)
|
|
return AOut->SectionIndex < BOut->SectionIndex;
|
|
return LA->OutSecOff < LB->OutSecOff;
|
|
}
|
|
|
|
template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
|
|
for (OutputSection *Sec : OutputSections) {
|
|
if (!(Sec->Flags & SHF_LINK_ORDER))
|
|
continue;
|
|
|
|
// Link order may be distributed across several InputSectionDescriptions
|
|
// but sort must consider them all at once.
|
|
std::vector<InputSection **> ScriptSections;
|
|
std::vector<InputSection *> Sections;
|
|
for (BaseCommand *Base : Sec->SectionCommands) {
|
|
if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) {
|
|
for (InputSection *&IS : ISD->Sections) {
|
|
ScriptSections.push_back(&IS);
|
|
Sections.push_back(IS);
|
|
}
|
|
}
|
|
}
|
|
|
|
// The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
|
|
// this processing inside the ARMExidxsyntheticsection::finalizeContents().
|
|
if (!Config->Relocatable && Config->EMachine == EM_ARM &&
|
|
Sec->Type == SHT_ARM_EXIDX)
|
|
continue;
|
|
|
|
llvm::stable_sort(Sections, compareByFilePosition);
|
|
|
|
for (int I = 0, N = Sections.size(); I < N; ++I)
|
|
*ScriptSections[I] = Sections[I];
|
|
}
|
|
}
|
|
|
|
// We need to generate and finalize the content that depends on the address of
|
|
// InputSections. As the generation of the content may also alter InputSection
|
|
// addresses we must converge to a fixed point. We do that here. See the comment
|
|
// in Writer<ELFT>::finalizeSections().
|
|
template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
|
|
ThunkCreator TC;
|
|
AArch64Err843419Patcher A64P;
|
|
|
|
// For some targets, like x86, this loop iterates only once.
|
|
for (;;) {
|
|
bool Changed = false;
|
|
|
|
Script->assignAddresses();
|
|
|
|
if (Target->NeedsThunks)
|
|
Changed |= TC.createThunks(OutputSections);
|
|
|
|
if (Config->FixCortexA53Errata843419) {
|
|
if (Changed)
|
|
Script->assignAddresses();
|
|
Changed |= A64P.createFixes();
|
|
}
|
|
|
|
if (In.MipsGot)
|
|
In.MipsGot->updateAllocSize();
|
|
|
|
Changed |= In.RelaDyn->updateAllocSize();
|
|
|
|
if (In.RelrDyn)
|
|
Changed |= In.RelrDyn->updateAllocSize();
|
|
|
|
if (!Changed)
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void finalizeSynthetic(SyntheticSection *Sec) {
|
|
if (Sec && Sec->isNeeded() && Sec->getParent())
|
|
Sec->finalizeContents();
|
|
}
|
|
|
|
// In order to allow users to manipulate linker-synthesized sections,
|
|
// we had to add synthetic sections to the input section list early,
|
|
// even before we make decisions whether they are needed. This allows
|
|
// users to write scripts like this: ".mygot : { .got }".
|
|
//
|
|
// Doing it has an unintended side effects. If it turns out that we
|
|
// don't need a .got (for example) at all because there's no
|
|
// relocation that needs a .got, we don't want to emit .got.
|
|
//
|
|
// To deal with the above problem, this function is called after
|
|
// scanRelocations is called to remove synthetic sections that turn
|
|
// out to be empty.
|
|
static void removeUnusedSyntheticSections() {
|
|
// All input synthetic sections that can be empty are placed after
|
|
// all regular ones. We iterate over them all and exit at first
|
|
// non-synthetic.
|
|
for (InputSectionBase *S : llvm::reverse(InputSections)) {
|
|
SyntheticSection *SS = dyn_cast<SyntheticSection>(S);
|
|
if (!SS)
|
|
return;
|
|
OutputSection *OS = SS->getParent();
|
|
if (!OS || SS->isNeeded())
|
|
continue;
|
|
|
|
// If we reach here, then SS is an unused synthetic section and we want to
|
|
// remove it from corresponding input section description of output section.
|
|
for (BaseCommand *B : OS->SectionCommands)
|
|
if (auto *ISD = dyn_cast<InputSectionDescription>(B))
|
|
llvm::erase_if(ISD->Sections,
|
|
[=](InputSection *IS) { return IS == SS; });
|
|
}
|
|
}
|
|
|
|
// Returns true if a symbol can be replaced at load-time by a symbol
|
|
// with the same name defined in other ELF executable or DSO.
|
|
static bool computeIsPreemptible(const Symbol &B) {
|
|
assert(!B.isLocal());
|
|
|
|
// Only symbols that appear in dynsym can be preempted.
|
|
if (!B.includeInDynsym())
|
|
return false;
|
|
|
|
// Only default visibility symbols can be preempted.
|
|
if (B.Visibility != STV_DEFAULT)
|
|
return false;
|
|
|
|
// At this point copy relocations have not been created yet, so any
|
|
// symbol that is not defined locally is preemptible.
|
|
if (!B.isDefined())
|
|
return true;
|
|
|
|
// If we have a dynamic list it specifies which local symbols are preemptible.
|
|
if (Config->HasDynamicList)
|
|
return false;
|
|
|
|
if (!Config->Shared)
|
|
return false;
|
|
|
|
// -Bsymbolic means that definitions are not preempted.
|
|
if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc()))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Create output section objects and add them to OutputSections.
|
|
template <class ELFT> void Writer<ELFT>::finalizeSections() {
|
|
Out::PreinitArray = findSection(".preinit_array");
|
|
Out::InitArray = findSection(".init_array");
|
|
Out::FiniArray = findSection(".fini_array");
|
|
|
|
// The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
|
|
// symbols for sections, so that the runtime can get the start and end
|
|
// addresses of each section by section name. Add such symbols.
|
|
if (!Config->Relocatable) {
|
|
addStartEndSymbols();
|
|
for (BaseCommand *Base : Script->SectionCommands)
|
|
if (auto *Sec = dyn_cast<OutputSection>(Base))
|
|
addStartStopSymbols(Sec);
|
|
}
|
|
|
|
// Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
|
|
// It should be okay as no one seems to care about the type.
|
|
// Even the author of gold doesn't remember why gold behaves that way.
|
|
// https://sourceware.org/ml/binutils/2002-03/msg00360.html
|
|
if (In.Dynamic->Parent)
|
|
Symtab->addDefined("_DYNAMIC", STV_HIDDEN, STT_NOTYPE, 0 /*Value*/,
|
|
/*Size=*/0, STB_WEAK, In.Dynamic,
|
|
/*File=*/nullptr);
|
|
|
|
// Define __rel[a]_iplt_{start,end} symbols if needed.
