forked from OSchip/llvm-project
4023 lines
146 KiB
C++
4023 lines
146 KiB
C++
//===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines an instruction selector for the AArch64 target.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64TargetMachine.h"
|
|
#include "MCTargetDesc/AArch64AddressingModes.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/IR/Function.h" // To access function attributes.
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "aarch64-isel"
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
|
|
/// instructions for SelectionDAG operations.
|
|
///
|
|
namespace {
|
|
|
|
class AArch64DAGToDAGISel : public SelectionDAGISel {
|
|
|
|
/// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
|
|
/// make the right decision when generating code for different targets.
|
|
const AArch64Subtarget *Subtarget;
|
|
|
|
bool ForCodeSize;
|
|
|
|
public:
|
|
explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
|
|
CodeGenOpt::Level OptLevel)
|
|
: SelectionDAGISel(tm, OptLevel), Subtarget(nullptr),
|
|
ForCodeSize(false) {}
|
|
|
|
StringRef getPassName() const override {
|
|
return "AArch64 Instruction Selection";
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override {
|
|
ForCodeSize = MF.getFunction().optForSize();
|
|
Subtarget = &MF.getSubtarget<AArch64Subtarget>();
|
|
return SelectionDAGISel::runOnMachineFunction(MF);
|
|
}
|
|
|
|
void Select(SDNode *Node) override;
|
|
|
|
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
|
|
/// inline asm expressions.
|
|
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
|
|
unsigned ConstraintID,
|
|
std::vector<SDValue> &OutOps) override;
|
|
|
|
bool tryMLAV64LaneV128(SDNode *N);
|
|
bool tryMULLV64LaneV128(unsigned IntNo, SDNode *N);
|
|
bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
|
|
bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
|
|
bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
|
|
bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
|
|
return SelectShiftedRegister(N, false, Reg, Shift);
|
|
}
|
|
bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
|
|
return SelectShiftedRegister(N, true, Reg, Shift);
|
|
}
|
|
bool SelectAddrModeIndexed7S8(SDValue N, SDValue &Base, SDValue &OffImm) {
|
|
return SelectAddrModeIndexed7S(N, 1, Base, OffImm);
|
|
}
|
|
bool SelectAddrModeIndexed7S16(SDValue N, SDValue &Base, SDValue &OffImm) {
|
|
return SelectAddrModeIndexed7S(N, 2, Base, OffImm);
|
|
}
|
|
bool SelectAddrModeIndexed7S32(SDValue N, SDValue &Base, SDValue &OffImm) {
|
|
return SelectAddrModeIndexed7S(N, 4, Base, OffImm);
|
|
}
|
|
bool SelectAddrModeIndexed7S64(SDValue N, SDValue &Base, SDValue &OffImm) {
|
|
return SelectAddrModeIndexed7S(N, 8, Base, OffImm);
|
|
}
|
|
bool SelectAddrModeIndexed7S128(SDValue N, SDValue &Base, SDValue &OffImm) {
|
|
return SelectAddrModeIndexed7S(N, 16, Base, OffImm);
|
|
}
|
|
bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
|
|
return SelectAddrModeIndexed(N, 1, Base, OffImm);
|
|
}
|
|
bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
|
|
return SelectAddrModeIndexed(N, 2, Base, OffImm);
|
|
}
|
|
bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
|
|
return SelectAddrModeIndexed(N, 4, Base, OffImm);
|
|
}
|
|
bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
|
|
return SelectAddrModeIndexed(N, 8, Base, OffImm);
|
|
}
|
|
bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
|
|
return SelectAddrModeIndexed(N, 16, Base, OffImm);
|
|
}
|
|
bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
|
|
return SelectAddrModeUnscaled(N, 1, Base, OffImm);
|
|
}
|
|
bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
|
|
return SelectAddrModeUnscaled(N, 2, Base, OffImm);
|
|
}
|
|
bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
|
|
return SelectAddrModeUnscaled(N, 4, Base, OffImm);
|
|
}
|
|
bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
|
|
return SelectAddrModeUnscaled(N, 8, Base, OffImm);
|
|
}
|
|
bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
|
|
return SelectAddrModeUnscaled(N, 16, Base, OffImm);
|
|
}
|
|
|
|
template<int Width>
|
|
bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset,
|
|
SDValue &SignExtend, SDValue &DoShift) {
|
|
return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
|
|
}
|
|
|
|
template<int Width>
|
|
bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset,
|
|
SDValue &SignExtend, SDValue &DoShift) {
|
|
return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
|
|
}
|
|
|
|
|
|
/// Form sequences of consecutive 64/128-bit registers for use in NEON
|
|
/// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
|
|
/// between 1 and 4 elements. If it contains a single element that is returned
|
|
/// unchanged; otherwise a REG_SEQUENCE value is returned.
|
|
SDValue createDTuple(ArrayRef<SDValue> Vecs);
|
|
SDValue createQTuple(ArrayRef<SDValue> Vecs);
|
|
|
|
/// Generic helper for the createDTuple/createQTuple
|
|
/// functions. Those should almost always be called instead.
|
|
SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[],
|
|
const unsigned SubRegs[]);
|
|
|
|
void SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
|
|
|
|
bool tryIndexedLoad(SDNode *N);
|
|
|
|
void SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
|
|
unsigned SubRegIdx);
|
|
void SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
|
|
unsigned SubRegIdx);
|
|
void SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
|
|
void SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
|
|
|
|
void SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
|
|
void SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc);
|
|
void SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
|
|
void SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
|
|
|
|
bool tryBitfieldExtractOp(SDNode *N);
|
|
bool tryBitfieldExtractOpFromSExt(SDNode *N);
|
|
bool tryBitfieldInsertOp(SDNode *N);
|
|
bool tryBitfieldInsertInZeroOp(SDNode *N);
|
|
|
|
bool tryReadRegister(SDNode *N);
|
|
bool tryWriteRegister(SDNode *N);
|
|
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "AArch64GenDAGISel.inc"
|
|
|
|
private:
|
|
bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
|
|
SDValue &Shift);
|
|
bool SelectAddrModeIndexed7S(SDValue N, unsigned Size, SDValue &Base,
|
|
SDValue &OffImm);
|
|
bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
|
|
SDValue &OffImm);
|
|
bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
|
|
SDValue &OffImm);
|
|
bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base,
|
|
SDValue &Offset, SDValue &SignExtend,
|
|
SDValue &DoShift);
|
|
bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base,
|
|
SDValue &Offset, SDValue &SignExtend,
|
|
SDValue &DoShift);
|
|
bool isWorthFolding(SDValue V) const;
|
|
bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend,
|
|
SDValue &Offset, SDValue &SignExtend);
|
|
|
|
template<unsigned RegWidth>
|
|
bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
|
|
return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
|
|
}
|
|
|
|
bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
|
|
|
|
bool SelectCMP_SWAP(SDNode *N);
|
|
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// isIntImmediate - This method tests to see if the node is a constant
|
|
/// operand. If so Imm will receive the 32-bit value.
|
|
static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
|
|
if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
|
|
Imm = C->getZExtValue();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// isIntImmediate - This method tests to see if a constant operand.
|
|
// If so Imm will receive the value.
|
|
static bool isIntImmediate(SDValue N, uint64_t &Imm) {
|
|
return isIntImmediate(N.getNode(), Imm);
|
|
}
|
|
|
|
// isOpcWithIntImmediate - This method tests to see if the node is a specific
|
|
// opcode and that it has a immediate integer right operand.
|
|
// If so Imm will receive the 32 bit value.
|
|
static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
|
|
uint64_t &Imm) {
|
|
return N->getOpcode() == Opc &&
|
|
isIntImmediate(N->getOperand(1).getNode(), Imm);
|
|
}
|
|
|
|
bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
|
|
const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
|
|
switch(ConstraintID) {
|
|
default:
|
|
llvm_unreachable("Unexpected asm memory constraint");
|
|
case InlineAsm::Constraint_i:
|
|
case InlineAsm::Constraint_m:
|
|
case InlineAsm::Constraint_Q:
|
|
// We need to make sure that this one operand does not end up in XZR, thus
|
|
// require the address to be in a PointerRegClass register.