|
|
addRelIpltSymbols();
|
|
|
|
// RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800 if not defined.
|
|
if (Config->EMachine == EM_RISCV)
|
|
if (!dyn_cast_or_null<Defined>(Symtab->find("__global_pointer$")))
|
|
addOptionalRegular("__global_pointer$", findSection(".sdata"), 0x800);
|
|
|
|
// This responsible for splitting up .eh_frame section into
|
|
// pieces. The relocation scan uses those pieces, so this has to be
|
|
// earlier.
|
|
finalizeSynthetic(In.EhFrame);
|
|
|
|
for (Symbol *S : Symtab->getSymbols())
|
|
if (!S->IsPreemptible)
|
|
S->IsPreemptible = computeIsPreemptible(*S);
|
|
|
|
// Scan relocations. This must be done after every symbol is declared so that
|
|
// we can correctly decide if a dynamic relocation is needed.
|
|
if (!Config->Relocatable)
|
|
forEachRelSec(scanRelocations<ELFT>);
|
|
|
|
addIRelativeRelocs();
|
|
|
|
if (In.Plt && In.Plt->isNeeded())
|
|
In.Plt->addSymbols();
|
|
if (In.Iplt && In.Iplt->isNeeded())
|
|
In.Iplt->addSymbols();
|
|
|
|
if (!Config->AllowShlibUndefined) {
|
|
// Error on undefined symbols in a shared object, if all of its DT_NEEDED
|
|
// entires are seen. These cases would otherwise lead to runtime errors
|
|
// reported by the dynamic linker.
|
|
//
|
|
// ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
|
|
// catch more cases. That is too much for us. Our approach resembles the one
|
|
// used in ld.gold, achieves a good balance to be useful but not too smart.
|
|
for (SharedFile *File : SharedFiles)
|
|
File->AllNeededIsKnown =
|
|
llvm::all_of(File->DtNeeded, [&](StringRef Needed) {
|
|
return Symtab->SoNames.count(Needed);
|
|
});
|
|
for (Symbol *Sym : Symtab->getSymbols())
|
|
if (Sym->isUndefined() && !Sym->isWeak())
|
|
if (auto *F = dyn_cast_or_null<SharedFile>(Sym->File))
|
|
if (F->AllNeededIsKnown)
|
|
error(toString(F) + ": undefined reference to " + toString(*Sym));
|
|
}
|
|
|
|
// Now that we have defined all possible global symbols including linker-
|
|
// synthesized ones. Visit all symbols to give the finishing touches.
|
|
for (Symbol *Sym : Symtab->getSymbols()) {
|
|
if (!includeInSymtab(*Sym))
|
|
continue;
|
|
if (In.SymTab)
|
|
In.SymTab->addSymbol(Sym);
|
|
|
|
if (Sym->includeInDynsym()) {
|
|
In.DynSymTab->addSymbol(Sym);
|
|
if (auto *File = dyn_cast_or_null<SharedFile>(Sym->File))
|
|
if (File->IsNeeded && !Sym->isUndefined())
|
|
addVerneed(Sym);
|
|
}
|
|
}
|
|
|
|
// Do not proceed if there was an undefined symbol.
|
|
if (errorCount())
|
|
return;
|
|
|
|
if (In.MipsGot)
|
|
In.MipsGot->build();
|
|
|
|
removeUnusedSyntheticSections();
|
|
|
|
sortSections();
|
|
|
|
// Now that we have the final list, create a list of all the
|
|
// OutputSections for convenience.
|
|
for (BaseCommand *Base : Script->SectionCommands)
|
|
if (auto *Sec = dyn_cast<OutputSection>(Base))
|
|
OutputSections.push_back(Sec);
|
|
|
|
// Prefer command line supplied address over other constraints.
|
|
for (OutputSection *Sec : OutputSections) {
|
|
auto I = Config->SectionStartMap.find(Sec->Name);
|
|
if (I != Config->SectionStartMap.end())
|
|
Sec->AddrExpr = [=] { return I->second; };
|
|
}
|
|
|
|
// This is a bit of a hack. A value of 0 means undef, so we set it
|
|
// to 1 to make __ehdr_start defined. The section number is not
|
|
// particularly relevant.
|
|
Out::ElfHeader->SectionIndex = 1;
|
|
|
|
for (size_t I = 0, E = OutputSections.size(); I != E; ++I) {
|
|
OutputSection *Sec = OutputSections[I];
|
|
Sec->SectionIndex = I + 1;
|
|
Sec->ShName = In.ShStrTab->addString(Sec->Name);
|
|
}
|
|
|
|
// Binary and relocatable output does not have PHDRS.
|
|
// The headers have to be created before finalize as that can influence the
|
|
// image base and the dynamic section on mips includes the image base.
|
|
if (!Config->Relocatable && !Config->OFormatBinary) {
|
|
Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs();
|
|
if (Config->EMachine == EM_ARM) {
|
|
// PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
|
|
addPhdrForSection(Phdrs, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
|
|
}
|
|
if (Config->EMachine == EM_MIPS) {
|
|
// Add separate segments for MIPS-specific sections.
|
|
addPhdrForSection(Phdrs, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
|
|
addPhdrForSection(Phdrs, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
|
|
addPhdrForSection(Phdrs, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
|
|
}
|
|
Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size();
|
|
|
|
// Find the TLS segment. This happens before the section layout loop so that
|
|
// Android relocation packing can look up TLS symbol addresses.
|
|
for (PhdrEntry *P : Phdrs)
|
|
if (P->p_type == PT_TLS)
|
|
Out::TlsPhdr = P;
|
|
}
|
|
|
|
// Some symbols are defined in term of program headers. Now that we
|
|
// have the headers, we can find out which sections they point to.
|
|
setReservedSymbolSections();
|
|
|
|
// Dynamic section must be the last one in this list and dynamic
|
|
// symbol table section (DynSymTab) must be the first one.
|
|
finalizeSynthetic(In.DynSymTab);
|
|
finalizeSynthetic(In.ARMExidx);
|
|
finalizeSynthetic(In.Bss);
|
|
finalizeSynthetic(In.BssRelRo);
|
|
finalizeSynthetic(In.GnuHashTab);
|
|
finalizeSynthetic(In.HashTab);
|
|
finalizeSynthetic(In.SymTabShndx);
|
|
finalizeSynthetic(In.ShStrTab);
|
|
finalizeSynthetic(In.StrTab);
|
|
finalizeSynthetic(In.VerDef);
|
|
finalizeSynthetic(In.Got);
|
|
finalizeSynthetic(In.MipsGot);
|
|
finalizeSynthetic(In.IgotPlt);
|
|
finalizeSynthetic(In.GotPlt);
|
|
finalizeSynthetic(In.RelaDyn);
|
|
finalizeSynthetic(In.RelrDyn);
|
|
finalizeSynthetic(In.RelaIplt);
|
|
finalizeSynthetic(In.RelaPlt);
|
|
finalizeSynthetic(In.Plt);
|
|
finalizeSynthetic(In.Iplt);
|
|
finalizeSynthetic(In.EhFrameHdr);
|
|
finalizeSynthetic(In.VerSym);
|
|
finalizeSynthetic(In.VerNeed);
|
|
finalizeSynthetic(In.Dynamic);
|
|
|
|
if (!Script->HasSectionsCommand && !Config->Relocatable)
|
|
fixSectionAlignments();
|
|
|
|
// SHFLinkOrder processing must be processed after relative section placements are
|
|
// known but before addresses are allocated.
|
|
resolveShfLinkOrder();
|
|
|
|
// This is used to:
|
|
// 1) Create "thunks":
|
|
// Jump instructions in many ISAs have small displacements, and therefore
|
|
// they cannot jump to arbitrary addresses in memory. For example, RISC-V
|
|
// JAL instruction can target only +-1 MiB from PC. It is a linker's
|
|
// responsibility to create and insert small pieces of code between
|
|
// sections to extend the ranges if jump targets are out of range. Such
|
|
// code pieces are called "thunks".
|
|
//
|
|
// We add thunks at this stage. We couldn't do this before this point
|
|
// because this is the earliest point where we know sizes of sections and
|
|
// their layouts (that are needed to determine if jump targets are in
|
|
// range).
|
|
//
|
|
// 2) Update the sections. We need to generate content that depends on the
|
|
// address of InputSections. For example, MIPS GOT section content or
|
|
// android packed relocations sections content.
|
|
//
|
|
// 3) Assign the final values for the linker script symbols. Linker scripts
|
|
// sometimes using forward symbol declarations. We want to set the correct
|
|
// values. They also might change after adding the thunks.
|
|
finalizeAddressDependentContent();
|
|
|
|
// finalizeAddressDependentContent may have added local symbols to the static symbol table.
|
|
finalizeSynthetic(In.SymTab);
|
|
finalizeSynthetic(In.PPC64LongBranchTarget);
|
|
|
|
// Fill other section headers. The dynamic table is finalized
|
|
// at the end because some tags like RELSZ depend on result
|
|
// of finalizing other sections.
|
|
for (OutputSection *Sec : OutputSections)
|
|
Sec->finalize();
|
|
}
|
|
|
|
// Ensure data sections are not mixed with executable sections when
|
|
// -execute-only is used. -execute-only is a feature to make pages executable
|
|
// but not readable, and the feature is currently supported only on AArch64.
|
|
template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
|
|
if (!Config->ExecuteOnly)
|
|
return;
|
|
|
|
for (OutputSection *OS : OutputSections)
|
|
if (OS->Flags & SHF_EXECINSTR)
|
|
for (InputSection *IS : getInputSections(OS))
|
|
if (!(IS->Flags & SHF_EXECINSTR))
|
|
error("cannot place " + toString(IS) + " into " + toString(OS->Name) +
|
|
": -execute-only does not support intermingling data and code");
|
|
}
|
|
|
|
// The linker is expected to define SECNAME_start and SECNAME_end
|
|
// symbols for a few sections. This function defines them.
|
|
template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
|
|
// If a section does not exist, there's ambiguity as to how we
|
|
// define _start and _end symbols for an init/fini section. Since
|
|
// the loader assume that the symbols are always defined, we need to
|
|
// always define them. But what value? The loader iterates over all
|
|
// pointers between _start and _end to run global ctors/dtors, so if
|
|
// the section is empty, their symbol values don't actually matter
|
|
// as long as _start and _end point to the same location.
|
|
//
|
|
// That said, we don't want to set the symbols to 0 (which is
|
|
// probably the simplest value) because that could cause some
|
|
// program to fail to link due to relocation overflow, if their
|
|
// program text is above 2 GiB. We use the address of the .text
|
|
// section instead to prevent that failure.
|
|
//
|
|
// In a rare sitaution, .text section may not exist. If that's the
|
|
// case, use the image base address as a last resort.
|
|
OutputSection *Default = findSection(".text");
|
|
if (!Default)
|
|
Default = Out::ElfHeader;
|
|
|
|
auto Define = [=](StringRef Start, StringRef End, OutputSection *OS) {
|
|
if (OS) {
|
|
addOptionalRegular(Start, OS, 0);
|
|
addOptionalRegular(End, OS, -1);
|
|
} else {
|
|
addOptionalRegular(Start, Default, 0);
|
|
addOptionalRegular(End, Default, 0);
|
|
}
|
|
};
|
|
|
|
Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray);
|
|
Define("__init_array_start", "__init_array_end", Out::InitArray);
|
|
Define("__fini_array_start", "__fini_array_end", Out::FiniArray);
|
|
|
|
if (OutputSection *Sec = findSection(".ARM.exidx"))
|
|
Define("__exidx_start", "__exidx_end", Sec);
|
|
}
|
|
|
|
// If a section name is valid as a C identifier (which is rare because of
|
|
// the leading '.'), linkers are expected to define __start_<secname> and
|
|
// __stop_<secname> symbols. They are at beginning and end of the section,
|
|
// respectively. This is not requested by the ELF standard, but GNU ld and
|
|
// gold provide the feature, and used by many programs.
|
|
template <class ELFT>
|
|
void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) {
|
|
StringRef S = Sec->Name;
|
|
if (!isValidCIdentifier(S))
|
|
return;
|
|
addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_PROTECTED);
|
|
addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_PROTECTED);
|
|
}
|
|
|
|
static bool needsPtLoad(OutputSection *Sec) {
|
|
if (!(Sec->Flags & SHF_ALLOC) || Sec->Noload)
|
|
return false;
|
|
|
|
// Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
|
|
// responsible for allocating space for them, not the PT_LOAD that
|
|
// contains the TLS initialization image.