|
|
const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
|
|
const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF);
|
|
SDLoc dl(Op);
|
|
SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i64);
|
|
SDValue NewOp =
|
|
SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
|
|
dl, Op.getValueType(),
|
|
Op, RC), 0);
|
|
OutOps.push_back(NewOp);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// SelectArithImmed - Select an immediate value that can be represented as
|
|
/// a 12-bit value shifted left by either 0 or 12. If so, return true with
|
|
/// Val set to the 12-bit value and Shift set to the shifter operand.
|
|
bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
|
|
SDValue &Shift) {
|
|
// This function is called from the addsub_shifted_imm ComplexPattern,
|
|
// which lists [imm] as the list of opcode it's interested in, however
|
|
// we still need to check whether the operand is actually an immediate
|
|
// here because the ComplexPattern opcode list is only used in
|
|
// root-level opcode matching.
|
|
if (!isa<ConstantSDNode>(N.getNode()))
|
|
return false;
|
|
|
|
uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
|
|
unsigned ShiftAmt;
|
|
|
|
if (Immed >> 12 == 0) {
|
|
ShiftAmt = 0;
|
|
} else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
|
|
ShiftAmt = 12;
|
|
Immed = Immed >> 12;
|
|
} else
|
|
return false;
|
|
|
|
unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
|
|
SDLoc dl(N);
|
|
Val = CurDAG->getTargetConstant(Immed, dl, MVT::i32);
|
|
Shift = CurDAG->getTargetConstant(ShVal, dl, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
/// SelectNegArithImmed - As above, but negates the value before trying to
|
|
/// select it.
|
|
bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
|
|
SDValue &Shift) {
|
|
// This function is called from the addsub_shifted_imm ComplexPattern,
|
|
// which lists [imm] as the list of opcode it's interested in, however
|
|
// we still need to check whether the operand is actually an immediate
|
|
// here because the ComplexPattern opcode list is only used in
|
|
// root-level opcode matching.
|
|
if (!isa<ConstantSDNode>(N.getNode()))
|
|
return false;
|
|
|
|
// The immediate operand must be a 24-bit zero-extended immediate.
|
|
uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
|
|
|
|
// This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
|
|
// have the opposite effect on the C flag, so this pattern mustn't match under
|
|
// those circumstances.
|
|
if (Immed == 0)
|
|
return false;
|
|
|
|
if (N.getValueType() == MVT::i32)
|
|
Immed = ~((uint32_t)Immed) + 1;
|
|
else
|
|
Immed = ~Immed + 1ULL;
|
|
if (Immed & 0xFFFFFFFFFF000000ULL)
|
|
return false;
|
|
|
|
Immed &= 0xFFFFFFULL;
|
|
return SelectArithImmed(CurDAG->getConstant(Immed, SDLoc(N), MVT::i32), Val,
|
|
Shift);
|
|
}
|
|
|
|
/// getShiftTypeForNode - Translate a shift node to the corresponding
|
|
/// ShiftType value.
|
|
static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
|
|
switch (N.getOpcode()) {
|
|
default:
|
|
return AArch64_AM::InvalidShiftExtend;
|
|
case ISD::SHL:
|
|
return AArch64_AM::LSL;
|
|
case ISD::SRL:
|
|
return AArch64_AM::LSR;
|
|
case ISD::SRA:
|
|
return AArch64_AM::ASR;
|
|
case ISD::ROTR:
|
|
return AArch64_AM::ROR;
|
|
}
|
|
}
|
|
|
|
/// \brief Determine whether it is worth it to fold SHL into the addressing
|
|
/// mode.
|
|
static bool isWorthFoldingSHL(SDValue V) {
|
|
assert(V.getOpcode() == ISD::SHL && "invalid opcode");
|
|
// It is worth folding logical shift of up to three places.
|
|
auto *CSD = dyn_cast<ConstantSDNode>(V.getOperand(1));
|
|
if (!CSD)
|
|
return false;
|
|
unsigned ShiftVal = CSD->getZExtValue();
|
|
if (ShiftVal > 3)
|
|
return false;
|
|
|
|
// Check if this particular node is reused in any non-memory related
|
|
// operation. If yes, do not try to fold this node into the address
|
|
// computation, since the computation will be kept.
|
|
const SDNode *Node = V.getNode();
|
|
for (SDNode *UI : Node->uses())
|
|
if (!isa<MemSDNode>(*UI))
|
|
for (SDNode *UII : UI->uses())
|
|
if (!isa<MemSDNode>(*UII))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// \brief Determine whether it is worth to fold V into an extended register.
|
|
bool AArch64DAGToDAGISel::isWorthFolding(SDValue V) const {
|
|
// Trivial if we are optimizing for code size or if there is only
|
|
// one use of the value.
|
|
if (ForCodeSize || V.hasOneUse())
|
|
return true;
|
|
// If a subtarget has a fastpath LSL we can fold a logical shift into
|
|
// the addressing mode and save a cycle.
|
|
if (Subtarget->hasLSLFast() && V.getOpcode() == ISD::SHL &&
|
|
isWorthFoldingSHL(V))
|
|
return true;
|
|
if (Subtarget->hasLSLFast() && V.getOpcode() == ISD::ADD) {
|
|
const SDValue LHS = V.getOperand(0);
|
|
const SDValue RHS = V.getOperand(1);
|
|
if (LHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(LHS))
|
|
return true;
|
|
if (RHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(RHS))
|
|
return true;
|
|
}
|
|
|
|
// It hurts otherwise, since the value will be reused.
|
|
return false;
|
|
}
|
|
|
|
/// SelectShiftedRegister - Select a "shifted register" operand. If the value
|
|
/// is not shifted, set the Shift operand to default of "LSL 0". The logical
|
|
/// instructions allow the shifted register to be rotated, but the arithmetic
|
|
/// instructions do not. The AllowROR parameter specifies whether ROR is
|
|
/// supported.
|
|
bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
|
|
SDValue &Reg, SDValue &Shift) {
|
|
AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N);
|
|
if (ShType == AArch64_AM::InvalidShiftExtend)
|
|
return false;
|
|
if (!AllowROR && ShType == AArch64_AM::ROR)
|
|
return false;
|
|
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
unsigned BitSize = N.getValueSizeInBits();
|
|
unsigned Val = RHS->getZExtValue() & (BitSize - 1);
|
|
unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val);
|
|
|
|
Reg = N.getOperand(0);
|
|
Shift = CurDAG->getTargetConstant(ShVal, SDLoc(N), MVT::i32);
|
|
return isWorthFolding(N);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getExtendTypeForNode - Translate an extend node to the corresponding
|
|
/// ExtendType value.
|
|
static AArch64_AM::ShiftExtendType
|
|
getExtendTypeForNode(SDValue N, bool IsLoadStore = false) {
|
|
if (N.getOpcode() == ISD::SIGN_EXTEND ||
|
|
N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
|
|
EVT SrcVT;
|
|
if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
|
|
SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
|
|
else
|
|
SrcVT = N.getOperand(0).getValueType();
|
|
|
|
if (!IsLoadStore && SrcVT == MVT::i8)
|
|
return AArch64_AM::SXTB;
|
|
else if (!IsLoadStore && SrcVT == MVT::i16)
|
|
return AArch64_AM::SXTH;
|
|
else if (SrcVT == MVT::i32)
|
|
return AArch64_AM::SXTW;
|
|
assert(SrcVT != MVT::i64 && "extend from 64-bits?");
|
|
|
|
return AArch64_AM::InvalidShiftExtend;
|
|
} else if (N.getOpcode() == ISD::ZERO_EXTEND ||
|
|
N.getOpcode() == ISD::ANY_EXTEND) {
|
|
EVT SrcVT = N.getOperand(0).getValueType();
|
|
if (!IsLoadStore && SrcVT == MVT::i8)
|
|
return AArch64_AM::UXTB;
|
|
else if (!IsLoadStore && SrcVT == MVT::i16)
|
|
return AArch64_AM::UXTH;
|
|
else if (SrcVT == MVT::i32)
|
|
return AArch64_AM::UXTW;
|
|
assert(SrcVT != MVT::i64 && "extend from 64-bits?");
|
|
|
|
return AArch64_AM::InvalidShiftExtend;
|
|
} else if (N.getOpcode() == ISD::AND) {
|
|
ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
|
|
if (!CSD)
|
|
return AArch64_AM::InvalidShiftExtend;
|
|
uint64_t AndMask = CSD->getZExtValue();
|
|
|
|
switch (AndMask) {
|
|
default:
|
|
return AArch64_AM::InvalidShiftExtend;
|
|
case 0xFF:
|
|
return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
|
|
case 0xFFFF:
|
|
return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
|
|
case 0xFFFFFFFF:
|
|
return AArch64_AM::UXTW;
|
|
}
|
|
}
|
|
|
|
return AArch64_AM::InvalidShiftExtend;
|
|
}
|
|
|
|
// Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
|
|
static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) {
|
|
if (DL->getOpcode() != AArch64ISD::DUPLANE16 &&
|
|
DL->getOpcode() != AArch64ISD::DUPLANE32)
|
|
return false;
|
|
|
|
SDValue SV = DL->getOperand(0);
|
|
if (SV.getOpcode() != ISD::INSERT_SUBVECTOR)
|
|
return false;
|
|
|
|
SDValue EV = SV.getOperand(1);
|
|
if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR)
|
|
return false;
|
|
|
|
ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode());
|
|
ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode());
|
|
LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue();
|
|
LaneOp = EV.getOperand(0);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Helper for SelectOpcV64LaneV128 - Recognize operations where one operand is a
|
|
// high lane extract.