|
|
if ((Sec->Flags & SHF_TLS) && Sec->Type == SHT_NOBITS)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Linker scripts are responsible for aligning addresses. Unfortunately, most
|
|
// linker scripts are designed for creating two PT_LOADs only, one RX and one
|
|
// RW. This means that there is no alignment in the RO to RX transition and we
|
|
// cannot create a PT_LOAD there.
|
|
static uint64_t computeFlags(uint64_t Flags) {
|
|
if (Config->Omagic)
|
|
return PF_R | PF_W | PF_X;
|
|
if (Config->ExecuteOnly && (Flags & PF_X))
|
|
return Flags & ~PF_R;
|
|
if (Config->SingleRoRx && !(Flags & PF_W))
|
|
return Flags | PF_X;
|
|
return Flags;
|
|
}
|
|
|
|
// Decide which program headers to create and which sections to include in each
|
|
// one.
|
|
template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() {
|
|
std::vector<PhdrEntry *> Ret;
|
|
auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * {
|
|
Ret.push_back(make<PhdrEntry>(Type, Flags));
|
|
return Ret.back();
|
|
};
|
|
|
|
// The first phdr entry is PT_PHDR which describes the program header itself.
|
|
AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders);
|
|
|
|
// PT_INTERP must be the second entry if exists.
|
|
if (OutputSection *Cmd = findSection(".interp"))
|
|
AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd);
|
|
|
|
// Add the first PT_LOAD segment for regular output sections.
|
|
uint64_t Flags = computeFlags(PF_R);
|
|
PhdrEntry *Load = AddHdr(PT_LOAD, Flags);
|
|
|
|
// Add the headers. We will remove them if they don't fit.
|
|
Load->add(Out::ElfHeader);
|
|
Load->add(Out::ProgramHeaders);
|
|
|
|
// PT_GNU_RELRO includes all sections that should be marked as
|
|
// read-only by dynamic linker after proccessing relocations.
|
|
// Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
|
|
// an error message if more than one PT_GNU_RELRO PHDR is required.
|
|
PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
|
|
bool InRelroPhdr = false;
|
|
OutputSection *RelroEnd = nullptr;
|
|
for (OutputSection *Sec : OutputSections) {
|
|
if (!needsPtLoad(Sec))
|
|
continue;
|
|
if (isRelroSection(Sec)) {
|
|
InRelroPhdr = true;
|
|
if (!RelroEnd)
|
|
RelRo->add(Sec);
|
|
else
|
|
error("section: " + Sec->Name + " is not contiguous with other relro" +
|
|
" sections");
|
|
} else if (InRelroPhdr) {
|
|
InRelroPhdr = false;
|
|
RelroEnd = Sec;
|
|
}
|
|
}
|
|
|
|
for (OutputSection *Sec : OutputSections) {
|
|
if (!(Sec->Flags & SHF_ALLOC))
|
|
break;
|
|
if (!needsPtLoad(Sec))
|
|
continue;
|
|
|
|
// Segments are contiguous memory regions that has the same attributes
|
|
// (e.g. executable or writable). There is one phdr for each segment.
|
|
// Therefore, we need to create a new phdr when the next section has
|
|
// different flags or is loaded at a discontiguous address or memory
|
|
// region using AT or AT> linker script command, respectively. At the same
|
|
// time, we don't want to create a separate load segment for the headers,
|
|
// even if the first output section has an AT or AT> attribute.
|
|
uint64_t NewFlags = computeFlags(Sec->getPhdrFlags());
|
|
if (((Sec->LMAExpr ||
|
|
(Sec->LMARegion && (Sec->LMARegion != Load->FirstSec->LMARegion))) &&
|
|
Load->LastSec != Out::ProgramHeaders) ||
|
|
Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags ||
|
|
Sec == RelroEnd) {
|
|
Load = AddHdr(PT_LOAD, NewFlags);
|
|
Flags = NewFlags;
|
|
}
|
|
|
|
Load->add(Sec);
|
|
}
|
|
|
|
// Add a TLS segment if any.
|
|
PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
|
|
for (OutputSection *Sec : OutputSections)
|
|
if (Sec->Flags & SHF_TLS)
|
|
TlsHdr->add(Sec);
|
|
if (TlsHdr->FirstSec)
|
|
Ret.push_back(TlsHdr);
|
|
|
|
// Add an entry for .dynamic.
|
|
if (OutputSection *Sec = In.Dynamic->getParent())
|
|
AddHdr(PT_DYNAMIC, Sec->getPhdrFlags())->add(Sec);
|
|
|
|
if (RelRo->FirstSec)
|
|
Ret.push_back(RelRo);
|
|
|
|
// PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
|
|
if (In.EhFrame->isNeeded() && In.EhFrameHdr && In.EhFrame->getParent() &&
|
|
In.EhFrameHdr->getParent())
|
|
AddHdr(PT_GNU_EH_FRAME, In.EhFrameHdr->getParent()->getPhdrFlags())
|
|
->add(In.EhFrameHdr->getParent());
|
|
|
|
// PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
|
|
// the dynamic linker fill the segment with random data.
|
|
if (OutputSection *Cmd = findSection(".openbsd.randomdata"))
|
|
AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd);
|
|
|
|
// PT_GNU_STACK is a special section to tell the loader to make the
|
|
// pages for the stack non-executable. If you really want an executable
|
|
// stack, you can pass -z execstack, but that's not recommended for
|
|
// security reasons.
|
|
unsigned Perm = PF_R | PF_W;
|
|
if (Config->ZExecstack)
|
|
Perm |= PF_X;
|
|
AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize;
|
|
|
|
// PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
|
|
// is expected to perform W^X violations, such as calling mprotect(2) or
|
|
// mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
|
|
// OpenBSD.
|
|
if (Config->ZWxneeded)
|
|
AddHdr(PT_OPENBSD_WXNEEDED, PF_X);
|
|
|
|
// Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
|
|
// same alignment.
|
|
PhdrEntry *Note = nullptr;
|
|
for (OutputSection *Sec : OutputSections) {
|
|
if (Sec->Type == SHT_NOTE && (Sec->Flags & SHF_ALLOC)) {
|
|
if (!Note || Sec->LMAExpr || Note->LastSec->Alignment != Sec->Alignment)
|
|
Note = AddHdr(PT_NOTE, PF_R);
|
|
Note->add(Sec);
|
|
} else {
|
|
Note = nullptr;
|
|
}
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void Writer<ELFT>::addPhdrForSection(std::vector<PhdrEntry *> &Phdrs,
|
|
unsigned ShType, unsigned PType,
|
|
unsigned PFlags) {
|
|
auto I = llvm::find_if(
|
|
OutputSections, [=](OutputSection *Cmd) { return Cmd->Type == ShType; });
|
|
if (I == OutputSections.end())
|
|
return;
|
|
|
|
PhdrEntry *Entry = make<PhdrEntry>(PType, PFlags);
|
|
Entry->add(*I);
|
|
Phdrs.push_back(Entry);
|
|
}
|
|
|
|
// The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the
|
|
// first section after PT_GNU_RELRO have to be page aligned so that the dynamic
|
|
// linker can set the permissions.
|
|
template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
|
|
auto PageAlign = [](OutputSection *Cmd) {
|
|
if (Cmd && !Cmd->AddrExpr)
|
|
Cmd->AddrExpr = [=] {
|
|
return alignTo(Script->getDot(), Config->MaxPageSize);
|
|
};
|
|
};
|
|
|
|
for (const PhdrEntry *P : Phdrs)
|
|
if (P->p_type == PT_LOAD && P->FirstSec)
|
|
PageAlign(P->FirstSec);
|
|
|
|
for (const PhdrEntry *P : Phdrs) {
|
|
if (P->p_type != PT_GNU_RELRO)
|
|
continue;
|
|
|
|
if (P->FirstSec)
|
|
PageAlign(P->FirstSec);
|
|
|
|
// Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we
|
|
// have to align it to a page.
|
|
auto End = OutputSections.end();
|
|
auto I = llvm::find(OutputSections, P->LastSec);
|
|
if (I == End || (I + 1) == End)
|
|
continue;
|
|
|
|
OutputSection *Cmd = (*(I + 1));
|
|
if (needsPtLoad(Cmd))
|
|
PageAlign(Cmd);
|
|
}
|
|
}
|
|
|
|
// Compute an in-file position for a given section. The file offset must be the
|
|
// same with its virtual address modulo the page size, so that the loader can
|
|
// load executables without any address adjustment.
|
|
static uint64_t computeFileOffset(OutputSection *OS, uint64_t Off) {
|
|
// File offsets are not significant for .bss sections. By convention, we keep
|
|
// section offsets monotonically increasing rather than setting to zero.
|
|
if (OS->Type == SHT_NOBITS)
|
|
return Off;
|
|
|
|
// If the section is not in a PT_LOAD, we just have to align it.
|
|
if (!OS->PtLoad)
|
|
return alignTo(Off, OS->Alignment);
|
|
|
|
// The first section in a PT_LOAD has to have congruent offset and address
|
|
// module the page size.
|
|
OutputSection *First = OS->PtLoad->FirstSec;
|
|
if (OS == First) {
|
|
uint64_t Alignment = std::max<uint64_t>(OS->Alignment, Config->MaxPageSize);
|
|
return alignTo(Off, Alignment, OS->Addr);
|
|
}
|
|
|
|
// If two sections share the same PT_LOAD the file offset is calculated
|
|
// using this formula: Off2 = Off1 + (VA2 - VA1).
|
|
return First->Offset + OS->Addr - First->Addr;
|
|
}
|
|
|
|
// Set an in-file position to a given section and returns the end position of
|
|
// the section.
|
|
static uint64_t setFileOffset(OutputSection *OS, uint64_t Off) {
|
|
Off = computeFileOffset(OS, Off);
|
|
OS->Offset = Off;
|
|
|
|
if (OS->Type == SHT_NOBITS)
|
|
return Off;
|
|
return Off + OS->Size;
|
|
}
|
|
|
|
template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
|
|
uint64_t Off = 0;
|
|
for (OutputSection *Sec : OutputSections)
|
|
if (Sec->Flags & SHF_ALLOC)
|
|
Off = setFileOffset(Sec, Off);
|
|
FileSize = alignTo(Off, Config->Wordsize);
|
|
}
|
|
|
|
static std::string rangeToString(uint64_t Addr, uint64_t Len) {
|
|
return "[0x" + utohexstr(Addr) + ", 0x" + utohexstr(Addr + Len - 1) + "]";
|
|
}
|
|
|
|
// Assign file offsets to output sections.
|
|
template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
|
|
uint64_t Off = 0;
|
|
Off = setFileOffset(Out::ElfHeader, Off);
|
|
Off = setFileOffset(Out::ProgramHeaders, Off);
|
|
|
|
PhdrEntry *LastRX = nullptr;
|
|
for (PhdrEntry *P : Phdrs)
|
|
if (P->p_type == PT_LOAD && (P->p_flags & PF_X))
|
|
LastRX = P;
|
|
|
|
for (OutputSection *Sec : OutputSections) {
|
|
Off = setFileOffset(Sec, Off);
|
|
if (Script->HasSectionsCommand)
|
|
continue;
|
|
|
|
// If this is a last section of the last executable segment and that
|
|
// segment is the last loadable segment, align the offset of the
|
|
// following section to avoid loading non-segments parts of the file.
|
|
if (LastRX && LastRX->LastSec == Sec)
|
|
Off = alignTo(Off, Target->PageSize);
|
|
}
|
|
|
|
SectionHeaderOff = alignTo(Off, Config->Wordsize);
|
|
FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr);
|
|
|
|
// Our logic assumes that sections have rising VA within the same segment.
|
|
// With use of linker scripts it is possible to violate this rule and get file
|
|
// offset overlaps or overflows. That should never happen with a valid script
|
|
// which does not move the location counter backwards and usually scripts do
|
|
// not do that. Unfortunately, there are apps in the wild, for example, Linux
|
|
// kernel, which control segment distribution explicitly and move the counter
|
|
// backwards, so we have to allow doing that to support linking them. We
|
|
// perform non-critical checks for overlaps in checkSectionOverlap(), but here
|
|
// we want to prevent file size overflows because it would crash the linker.
|
|
for (OutputSection *Sec : OutputSections) {
|
|
if (Sec->Type == SHT_NOBITS)
|
|
continue;
|
|
if ((Sec->Offset > FileSize) || (Sec->Offset + Sec->Size > FileSize))
|
|
error("unable to place section " + Sec->Name + " at file offset " +
|
|
rangeToString(Sec->Offset, Sec->Size) +
|
|
"; check your linker script for overflows");
|
|
}
|
|
}
|
|
|
|
// Finalize the program headers. We call this function after we assign
|
|
// file offsets and VAs to all sections.