|
|
static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp,
|
|
SDValue &LaneOp, int &LaneIdx) {
|
|
|
|
if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) {
|
|
std::swap(Op0, Op1);
|
|
if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx))
|
|
return false;
|
|
}
|
|
StdOp = Op1;
|
|
return true;
|
|
}
|
|
|
|
/// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand
|
|
/// is a lane in the upper half of a 128-bit vector. Recognize and select this
|
|
/// so that we don't emit unnecessary lane extracts.
|
|
bool AArch64DAGToDAGISel::tryMLAV64LaneV128(SDNode *N) {
|
|
SDLoc dl(N);
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
SDValue MLAOp1; // Will hold ordinary multiplicand for MLA.
|
|
SDValue MLAOp2; // Will hold lane-accessed multiplicand for MLA.
|
|
int LaneIdx = -1; // Will hold the lane index.
|
|
|
|
if (Op1.getOpcode() != ISD::MUL ||
|
|
!checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
|
|
LaneIdx)) {
|
|
std::swap(Op0, Op1);
|
|
if (Op1.getOpcode() != ISD::MUL ||
|
|
!checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
|
|
LaneIdx))
|
|
return false;
|
|
}
|
|
|
|
SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
|
|
|
|
SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal };
|
|
|
|
unsigned MLAOpc = ~0U;
|
|
|
|
switch (N->getSimpleValueType(0).SimpleTy) {
|
|
default:
|
|
llvm_unreachable("Unrecognized MLA.");
|
|
case MVT::v4i16:
|
|
MLAOpc = AArch64::MLAv4i16_indexed;
|
|
break;
|
|
case MVT::v8i16:
|
|
MLAOpc = AArch64::MLAv8i16_indexed;
|
|
break;
|
|
case MVT::v2i32:
|
|
MLAOpc = AArch64::MLAv2i32_indexed;
|
|
break;
|
|
case MVT::v4i32:
|
|
MLAOpc = AArch64::MLAv4i32_indexed;
|
|
break;
|
|
}
|
|
|
|
ReplaceNode(N, CurDAG->getMachineNode(MLAOpc, dl, N->getValueType(0), Ops));
|
|
return true;
|
|
}
|
|
|
|
bool AArch64DAGToDAGISel::tryMULLV64LaneV128(unsigned IntNo, SDNode *N) {
|
|
SDLoc dl(N);
|
|
SDValue SMULLOp0;
|
|
SDValue SMULLOp1;
|
|
int LaneIdx;
|
|
|
|
if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1,
|
|
LaneIdx))
|
|
return false;
|
|
|
|
SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
|
|
|
|
SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal };
|
|
|
|
unsigned SMULLOpc = ~0U;
|
|
|
|
if (IntNo == Intrinsic::aarch64_neon_smull) {
|
|
switch (N->getSimpleValueType(0).SimpleTy) {
|
|
default:
|
|
llvm_unreachable("Unrecognized SMULL.");
|
|
case MVT::v4i32:
|
|
SMULLOpc = AArch64::SMULLv4i16_indexed;
|
|
break;
|
|
case MVT::v2i64:
|
|
SMULLOpc = AArch64::SMULLv2i32_indexed;
|
|
break;
|
|
}
|
|
} else if (IntNo == Intrinsic::aarch64_neon_umull) {
|
|
switch (N->getSimpleValueType(0).SimpleTy) {
|
|
default:
|
|
llvm_unreachable("Unrecognized SMULL.");
|
|
case MVT::v4i32:
|
|
SMULLOpc = AArch64::UMULLv4i16_indexed;
|
|
break;
|
|
case MVT::v2i64:
|
|
SMULLOpc = AArch64::UMULLv2i32_indexed;
|
|
break;
|
|
}
|
|
} else
|
|
llvm_unreachable("Unrecognized intrinsic.");
|
|
|
|
ReplaceNode(N, CurDAG->getMachineNode(SMULLOpc, dl, N->getValueType(0), Ops));
|
|
return true;
|
|
}
|
|
|
|
/// Instructions that accept extend modifiers like UXTW expect the register
|
|
/// being extended to be a GPR32, but the incoming DAG might be acting on a
|
|
/// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
|
|
/// this is the case.
|
|
static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) {
|
|
if (N.getValueType() == MVT::i32)
|
|
return N;
|
|
|
|
SDLoc dl(N);
|
|
SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
|
|
MachineSDNode *Node = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
|
|
dl, MVT::i32, N, SubReg);
|
|
return SDValue(Node, 0);
|
|
}
|
|
|
|
|
|
/// SelectArithExtendedRegister - Select a "extended register" operand. This
|
|
/// operand folds in an extend followed by an optional left shift.
|
|
bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
|
|
SDValue &Shift) {
|
|
unsigned ShiftVal = 0;
|
|
AArch64_AM::ShiftExtendType Ext;
|
|
|
|
if (N.getOpcode() == ISD::SHL) {
|
|
ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
|
|
if (!CSD)
|
|
return false;
|
|
ShiftVal = CSD->getZExtValue();
|
|
if (ShiftVal > 4)
|
|
return false;
|
|
|
|
Ext = getExtendTypeForNode(N.getOperand(0));
|
|
if (Ext == AArch64_AM::InvalidShiftExtend)
|
|
return false;
|
|
|
|
Reg = N.getOperand(0).getOperand(0);
|
|
} else {
|
|
Ext = getExtendTypeForNode(N);
|
|
if (Ext == AArch64_AM::InvalidShiftExtend)
|
|
return false;
|
|
|
|
Reg = N.getOperand(0);
|
|
|
|
// Don't match if free 32-bit -> 64-bit zext can be used instead.
|
|
if (Ext == AArch64_AM::UXTW &&
|
|
Reg->getValueType(0).getSizeInBits() == 32 && isDef32(*Reg.getNode()))
|
|
return false;
|
|
}
|
|
|
|
// AArch64 mandates that the RHS of the operation must use the smallest
|
|
// register class that could contain the size being extended from. Thus,
|
|
// if we're folding a (sext i8), we need the RHS to be a GPR32, even though
|
|
// there might not be an actual 32-bit value in the program. We can
|
|
// (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
|
|
assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX);
|
|
Reg = narrowIfNeeded(CurDAG, Reg);
|
|
Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N),
|
|
MVT::i32);
|
|
return isWorthFolding(N);
|
|
}
|
|
|
|
/// If there's a use of this ADDlow that's not itself a load/store then we'll
|
|
/// need to create a real ADD instruction from it anyway and there's no point in
|
|
/// folding it into the mem op. Theoretically, it shouldn't matter, but there's
|
|
/// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
|
|
/// leads to duplicated ADRP instructions.
|
|
static bool isWorthFoldingADDlow(SDValue N) {
|
|
for (auto Use : N->uses()) {
|
|
if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE &&
|
|
Use->getOpcode() != ISD::ATOMIC_LOAD &&
|
|
Use->getOpcode() != ISD::ATOMIC_STORE)
|
|
return false;
|
|
|
|
// ldar and stlr have much more restrictive addressing modes (just a
|
|
// register).