|
|
template <class ELFT> void Writer<ELFT>::setPhdrs() {
|
|
for (PhdrEntry *P : Phdrs) {
|
|
OutputSection *First = P->FirstSec;
|
|
OutputSection *Last = P->LastSec;
|
|
|
|
if (First) {
|
|
P->p_filesz = Last->Offset - First->Offset;
|
|
if (Last->Type != SHT_NOBITS)
|
|
P->p_filesz += Last->Size;
|
|
|
|
P->p_memsz = Last->Addr + Last->Size - First->Addr;
|
|
P->p_offset = First->Offset;
|
|
P->p_vaddr = First->Addr;
|
|
|
|
if (!P->HasLMA)
|
|
P->p_paddr = First->getLMA();
|
|
}
|
|
|
|
if (P->p_type == PT_LOAD) {
|
|
P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize);
|
|
} else if (P->p_type == PT_GNU_RELRO) {
|
|
P->p_align = 1;
|
|
// The glibc dynamic loader rounds the size down, so we need to round up
|
|
// to protect the last page. This is a no-op on FreeBSD which always
|
|
// rounds up.
|
|
P->p_memsz = alignTo(P->p_memsz, Target->PageSize);
|
|
}
|
|
|
|
if (P->p_type == PT_TLS && P->p_memsz) {
|
|
if (!Config->Shared &&
|
|
(Config->EMachine == EM_ARM || Config->EMachine == EM_AARCH64)) {
|
|
// On ARM/AArch64, reserve extra space (8 words) between the thread
|
|
// pointer and an executable's TLS segment by overaligning the segment.
|
|
// This reservation is needed for backwards compatibility with Android's
|
|
// TCB, which allocates several slots after the thread pointer (e.g.
|
|
// TLS_SLOT_STACK_GUARD==5). For simplicity, this overalignment is also
|
|
// done on other operating systems.
|
|
P->p_align = std::max<uint64_t>(P->p_align, Config->Wordsize * 8);
|
|
}
|
|
|
|
// The TLS pointer goes after PT_TLS for variant 2 targets. At least glibc
|
|
// will align it, so round up the size to make sure the offsets are
|
|
// correct.
|
|
P->p_memsz = alignTo(P->p_memsz, P->p_align);
|
|
}
|
|
}
|
|
}
|
|
|
|
// A helper struct for checkSectionOverlap.
|
|
namespace {
|
|
struct SectionOffset {
|
|
OutputSection *Sec;
|
|
uint64_t Offset;
|
|
};
|
|
} // namespace
|
|
|
|
// Check whether sections overlap for a specific address range (file offsets,
|
|
// load and virtual adresses).
|
|
static void checkOverlap(StringRef Name, std::vector<SectionOffset> &Sections,
|
|
bool IsVirtualAddr) {
|
|
llvm::sort(Sections, [=](const SectionOffset &A, const SectionOffset &B) {
|
|
return A.Offset < B.Offset;
|
|
});
|
|
|
|
// Finding overlap is easy given a vector is sorted by start position.
|
|
// If an element starts before the end of the previous element, they overlap.
|
|
for (size_t I = 1, End = Sections.size(); I < End; ++I) {
|
|
SectionOffset A = Sections[I - 1];
|
|
SectionOffset B = Sections[I];
|
|
if (B.Offset >= A.Offset + A.Sec->Size)
|
|
continue;
|
|
|
|
// If both sections are in OVERLAY we allow the overlapping of virtual
|
|
// addresses, because it is what OVERLAY was designed for.
|
|
if (IsVirtualAddr && A.Sec->InOverlay && B.Sec->InOverlay)
|
|
continue;
|
|
|
|
errorOrWarn("section " + A.Sec->Name + " " + Name +
|
|
" range overlaps with " + B.Sec->Name + "\n>>> " + A.Sec->Name +
|
|
" range is " + rangeToString(A.Offset, A.Sec->Size) + "\n>>> " +
|
|
B.Sec->Name + " range is " +
|
|
rangeToString(B.Offset, B.Sec->Size));
|
|
}
|
|
}
|
|
|
|
// Check for overlapping sections and address overflows.
|
|
//
|
|
// In this function we check that none of the output sections have overlapping
|
|
// file offsets. For SHF_ALLOC sections we also check that the load address
|
|
// ranges and the virtual address ranges don't overlap
|
|
template <class ELFT> void Writer<ELFT>::checkSections() {
|
|
// First, check that section's VAs fit in available address space for target.
|
|
for (OutputSection *OS : OutputSections)
|
|
if ((OS->Addr + OS->Size < OS->Addr) ||
|
|
(!ELFT::Is64Bits && OS->Addr + OS->Size > UINT32_MAX))
|
|
errorOrWarn("section " + OS->Name + " at 0x" + utohexstr(OS->Addr) +
|
|
" of size 0x" + utohexstr(OS->Size) +
|
|
" exceeds available address space");
|
|
|
|
// Check for overlapping file offsets. In this case we need to skip any
|
|
// section marked as SHT_NOBITS. These sections don't actually occupy space in
|
|
// the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
|
|
// binary is specified only add SHF_ALLOC sections are added to the output
|
|
// file so we skip any non-allocated sections in that case.
|
|
std::vector<SectionOffset> FileOffs;
|
|
for (OutputSection *Sec : OutputSections)
|
|
if (Sec->Size > 0 && Sec->Type != SHT_NOBITS &&
|
|
(!Config->OFormatBinary || (Sec->Flags & SHF_ALLOC)))
|
|
FileOffs.push_back({Sec, Sec->Offset});
|
|
checkOverlap("file", FileOffs, false);
|
|
|
|
// When linking with -r there is no need to check for overlapping virtual/load
|
|
// addresses since those addresses will only be assigned when the final
|
|
// executable/shared object is created.
|
|
if (Config->Relocatable)
|
|
return;
|
|
|
|
// Checking for overlapping virtual and load addresses only needs to take
|
|
// into account SHF_ALLOC sections since others will not be loaded.
|
|
// Furthermore, we also need to skip SHF_TLS sections since these will be
|
|
// mapped to other addresses at runtime and can therefore have overlapping
|
|
// ranges in the file.
|
|
std::vector<SectionOffset> VMAs;
|
|
for (OutputSection *Sec : OutputSections)
|
|
if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS))
|
|
VMAs.push_back({Sec, Sec->Addr});
|
|
checkOverlap("virtual address", VMAs, true);
|
|
|
|
// Finally, check that the load addresses don't overlap. This will usually be
|
|
// the same as the virtual addresses but can be different when using a linker
|
|
// script with AT().
|
|
std::vector<SectionOffset> LMAs;
|
|
for (OutputSection *Sec : OutputSections)
|
|
if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS))
|
|
LMAs.push_back({Sec, Sec->getLMA()});
|
|
checkOverlap("load address", LMAs, false);
|
|
}
|
|
|
|
// The entry point address is chosen in the following ways.
|
|
//
|
|
// 1. the '-e' entry command-line option;
|
|
// 2. the ENTRY(symbol) command in a linker control script;
|
|
// 3. the value of the symbol _start, if present;
|
|
// 4. the number represented by the entry symbol, if it is a number;
|
|
// 5. the address of the first byte of the .text section, if present;
|
|
// 6. the address 0.
|
|
static uint64_t getEntryAddr() {
|
|
// Case 1, 2 or 3
|
|
if (Symbol *B = Symtab->find(Config->Entry))
|
|
return B->getVA();
|
|
|
|
// Case 4
|
|
uint64_t Addr;
|
|
if (to_integer(Config->Entry, Addr))
|
|
return Addr;
|
|
|
|
// Case 5
|
|
if (OutputSection *Sec = findSection(".text")) {
|
|
if (Config->WarnMissingEntry)
|
|
warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" +
|
|
utohexstr(Sec->Addr));
|
|
return Sec->Addr;
|
|
}
|
|
|
|
// Case 6
|
|
if (Config->WarnMissingEntry)
|
|
warn("cannot find entry symbol " + Config->Entry +
|
|
"; not setting start address");
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t getELFType() {
|
|
if (Config->Pic)
|
|
return ET_DYN;
|
|
if (Config->Relocatable)
|
|
return ET_REL;
|
|
return ET_EXEC;
|
|
}
|
|
|
|
static uint8_t getAbiVersion() {
|
|
// MIPS non-PIC executable gets ABI version 1.
|
|
if (Config->EMachine == EM_MIPS) {
|
|
if (getELFType() == ET_EXEC &&
|
|
(Config->EFlags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
if (Config->EMachine == EM_AMDGPU) {
|
|
uint8_t Ver = ObjectFiles[0]->ABIVersion;
|
|
for (InputFile *File : makeArrayRef(ObjectFiles).slice(1))
|
|
if (File->ABIVersion != Ver)
|
|
error("incompatible ABI version: " + toString(File));
|
|
return Ver;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
template <class ELFT> void Writer<ELFT>::writeHeader() {
|
|
// For executable segments, the trap instructions are written before writing
|
|
// the header. Setting Elf header bytes to zero ensures that any unused bytes
|
|
// in header are zero-cleared, instead of having trap instructions.
|
|
memset(Out::BufferStart, 0, sizeof(Elf_Ehdr));
|
|
memcpy(Out::BufferStart, "\177ELF", 4);
|
|
|
|
// Write the ELF header.
|
|
auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Out::BufferStart);
|
|
EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32;
|
|
EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB;
|
|
EHdr->e_ident[EI_VERSION] = EV_CURRENT;
|
|
EHdr->e_ident[EI_OSABI] = Config->OSABI;
|
|
EHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
|
|
EHdr->e_type = getELFType();
|
|
EHdr->e_machine = Config->EMachine;
|
|
EHdr->e_version = EV_CURRENT;
|
|
EHdr->e_entry = getEntryAddr();
|
|
EHdr->e_shoff = SectionHeaderOff;
|
|
EHdr->e_flags = Config->EFlags;
|
|
EHdr->e_ehsize = sizeof(Elf_Ehdr);
|
|
EHdr->e_phnum = Phdrs.size();
|
|
EHdr->e_shentsize = sizeof(Elf_Shdr);
|
|
|
|
if (!Config->Relocatable) {
|
|
EHdr->e_phoff = sizeof(Elf_Ehdr);
|
|
EHdr->e_phentsize = sizeof(Elf_Phdr);
|
|
}
|
|
|
|
// Write the program header table.
|
|
auto *HBuf = reinterpret_cast<Elf_Phdr *>(Out::BufferStart + EHdr->e_phoff);
|
|
for (PhdrEntry *P : Phdrs) {
|
|
HBuf->p_type = P->p_type;
|
|
HBuf->p_flags = P->p_flags;
|
|
HBuf->p_offset = P->p_offset;
|
|
HBuf->p_vaddr = P->p_vaddr;
|
|
HBuf->p_paddr = P->p_paddr;
|
|
HBuf->p_filesz = P->p_filesz;
|
|
HBuf->p_memsz = P->p_memsz;
|
|
HBuf->p_align = P->p_align;
|
|
++HBuf;
|
|
}
|
|
|
|
// Write the section header table.
|
|
//
|
|
// The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
|
|
// and e_shstrndx fields. When the value of one of these fields exceeds
|
|
// SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
|
|
// use fields in the section header at index 0 to store
|
|
// the value. The sentinel values and fields are:
|
|
// e_shnum = 0, SHdrs[0].sh_size = number of sections.
|
|
// e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
|
|
auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Out::BufferStart + EHdr->e_shoff);
|
|
size_t Num = OutputSections.size() + 1;
|
|
if (Num >= SHN_LORESERVE)
|
|
SHdrs->sh_size = Num;
|
|
else
|
|
EHdr->e_shnum = Num;
|
|
|
|
uint32_t StrTabIndex = In.ShStrTab->getParent()->SectionIndex;
|
|
if (StrTabIndex >= SHN_LORESERVE) {
|
|
SHdrs->sh_link = StrTabIndex;
|
|
EHdr->e_shstrndx = SHN_XINDEX;
|
|
} else {
|
|
EHdr->e_shstrndx = StrTabIndex;
|
|
}
|
|
|
|
for (OutputSection *Sec : OutputSections)
|
|
Sec->writeHeaderTo<ELFT>(++SHdrs);
|
|
}
|
|
|
|
// Open a result file.
|
|
template <class ELFT> void Writer<ELFT>::openFile() {
|
|
uint64_t MaxSize = Config->Is64 ? INT64_MAX : UINT32_MAX;
|
|
if (FileSize != size_t(FileSize) || MaxSize < FileSize) {
|
|
error("output file too large: " + Twine(FileSize) + " bytes");
|
|
return;
|
|
}
|
|
|
|
unlinkAsync(Config->OutputFile);
|
|
unsigned Flags = 0;
|
|
if (!Config->Relocatable)
|
|
Flags = FileOutputBuffer::F_executable;
|
|
Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
|
|
FileOutputBuffer::create(Config->OutputFile, FileSize, Flags);
|
|
|
|
if (!BufferOrErr) {
|
|
error("failed to open " + Config->OutputFile + ": " +
|
|
llvm::toString(BufferOrErr.takeError()));
|
|
return;
|
|
}
|
|
Buffer = std::move(*BufferOrErr);
|
|
Out::BufferStart = Buffer->getBufferStart();
|
|
}
|
|
|
|
template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
|
|
for (OutputSection *Sec : OutputSections)
|
|
if (Sec->Flags & SHF_ALLOC)
|
|
Sec->writeTo<ELFT>(Out::BufferStart + Sec->Offset);
|
|
}
|
|
|
|
static void fillTrap(uint8_t *I, uint8_t *End) {
|
|
for (; I + 4 <= End; I += 4)
|
|
memcpy(I, &Target->TrapInstr, 4);
|
|
}
|
|
|
|
// Fill the last page of executable segments with trap instructions
|
|
// instead of leaving them as zero. Even though it is not required by any
|
|
// standard, it is in general a good thing to do for security reasons.