|
|
if (isStrongerThanMonotonic(cast<MemSDNode>(Use)->getOrdering()))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// SelectAddrModeIndexed7S - Select a "register plus scaled signed 7-bit
|
|
/// immediate" address. The "Size" argument is the size in bytes of the memory
|
|
/// reference, which determines the scale.
|
|
bool AArch64DAGToDAGISel::SelectAddrModeIndexed7S(SDValue N, unsigned Size,
|
|
SDValue &Base,
|
|
SDValue &OffImm) {
|
|
SDLoc dl(N);
|
|
const DataLayout &DL = CurDAG->getDataLayout();
|
|
const TargetLowering *TLI = getTargetLowering();
|
|
if (N.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
|
|
OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
|
|
return true;
|
|
}
|
|
|
|
// As opposed to the (12-bit) Indexed addressing mode below, the 7-bit signed
|
|
// selected here doesn't support labels/immediates, only base+offset.
|
|
|
|
if (CurDAG->isBaseWithConstantOffset(N)) {
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
int64_t RHSC = RHS->getSExtValue();
|
|
unsigned Scale = Log2_32(Size);
|
|
if ((RHSC & (Size - 1)) == 0 && RHSC >= -(0x40 << Scale) &&
|
|
RHSC < (0x40 << Scale)) {
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
|
|
}
|
|
OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Base only. The address will be materialized into a register before
|
|
// the memory is accessed.
|
|
// add x0, Xbase, #offset
|
|
// stp x1, x2, [x0]
|
|
Base = N;
|
|
OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
|
|
return true;
|
|
}
|
|
|
|
/// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
|
|
/// immediate" address. The "Size" argument is the size in bytes of the memory
|
|
/// reference, which determines the scale.
|
|
bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
|
|
SDValue &Base, SDValue &OffImm) {
|
|
SDLoc dl(N);
|
|
const DataLayout &DL = CurDAG->getDataLayout();
|
|
const TargetLowering *TLI = getTargetLowering();
|
|
if (N.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
|
|
OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
|
|
return true;
|
|
}
|
|
|
|
if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) {
|
|
GlobalAddressSDNode *GAN =
|
|
dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
|
|
Base = N.getOperand(0);
|
|
OffImm = N.getOperand(1);
|
|
if (!GAN)
|
|
return true;
|
|
|
|
const GlobalValue *GV = GAN->getGlobal();
|
|
unsigned Alignment = GV->getAlignment();
|
|
Type *Ty = GV->getValueType();
|
|
if (Alignment == 0 && Ty->isSized())
|
|
Alignment = DL.getABITypeAlignment(Ty);
|
|
|
|
if (Alignment >= Size)
|
|
return true;
|
|
}
|
|
|
|
if (CurDAG->isBaseWithConstantOffset(N)) {
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
int64_t RHSC = (int64_t)RHS->getZExtValue();
|
|
unsigned Scale = Log2_32(Size);
|
|
if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
|
|
}
|
|
OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Before falling back to our general case, check if the unscaled
|
|
// instructions can handle this. If so, that's preferable.
|
|
if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
|
|
return false;
|
|
|
|
// Base only. The address will be materialized into a register before
|
|
// the memory is accessed.
|
|
// add x0, Xbase, #offset
|
|
// ldr x0, [x0]
|
|
Base = N;
|
|
OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
|
|
return true;
|
|
}
|
|
|
|
/// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
|
|
/// immediate" address. This should only match when there is an offset that
|
|
/// is not valid for a scaled immediate addressing mode. The "Size" argument
|
|
/// is the size in bytes of the memory reference, which is needed here to know
|
|
/// what is valid for a scaled immediate.
|
|
bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
|
|
SDValue &Base,
|
|
SDValue &OffImm) {
|
|
if (!CurDAG->isBaseWithConstantOffset(N))
|
|
return false;
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
int64_t RHSC = RHS->getSExtValue();
|
|
// If the offset is valid as a scaled immediate, don't match here.
|
|
if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 &&
|
|
RHSC < (0x1000 << Log2_32(Size)))
|
|
return false;
|
|
if (RHSC >= -256 && RHSC < 256) {
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
const TargetLowering *TLI = getTargetLowering();
|
|
Base = CurDAG->getTargetFrameIndex(
|
|
FI, TLI->getPointerTy(CurDAG->getDataLayout()));
|
|
}
|
|
OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i64);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
|
|
SDLoc dl(N);
|
|
SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
|
|
SDValue ImpDef = SDValue(
|
|
CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::i64), 0);
|
|
MachineSDNode *Node = CurDAG->getMachineNode(
|
|
TargetOpcode::INSERT_SUBREG, dl, MVT::i64, ImpDef, N, SubReg);
|
|
return SDValue(Node, 0);
|
|
}
|
|
|
|
/// \brief Check if the given SHL node (\p N), can be used to form an
|
|
/// extended register for an addressing mode.
|
|
bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
|
|
bool WantExtend, SDValue &Offset,
|
|
SDValue &SignExtend) {
|
|
assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
|
|
ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
|
|
if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue())
|
|
return false;
|
|
|
|
SDLoc dl(N);
|
|
if (WantExtend) {
|
|
AArch64_AM::ShiftExtendType Ext =
|
|
getExtendTypeForNode(N.getOperand(0), true);
|
|
if (Ext == AArch64_AM::InvalidShiftExtend)
|
|
return false;
|
|
|
|
Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
|
|
SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
|
|
MVT::i32);
|
|
} else {
|
|
Offset = N.getOperand(0);
|
|
SignExtend = CurDAG->getTargetConstant(0, dl, MVT::i32);
|
|
}
|
|
|
|
unsigned LegalShiftVal = Log2_32(Size);
|
|
unsigned ShiftVal = CSD->getZExtValue();
|
|
|
|
if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
|
|
return false;
|
|
|
|
return isWorthFolding(N);
|
|
}
|
|
|
|
bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
|
|
SDValue &Base, SDValue &Offset,
|
|
SDValue &SignExtend,
|
|
SDValue &DoShift) {
|
|
if (N.getOpcode() != ISD::ADD)
|
|
return false;
|
|
SDValue LHS = N.getOperand(0);
|
|
SDValue RHS = N.getOperand(1);
|
|
SDLoc dl(N);
|
|
|
|
// We don't want to match immediate adds here, because they are better lowered
|
|
// to the register-immediate addressing modes.
|
|
if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
|
|
return false;
|
|
|
|
// Check if this particular node is reused in any non-memory related
|
|
// operation. If yes, do not try to fold this node into the address
|
|
// computation, since the computation will be kept.
|
|
const SDNode *Node = N.getNode();
|
|
for (SDNode *UI : Node->uses()) {
|
|
if (!isa<MemSDNode>(*UI))
|
|
return false;
|
|
}
|
|
|
|
// Remember if it is worth folding N when it produces extended register.
|
|
bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
|
|
|
|
// Try to match a shifted extend on the RHS.
|
|
if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
|
|
SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) {
|
|
Base = LHS;
|
|
DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
// Try to match a shifted extend on the LHS.
|
|
if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
|
|
SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) {
|
|
Base = RHS;
|
|
DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
// There was no shift, whatever else we find.
|
|
DoShift = CurDAG->getTargetConstant(false, dl, MVT::i32);
|
|
|
|
AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend;
|
|
// Try to match an unshifted extend on the LHS.
|
|
if (IsExtendedRegisterWorthFolding &&
|
|
(Ext = getExtendTypeForNode(LHS, true)) !=
|
|
AArch64_AM::InvalidShiftExtend) {
|
|
Base = RHS;
|
|
Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0));
|
|
SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
|
|
MVT::i32);
|
|
if (isWorthFolding(LHS))
|
|
return true;
|
|
}
|
|
|
|
// Try to match an unshifted extend on the RHS.
|
|
if (IsExtendedRegisterWorthFolding &&
|
|
(Ext = getExtendTypeForNode(RHS, true)) !=
|
|
AArch64_AM::InvalidShiftExtend) {
|
|
Base = LHS;
|
|
Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0));
|
|
SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
|
|
MVT::i32);
|
|
if (isWorthFolding(RHS))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Check if the given immediate is preferred by ADD. If an immediate can be
|
|
// encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
|
|
// encoded by one MOVZ, return true.
|
|
static bool isPreferredADD(int64_t ImmOff) {
|
|
// Constant in [0x0, 0xfff] can be encoded in ADD.