|
|
//
|
|
// We'll leave other pages in segments as-is because the rest will be
|
|
// overwritten by output sections.
|
|
template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
|
|
if (Script->HasSectionsCommand)
|
|
return;
|
|
|
|
// Fill the last page.
|
|
for (PhdrEntry *P : Phdrs)
|
|
if (P->p_type == PT_LOAD && (P->p_flags & PF_X))
|
|
fillTrap(Out::BufferStart +
|
|
alignDown(P->p_offset + P->p_filesz, Target->PageSize),
|
|
Out::BufferStart +
|
|
alignTo(P->p_offset + P->p_filesz, Target->PageSize));
|
|
|
|
// Round up the file size of the last segment to the page boundary iff it is
|
|
// an executable segment to ensure that other tools don't accidentally
|
|
// trim the instruction padding (e.g. when stripping the file).
|
|
PhdrEntry *Last = nullptr;
|
|
for (PhdrEntry *P : Phdrs)
|
|
if (P->p_type == PT_LOAD)
|
|
Last = P;
|
|
|
|
if (Last && (Last->p_flags & PF_X))
|
|
Last->p_memsz = Last->p_filesz = alignTo(Last->p_filesz, Target->PageSize);
|
|
}
|
|
|
|
// Write section contents to a mmap'ed file.
|
|
template <class ELFT> void Writer<ELFT>::writeSections() {
|
|
// In -r or -emit-relocs mode, write the relocation sections first as in
|
|
// ELf_Rel targets we might find out that we need to modify the relocated
|
|
// section while doing it.
|
|
for (OutputSection *Sec : OutputSections)
|
|
if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA)
|
|
Sec->writeTo<ELFT>(Out::BufferStart + Sec->Offset);
|
|
|
|
for (OutputSection *Sec : OutputSections)
|
|
if (Sec->Type != SHT_REL && Sec->Type != SHT_RELA)
|
|
Sec->writeTo<ELFT>(Out::BufferStart + Sec->Offset);
|
|
}
|
|
|
|
// Split one uint8 array into small pieces of uint8 arrays.
|
|
static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> Arr,
|
|
size_t ChunkSize) {
|
|
std::vector<ArrayRef<uint8_t>> Ret;
|
|
while (Arr.size() > ChunkSize) {
|
|
Ret.push_back(Arr.take_front(ChunkSize));
|
|
Arr = Arr.drop_front(ChunkSize);
|
|
}
|
|
if (!Arr.empty())
|
|
Ret.push_back(Arr);
|
|
return Ret;
|
|
}
|
|
|
|
// Computes a hash value of Data using a given hash function.
|
|
// In order to utilize multiple cores, we first split data into 1MB
|
|
// chunks, compute a hash for each chunk, and then compute a hash value
|
|
// of the hash values.
|
|
static void
|
|
computeHash(llvm::MutableArrayRef<uint8_t> HashBuf,
|
|
llvm::ArrayRef<uint8_t> Data,
|
|
std::function<void(uint8_t *Dest, ArrayRef<uint8_t> Arr)> HashFn) {
|
|
std::vector<ArrayRef<uint8_t>> Chunks = split(Data, 1024 * 1024);
|
|
std::vector<uint8_t> Hashes(Chunks.size() * HashBuf.size());
|
|
|
|
// Compute hash values.
|
|
parallelForEachN(0, Chunks.size(), [&](size_t I) {
|
|
HashFn(Hashes.data() + I * HashBuf.size(), Chunks[I]);
|
|
});
|
|
|
|
// Write to the final output buffer.
|
|
HashFn(HashBuf.data(), Hashes);
|
|
}
|
|
|
|
template <class ELFT> void Writer<ELFT>::writeBuildId() {
|
|
if (!In.BuildId || !In.BuildId->getParent())
|
|
return;
|
|
|
|
if (Config->BuildId == BuildIdKind::Hexstring) {
|
|
In.BuildId->writeBuildId(Config->BuildIdVector);
|
|
return;
|
|
}
|
|
|
|
// Compute a hash of all sections of the output file.
|
|
std::vector<uint8_t> BuildId(In.BuildId->HashSize);
|
|
llvm::ArrayRef<uint8_t> Buf{Out::BufferStart, size_t(FileSize)};
|
|
|
|
switch (Config->BuildId) {
|
|
case BuildIdKind::Fast:
|
|
computeHash(BuildId, Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) {
|
|
write64le(Dest, xxHash64(Arr));
|
|
});
|
|
break;
|
|
case BuildIdKind::Md5:
|
|
computeHash(BuildId, Buf, [&](uint8_t *Dest, ArrayRef<uint8_t> Arr) {
|
|
memcpy(Dest, MD5::hash(Arr).data(), In.BuildId->HashSize);
|
|
});
|
|
break;
|
|
case BuildIdKind::Sha1:
|
|
computeHash(BuildId, Buf, [&](uint8_t *Dest, ArrayRef<uint8_t> Arr) {
|
|
memcpy(Dest, SHA1::hash(Arr).data(), In.BuildId->HashSize);
|
|
});
|
|
break;
|
|
case BuildIdKind::Uuid:
|
|
if (auto EC = llvm::getRandomBytes(BuildId.data(), In.BuildId->HashSize))
|
|
error("entropy source failure: " + EC.message());
|
|
break;
|
|
default:
|
|
llvm_unreachable("unknown BuildIdKind");
|
|
}
|
|
In.BuildId->writeBuildId(BuildId);
|
|
}
|
|
|
|
template void elf::writeResult<ELF32LE>();
|
|
template void elf::writeResult<ELF32BE>();
|
|
template void elf::writeResult<ELF64LE>();
|
|
template void elf::writeResult<ELF64BE>();
|