|
|
if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
|
|
return true;
|
|
// Check if it can be encoded in an "ADD LSL #12".
|
|
if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL)
|
|
// As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
|
|
return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
|
|
(ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
|
|
return false;
|
|
}
|
|
|
|
bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
|
|
SDValue &Base, SDValue &Offset,
|
|
SDValue &SignExtend,
|
|
SDValue &DoShift) {
|
|
if (N.getOpcode() != ISD::ADD)
|
|
return false;
|
|
SDValue LHS = N.getOperand(0);
|
|
SDValue RHS = N.getOperand(1);
|
|
SDLoc DL(N);
|
|
|
|
// Check if this particular node is reused in any non-memory related
|
|
// operation. If yes, do not try to fold this node into the address
|
|
// computation, since the computation will be kept.
|
|
const SDNode *Node = N.getNode();
|
|
for (SDNode *UI : Node->uses()) {
|
|
if (!isa<MemSDNode>(*UI))
|
|
return false;
|
|
}
|
|
|
|
// Watch out if RHS is a wide immediate, it can not be selected into
|
|
// [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
|
|
// ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
|
|
// instructions like:
|
|
// MOV X0, WideImmediate
|
|
// ADD X1, BaseReg, X0
|
|
// LDR X2, [X1, 0]
|
|
// For such situation, using [BaseReg, XReg] addressing mode can save one
|
|
// ADD/SUB:
|
|
// MOV X0, WideImmediate
|
|
// LDR X2, [BaseReg, X0]
|
|
if (isa<ConstantSDNode>(RHS)) {
|
|
int64_t ImmOff = (int64_t)cast<ConstantSDNode>(RHS)->getZExtValue();
|
|
unsigned Scale = Log2_32(Size);
|
|
// Skip the immediate can be selected by load/store addressing mode.
|
|
// Also skip the immediate can be encoded by a single ADD (SUB is also
|
|
// checked by using -ImmOff).
|
|
if ((ImmOff % Size == 0 && ImmOff >= 0 && ImmOff < (0x1000 << Scale)) ||
|
|
isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
|
|
return false;
|
|
|
|
SDValue Ops[] = { RHS };
|
|
SDNode *MOVI =
|
|
CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
|
|
SDValue MOVIV = SDValue(MOVI, 0);
|
|
// This ADD of two X register will be selected into [Reg+Reg] mode.
|
|
N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV);
|
|
}
|
|
|
|
// Remember if it is worth folding N when it produces extended register.
|
|
bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
|
|
|
|
// Try to match a shifted extend on the RHS.
|
|
if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
|
|
SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) {
|
|
Base = LHS;
|
|
DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
// Try to match a shifted extend on the LHS.
|
|
if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
|
|
SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) {
|
|
Base = RHS;
|
|
DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
// Match any non-shifted, non-extend, non-immediate add expression.
|
|
Base = LHS;
|
|
Offset = RHS;
|
|
SignExtend = CurDAG->getTargetConstant(false, DL, MVT::i32);
|
|
DoShift = CurDAG->getTargetConstant(false, DL, MVT::i32);
|
|
// Reg1 + Reg2 is free: no check needed.
|
|
return true;
|
|
}
|
|
|
|
SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
|
|
static const unsigned RegClassIDs[] = {
|
|
AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
|
|
static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
|
|
AArch64::dsub2, AArch64::dsub3};
|
|
|
|
return createTuple(Regs, RegClassIDs, SubRegs);
|
|
}
|
|
|
|
SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
|
|
static const unsigned RegClassIDs[] = {
|
|
AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
|
|
static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
|
|
AArch64::qsub2, AArch64::qsub3};
|
|
|
|
return createTuple(Regs, RegClassIDs, SubRegs);
|
|
}
|
|
|
|
SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
|
|
const unsigned RegClassIDs[],
|
|
const unsigned SubRegs[]) {
|
|
// There's no special register-class for a vector-list of 1 element: it's just
|
|
// a vector.
|
|
if (Regs.size() == 1)
|
|
return Regs[0];
|
|
|
|
assert(Regs.size() >= 2 && Regs.size() <= 4);
|
|
|
|
SDLoc DL(Regs[0]);
|
|
|
|
SmallVector<SDValue, 4> Ops;
|
|
|
|
// First operand of REG_SEQUENCE is the desired RegClass.
|
|
Ops.push_back(
|
|
CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], DL, MVT::i32));
|
|
|
|
// Then we get pairs of source & subregister-position for the components.
|
|
for (unsigned i = 0; i < Regs.size(); ++i) {
|
|
Ops.push_back(Regs[i]);
|
|
Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], DL, MVT::i32));
|
|
}
|
|
|
|
SDNode *N =
|
|
CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
void AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc,
|
|
bool isExt) {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
unsigned ExtOff = isExt;
|
|
|
|
// Form a REG_SEQUENCE to force register allocation.
|
|
unsigned Vec0Off = ExtOff + 1;
|
|
SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
|
|
N->op_begin() + Vec0Off + NumVecs);
|
|
SDValue RegSeq = createQTuple(Regs);
|
|
|
|
SmallVector<SDValue, 6> Ops;
|
|
if (isExt)
|
|
Ops.push_back(N->getOperand(1));
|
|
Ops.push_back(RegSeq);
|
|
Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
|
|
ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
|
|
}
|
|
|
|
bool AArch64DAGToDAGISel::tryIndexedLoad(SDNode *N) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
if (LD->isUnindexed())
|
|
return false;
|
|
EVT VT = LD->getMemoryVT();
|
|
EVT DstVT = N->getValueType(0);
|
|
ISD::MemIndexedMode AM = LD->getAddressingMode();
|
|
bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
|
|
|
|
// We're not doing validity checking here. That was done when checking
|
|
// if we should mark the load as indexed or not. We're just selecting
|
|
// the right instruction.
|
|
unsigned Opcode = 0;
|
|
|
|
ISD::LoadExtType ExtType = LD->getExtensionType();
|
|
bool InsertTo64 = false;
|
|
if (VT == MVT::i64)
|
|
Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost;
|
|
else if (VT == MVT::i32) {
|
|
if (ExtType == ISD::NON_EXTLOAD)
|
|
Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
|
|
else if (ExtType == ISD::SEXTLOAD)
|
|
Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
|
|
else {
|
|
Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
|
|
InsertTo64 = true;
|
|
// The result of the load is only i32. It's the subreg_to_reg that makes
|
|
// it into an i64.
|
|
DstVT = MVT::i32;
|
|
}
|
|
} else if (VT == MVT::i16) {
|
|
if (ExtType == ISD::SEXTLOAD) {
|
|
if (DstVT == MVT::i64)
|
|
Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
|
|
else
|
|
Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
|
|
} else {
|
|
Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
|
|
InsertTo64 = DstVT == MVT::i64;
|
|
// The result of the load is only i32. It's the subreg_to_reg that makes
|
|
// it into an i64.
|
|
DstVT = MVT::i32;
|
|
}
|
|
} else if (VT == MVT::i8) {
|
|
if (ExtType == ISD::SEXTLOAD) {
|
|
if (DstVT == MVT::i64)
|
|
Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
|
|
else
|
|
Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
|
|
} else {
|
|
Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
|
|
InsertTo64 = DstVT == MVT::i64;
|
|
// The result of the load is only i32. It's the subreg_to_reg that makes
|
|
// it into an i64.
|
|
DstVT = MVT::i32;
|
|
}
|
|
} else if (VT == MVT::f16) {
|
|
Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost;
|
|
} else if (VT == MVT::f32) {
|
|
Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost;
|
|
} else if (VT == MVT::f64 || VT.is64BitVector()) {
|
|
Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost;
|
|
} else if (VT.is128BitVector()) {
|
|
Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost;
|
|
} else
|
|
return false;
|
|
SDValue Chain = LD->getChain();
|
|
SDValue Base = LD->getBasePtr();
|
|
ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
|
|
int OffsetVal = (int)OffsetOp->getZExtValue();
|
|
SDLoc dl(N);
|
|
SDValue Offset = CurDAG->getTargetConstant(OffsetVal, dl, MVT::i64);
|
|
SDValue Ops[] = { Base, Offset, Chain };
|
|
SDNode *Res = CurDAG->getMachineNode(Opcode, dl, MVT::i64, DstVT,
|
|
MVT::Other, Ops);
|
|
// Either way, we're replacing the node, so tell the caller that.
|
|
SDValue LoadedVal = SDValue(Res, 1);
|
|
if (InsertTo64) {
|
|
SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
|
|
LoadedVal =
|
|
SDValue(CurDAG->getMachineNode(
|
|
AArch64::SUBREG_TO_REG, dl, MVT::i64,
|
|
CurDAG->getTargetConstant(0, dl, MVT::i64), LoadedVal,
|
|
SubReg),
|
|
0);
|
|
}
|
|
|
|
ReplaceUses(SDValue(N, 0), LoadedVal);
|
|
ReplaceUses(SDValue(N, 1), SDValue(Res, 0));
|
|
ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
|
|
CurDAG->RemoveDeadNode(N);
|
|
return true;
|
|
}
|
|
|
|
void AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
|
|
unsigned SubRegIdx) {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
SDValue Chain = N->getOperand(0);
|
|
|
|
SDValue Ops[] = {N->getOperand(2), // Mem operand;
|
|
Chain};
|
|
|
|
const EVT ResTys[] = {MVT::Untyped, MVT::Other};
|
|
|
|
SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
|
|
SDValue SuperReg = SDValue(Ld, 0);
|
|
for (unsigned i = 0; i < NumVecs; ++i)
|
|
ReplaceUses(SDValue(N, i),
|
|
CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
|
|
|
|
ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
|
|
|
|
// Transfer memoperands.
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
|
|
cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
CurDAG->RemoveDeadNode(N);
|
|
}
|
|
|
|
void AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs,
|
|
unsigned Opc, unsigned SubRegIdx) {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
SDValue Chain = N->getOperand(0);
|
|
|
|
SDValue Ops[] = {N->getOperand(1), // Mem operand
|
|
N->getOperand(2), // Incremental
|
|
Chain};
|
|
|
|
const EVT ResTys[] = {MVT::i64, // Type of the write back register
|
|
MVT::Untyped, MVT::Other};
|
|
|
|
SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
|
|
|
|
// Update uses of write back register
|
|
ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
|
|
|
|
// Update uses of vector list
|
|
SDValue SuperReg = SDValue(Ld, 1);
|
|
if (NumVecs == 1)
|
|
ReplaceUses(SDValue(N, 0), SuperReg);
|
|
else
|
|
for (unsigned i = 0; i < NumVecs; ++i)
|
|
ReplaceUses(SDValue(N, i),
|
|
CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
|
|
|
|
// Update the chain
|
|
ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
|
|
CurDAG->RemoveDeadNode(N);
|
|
}
|
|
|
|
void AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
|
|
unsigned Opc) {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getOperand(2)->getValueType(0);
|
|
|
|
// Form a REG_SEQUENCE to force register allocation.
|
|
bool Is128Bit = VT.getSizeInBits() == 128;
|
|
SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
|
|
SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
|
|
|
|
SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)};
|
|
SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
|
|
|
|
// Transfer memoperands.
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
|
|
cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
ReplaceNode(N, St);
|
|
}
|
|
|
|
void AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs,
|
|
unsigned Opc) {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getOperand(2)->getValueType(0);
|
|
const EVT ResTys[] = {MVT::i64, // Type of the write back register
|
|
MVT::Other}; // Type for the Chain
|
|
|
|
// Form a REG_SEQUENCE to force register allocation.
|
|
bool Is128Bit = VT.getSizeInBits() == 128;
|
|
SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
|
|
SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
|
|
|
|
SDValue Ops[] = {RegSeq,
|
|
N->getOperand(NumVecs + 1), // base register
|
|
N->getOperand(NumVecs + 2), // Incremental
|
|
N->getOperand(0)}; // Chain
|
|
SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
|
|
|
|
ReplaceNode(N, St);
|
|
}
|
|
|
|
namespace {
|
|
/// WidenVector - Given a value in the V64 register class, produce the
|
|
/// equivalent value in the V128 register class.
|
|
class WidenVector {
|
|
SelectionDAG &DAG;
|
|
|
|
public:
|
|
WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
|
|
|
|
SDValue operator()(SDValue V64Reg) {
|
|
EVT VT = V64Reg.getValueType();
|
|
unsigned NarrowSize = VT.getVectorNumElements();
|
|
MVT EltTy = VT.getVectorElementType().getSimpleVT();
|
|
MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
|
|
SDLoc DL(V64Reg);
|
|
|
|
SDValue Undef =
|
|
SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
|
|
return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
/// NarrowVector - Given a value in the V128 register class, produce the
|
|
/// equivalent value in the V64 register class.
|
|
static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
|
|
EVT VT = V128Reg.getValueType();
|
|
unsigned WideSize = VT.getVectorNumElements();
|
|
MVT EltTy = VT.getVectorElementType().getSimpleVT();
|
|
MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
|
|
|
|
return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy,
|
|
V128Reg);
|
|
}
|
|
|
|
void AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
|
|
unsigned Opc) {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
bool Narrow = VT.getSizeInBits() == 64;
|
|
|
|
// Form a REG_SEQUENCE to force register allocation.
|
|
SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
|
|
|
|
if (Narrow)
|
|
transform(Regs, Regs.begin(),
|
|
WidenVector(*CurDAG));
|
|
|
|
SDValue RegSeq = createQTuple(Regs);
|
|
|
|
const EVT ResTys[] = {MVT::Untyped, MVT::Other};
|
|
|
|
unsigned LaneNo =
|
|
cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
|
|
|
|
SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
|
|
N->getOperand(NumVecs + 3), N->getOperand(0)};
|
|
SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
|
|
SDValue SuperReg = SDValue(Ld, 0);
|
|
|
|
EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
|
|
static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
|
|
AArch64::qsub2, AArch64::qsub3 };
|
|
for (unsigned i = 0; i < NumVecs; ++i) {
|
|
SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg);
|
|
if (Narrow)
|
|
NV = NarrowVector(NV, *CurDAG);
|
|
ReplaceUses(SDValue(N, i), NV);
|
|
}
|
|
|
|
ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
|
|
CurDAG->RemoveDeadNode(N);
|
|
}
|
|
|
|
void AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs,
|
|
unsigned Opc) {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
bool Narrow = VT.getSizeInBits() == 64;
|
|
|
|
// Form a REG_SEQUENCE to force register allocation.
|
|
SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
|
|
|
|
if (Narrow)
|
|
transform(Regs, Regs.begin(),
|
|
WidenVector(*CurDAG));
|
|
|
|
SDValue RegSeq = createQTuple(Regs);
|
|
|
|
const EVT ResTys[] = {MVT::i64, // Type of the write back register
|
|
RegSeq->getValueType(0), MVT::Other};
|
|
|
|
unsigned LaneNo =
|
|
cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
|
|
|
|
SDValue Ops[] = {RegSeq,
|
|
CurDAG->getTargetConstant(LaneNo, dl,
|
|
MVT::i64), // Lane Number
|
|
N->getOperand(NumVecs + 2), // Base register
|
|
N->getOperand(NumVecs + 3), // Incremental
|
|
N->getOperand(0)};
|
|
SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
|
|
|
|
// Update uses of the write back register
|
|
ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
|
|
|
|
// Update uses of the vector list
|
|
SDValue SuperReg = SDValue(Ld, 1);
|
|
if (NumVecs == 1) {
|
|
ReplaceUses(SDValue(N, 0),
|
|
Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg);
|
|
} else {
|
|
EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
|
|
static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
|
|
AArch64::qsub2, AArch64::qsub3 };
|
|
for (unsigned i = 0; i < NumVecs; ++i) {
|
|
SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT,
|
|
SuperReg);
|
|
if (Narrow)
|
|
NV = NarrowVector(NV, *CurDAG);
|
|
ReplaceUses(SDValue(N, i), NV);
|
|
}
|
|
}
|
|
|
|
// Update the Chain
|
|
ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
|
|
CurDAG->RemoveDeadNode(N);
|
|
}
|
|
|
|
void AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
|
|
unsigned Opc) {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getOperand(2)->getValueType(0);
|
|
bool Narrow = VT.getSizeInBits() == 64;
|
|
|
|
// Form a REG_SEQUENCE to force register allocation.
|
|
SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
|
|
|
|
if (Narrow)
|
|
transform(Regs, Regs.begin(),
|
|
WidenVector(*CurDAG));
|
|
|
|
SDValue RegSeq = createQTuple(Regs);
|
|
|
|
unsigned LaneNo =
|
|
cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
|
|
|
|
SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
|
|
N->getOperand(NumVecs + 3), N->getOperand(0)};
|
|
SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
|
|
|
|
// Transfer memoperands.
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
|
|
cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
ReplaceNode(N, St);
|
|
}
|
|
|
|
void AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs,
|
|
unsigned Opc) {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getOperand(2)->getValueType(0);
|
|
bool Narrow = VT.getSizeInBits() == 64;
|
|
|
|
// Form a REG_SEQUENCE to force register allocation.
|
|
SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
|
|
|
|
if (Narrow)
|
|
transform(Regs, Regs.begin(),
|
|
WidenVector(*CurDAG));
|
|
|
|
SDValue RegSeq = createQTuple(Regs);
|
|
|
|
const EVT ResTys[] = {MVT::i64, // Type of the write back register
|
|
MVT::Other};
|
|
|
|
unsigned LaneNo =
|
|
cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
|
|
|
|
SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
|
|
N->getOperand(NumVecs + 2), // Base Register
|
|
N->getOperand(NumVecs + 3), // Incremental
|
|
N->getOperand(0)};
|
|
SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
|
|
|
|
// Transfer memoperands.
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
|
|
cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
ReplaceNode(N, St);
|
|
}
|
|
|
|
static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
|
|
unsigned &Opc, SDValue &Opd0,
|
|
unsigned &LSB, unsigned &MSB,
|
|
unsigned NumberOfIgnoredLowBits,
|
|
bool BiggerPattern) {
|
|
assert(N->getOpcode() == ISD::AND &&
|
|
"N must be a AND operation to call this function");
|
|
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Here we can test the type of VT and return false when the type does not
|
|
// match, but since it is done prior to that call in the current context
|
|
// we turned that into an assert to avoid redundant code.
|
|
assert((VT == MVT::i32 || VT == MVT::i64) &&
|
|
"Type checking must have been done before calling this function");
|
|
|
|
// FIXME: simplify-demanded-bits in DAGCombine will probably have
|
|
// changed the AND node to a 32-bit mask operation. We'll have to
|
|
// undo that as part of the transform here if we want to catch all
|
|
// the opportunities.
|
|
// Currently the NumberOfIgnoredLowBits argument helps to recover
|
|
// form these situations when matching bigger pattern (bitfield insert).
|
|
|
|
// For unsigned extracts, check for a shift right and mask
|
|
uint64_t AndImm = 0;
|
|
if (!isOpcWithIntImmediate(N, ISD::AND, AndImm))
|
|
return false;
|
|
|
|
const SDNode *Op0 = N->getOperand(0).getNode();
|
|
|
|
// Because of simplify-demanded-bits in DAGCombine, the mask may have been
|
|
// simplified. Try to undo that
|
|
AndImm |= (1 << NumberOfIgnoredLowBits) - 1;
|
|
|
|
// The immediate is a mask of the low bits iff imm & (imm+1) == 0
|
|
if (AndImm & (AndImm + 1))
|
|
return false;
|
|
|
|
bool ClampMSB = false;
|
|
uint64_t SrlImm = 0;
|
|
// Handle the SRL + ANY_EXTEND case.
|
|
if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
|
|
isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, SrlImm)) {
|
|
// Extend the incoming operand of the SRL to 64-bit.
|
|
Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
|
|
// Make sure to clamp the MSB so that we preserve the semantics of the
|
|
// original operations.
|
|
ClampMSB = true;
|
|
} else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
|
|
isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
|
|
SrlImm)) {
|
|
// If the shift result was truncated, we can still combine them.
|
|
Opd0 = Op0->getOperand(0).getOperand(0);
|
|
|
|
// Use the type of SRL node.
|
|
VT = Opd0->getValueType(0);
|
|
} else if (isOpcWithIntImmediate(Op0, ISD::SRL, SrlImm)) {
|
|
Opd0 = Op0->getOperand(0);
|
|
} else if (BiggerPattern) {
|
|
// Let's pretend a 0 shift right has been performed.
|
|
// The resulting code will be at least as good as the original one
|
|
// plus it may expose more opportunities for bitfield insert pattern.
|
|
// FIXME: Currently we limit this to the bigger pattern, because
|
|
// some optimizations expect AND and not UBFM.
|
|
Opd0 = N->getOperand(0);
|
|
} else
|
|
return false;
|
|
|
|
// Bail out on large immediates. This happens when no proper
|
|
// combining/constant folding was performed.
|
|
if (!BiggerPattern && (SrlImm <= 0 || SrlImm >= VT.getSizeInBits())) {
|
|
DEBUG((dbgs() << N
|
|
<< ": Found large shift immediate, this should not happen\n"));
|
|
return false;
|
|
}
|
|
|
|
LSB = SrlImm;
|
|
MSB = SrlImm + (VT == MVT::i32 ? countTrailingOnes<uint32_t>(AndImm)
|
|
: countTrailingOnes<uint64_t>(AndImm)) -
|
|
1;
|
|
if (ClampMSB)
|
|
// Since we're moving the extend before the right shift operation, we need
|
|
// to clamp the MSB to make sure we don't shift in undefined bits instead of
|
|
// the zeros which would get shifted in with the original right shift
|
|
// operation.
|
|
MSB = MSB > 31 ? 31 : MSB;
|
|
|
|
Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
|
|
return true;
|
|
}
|
|
|
|
static bool isBitfieldExtractOpFromSExtInReg(SDNode *N, unsigned &Opc,
|
|
SDValue &Opd0, unsigned &Immr,
|
|
unsigned &Imms) {
|
|
assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG);
|
|
|
|
EVT VT = N->getValueType(0);
|
|
unsigned BitWidth = VT.getSizeInBits();
|
|
assert((VT == MVT::i32 || VT == MVT::i64) &&
|
|
"Type checking must have been done before calling this function");
|
|
|
|
SDValue Op = N->getOperand(0);
|
|
if (Op->getOpcode() == ISD::TRUNCATE) {
|
|
Op = Op->getOperand(0);
|
|
VT = Op->getValueType(0);
|
|
BitWidth = VT.getSizeInBits();
|
|
}
|
|
|
|
uint64_t ShiftImm;
|
|
if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRL, ShiftImm) &&
|
|
!isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
|
|
return false;
|
|
|
|
unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
|
|
if (ShiftImm + Width > BitWidth)
|
|
return false;
|
|
|
|
Opc = (VT == MVT::i32) ? AArch64::SBFMWri : AArch64::SBFMXri;
|
|
Opd0 = Op.getOperand(0);
|
|
Immr = ShiftImm;
|
|
Imms = ShiftImm + Width - 1;
|
|
return true;
|
|
}
|
|
|
|
static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc,
|
|
SDValue &Opd0, unsigned &LSB,
|
|
unsigned &MSB) {
|
|
// We are looking for the following pattern which basically extracts several
|
|
// continuous bits from the source value and places it from the LSB of the
|
|
// destination value, all other bits of the destination value or set to zero:
|
|
//
|
|
// Value2 = AND Value, MaskImm
|
|
// SRL Value2, ShiftImm
|
|
//
|
|
// with MaskImm >> ShiftImm to search for the bit width.
|
|
//
|
|
// This gets selected into a single UBFM:
|
|
//
|
|
// UBFM Value, ShiftImm, BitWide + SrlImm -1
|
|
//
|
|
|
|
if (N->getOpcode() != ISD::SRL)
|
|
return false;
|
|
|
|
uint64_t AndMask = 0;
|
|
if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, AndMask))
|
|
return false;
|
|
|
|
Opd0 = N->getOperand(0).getOperand(0);
|
|
|
|
uint64_t SrlImm = 0;
|
|
if (!isIntImmediate(N->getOperand(1), SrlImm))
|
|
return false;
|
|
|
|
// Check whether we really have several bits extract here.
|
|
unsigned BitWide = 64 - countLeadingOnes(~(AndMask >> SrlImm));
|
|
if (BitWide && isMask_64(AndMask >> SrlImm)) {
|
|
if (N->getValueType(0) == MVT::i32)
|
|
Opc = AArch64::UBFMWri;
|
|
else
|
|
Opc = AArch64::UBFMXri;
|
|
|
|
LSB = SrlImm;
|
|
MSB = BitWide + SrlImm - 1;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
|
|
unsigned &Immr, unsigned &Imms,
|
|
bool BiggerPattern) {
|
|
assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
|
|
"N must be a SHR/SRA operation to call this function");
|
|
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Here we can test the type of VT and return false when the type does not
|
|
// match, but since it is done prior to that call in the current context
|
|
// we turned that into an assert to avoid redundant code.
|
|
assert((VT == MVT::i32 || VT == MVT::i64) &&
|
|
"Type checking must have been done before calling this function");
|
|
|
|
// Check for AND + SRL doing several bits extract.
|
|
if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, Immr, Imms))
|
|
return true;
|
|
|
|
// We're looking for a shift of a shift.
|
|
uint64_t ShlImm = 0;
|
|
uint64_t TruncBits = 0;
|
|
if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, ShlImm)) {
|
|
Opd0 = N->getOperand(0).getOperand(0);
|
|
} else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
|
|
N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
|
|
// We are looking for a shift of truncate. Truncate from i64 to i32 could
|
|
// be considered as setting high 32 bits as zero. Our strategy here is to
|
|
// always generate 64bit UBFM. This consistency will help the CSE pass
|
|
// later find more redundancy.
|
|
Opd0 = N->getOperand(0).getOperand(0);
|
|
TruncBits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
|
|
VT = Opd0->getValueType(0);
|
|
assert(VT == MVT::i64 && "the promoted type should be i64");
|
|
} else if (BiggerPattern) {
|
|
// Let's pretend a 0 shift left has been performed.
|
|
// FIXME: Currently we limit this to the bigger pattern case,
|
|
// because some optimizations expect AND and not UBFM
|
|
Opd0 = N->getOperand(0);
|
|
} else
|
|
return false;
|
|
|
|
// Missing combines/constant folding may have left us with strange
|
|
// constants.
|
|
if (ShlImm >= VT.getSizeInBits()) {
|
|
DEBUG((dbgs() << N
|
|
<< ": Found large shift immediate, this should not happen\n"));
|
|
return false;
|
|
}
|
|
|
|
uint64_t SrlImm = 0;
|
|
if (!isIntImmediate(N->getOperand(1), SrlImm))
|
|
return false;
|
|
|
|
assert(SrlImm > 0 && SrlImm < VT.getSizeInBits() &&
|
|
"bad amount in shift node!");
|
|
int immr = SrlImm - ShlImm;
|
|
Immr = immr < 0 ? immr + VT.getSizeInBits() : immr;
|
|
Imms = VT.getSizeInBits() - ShlImm - TruncBits - 1;
|
|
// SRA requires a signed extraction
|
|
if (VT == MVT::i32)
|
|
Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri;
|
|
else
|
|
Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri;
|
|
return true;
|
|
}
|
|
|
|
bool AArch64DAGToDAGISel::tryBitfieldExtractOpFromSExt(SDNode *N) {
|
|
assert(N->getOpcode() == ISD::SIGN_EXTEND);
|
|
|
|
EVT VT = N->getValueType(0);
|
|
EVT NarrowVT = N->getOperand(0)->getValueType(0);
|
|
if (VT != MVT::i64 || NarrowVT != MVT::i32)
|
|
return false;
|
|
|
|
uint64_t ShiftImm;
|
|
SDValue Op = N->getOperand(0);
|
|
if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
|
|
return false;
|
|
|
|
SDLoc dl(N);
|
|
// Extend the incoming operand of the shift to 64-bits.
|
|
SDValue Opd0 = Widen(CurDAG, Op.getOperand(0));
|
|
unsigned Immr = ShiftImm;
|
|
unsigned Imms = NarrowVT.getSizeInBits() - 1;
|
|
SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
|
|
CurDAG->getTargetConstant(Imms, dl, VT)};
|
|
CurDAG->SelectNodeTo(N, AArch64::SBFMXri, VT, Ops);
|
|
return true;
|
|
}
|
|
|
|
static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
|
|
SDValue &Opd0, unsigned &Immr, unsigned &Imms,
|
|
unsigned NumberOfIgnoredLowBits = 0,
|
|
bool BiggerPattern = false) {
|
|
if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
|
|
return false;
|
|
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
if (!N->isMachineOpcode())
|
|
return false;
|
|
break;
|
|
case ISD::AND:
|
|
return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, Immr, Imms,
|
|
NumberOfIgnoredLowBits, BiggerPattern);
|
|
case ISD::SRL:
|
|
case ISD::SRA:
|
|
return isBitfieldExtractOpFromShr(N, Opc, Opd0, Immr, Imms, BiggerPattern);
|
|
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
return isBitfieldExtractOpFromSExtInReg(N, Opc, Opd0, Immr, Imms);
|
|
}
|
|
|
|
unsigned NOpc = N->getMachineOpcode();
|
|
switch (NOpc) {
|
|
default:
|
|
return false;
|
|
case AArch64::SBFMWri:
|
|
case AArch64::UBFMWri:
|
|
case AArch64::SBFMXri:
|
|
case AArch64::UBFMXri:
|
|
Opc = NOpc;
|
|
Opd0 = N->getOperand(0);
|
|
Immr = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
|
|
Imms = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
|
|
return true;
|
|
}
|
|
// Unreachable
|
|
return false;
|
|
}
|
|
|
|
bool AArch64DAGToDAGISel::tryBitfieldExtractOp(SDNode *N) {
|
|
unsigned Opc, Immr, Imms;
|
|
SDValue Opd0;
|
|
if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, Immr, Imms))
|
|
return false;
|
|
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc dl(N);
|
|
|
|
// If the bit extract operation is 64bit but the original type is 32bit, we
|
|
// need to add one EXTRACT_SUBREG.
|
|
if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) {
|
|
SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, MVT::i64),
|
|
CurDAG->getTargetConstant(Imms, dl, MVT::i64)};
|
|
|
|
SDNode *BFM = CurDAG->getMachineNode(Opc, dl, MVT::i64, Ops64);
|
|
SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
|
|
ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
|
|
MVT::i32, SDValue(BFM, 0), SubReg));
|
|
return true;
|
|
}
|
|
|
|
SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
|
|
CurDAG->getTargetConstant(Imms, dl, VT)};
|
|
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
|
|
return true;
|
|
}
|
|
|
|
/// Does DstMask form a complementary pair with the mask provided by
|
|
/// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
|
|
/// this asks whether DstMask zeroes precisely those bits that will be set by
|
|
/// the other half.
|
|
static bool isBitfieldDstMask(uint64_t DstMask, const APInt &BitsToBeInserted,
|
|
unsigned NumberOfIgnoredHighBits, EVT VT) {
|
|
assert((VT == MVT::i32 || VT == MVT::i64) &&
|
|
"i32 or i64 mask type expected!");
|
|
unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits;
|
|
|
|
APInt SignificantDstMask = APInt(BitWidth, DstMask);
|
|
APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth);
|
|
|
|
return (SignificantDstMask & SignificantBitsToBeInserted) == 0 &&
|
|
(SignificantDstMask | SignificantBitsToBeInserted).isAllOnesValue();
|
|
}
|
|
|
|
// Look for bits that will be useful for later uses.
|
|
// A bit is consider useless as soon as it is dropped and never used
|
|
// before it as been dropped.
|
|
// E.g., looking for useful bit of x
|
|
// 1. y = x & 0x7
|
|
// 2. z = y >> 2
|
|
// After #1, x useful bits are 0x7, then the useful bits of x, live through
|
|
// y.
|
|
// After #2, the useful bits of x are 0x4.
|
|
// However, if x is used on an unpredicatable instruction, then all its bits
|
|
// are useful.
|
|
// E.g.
|
|
// 1. y = x & 0x7
|
|
// 2. z = y >> 2
|
|
// 3. str x, [@x]
|
|
static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
|
|
|
|
static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
|
|
unsigned Depth) {
|
|
uint64_t Imm =
|
|
cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
|
|
Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
|
|
UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
|
|
getUsefulBits(Op, UsefulBits, Depth + 1);
|
|
}
|
|
|
|
static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
|
|
uint64_t Imm, uint64_t MSB,
|
|
unsigned Depth) {
|
|
// inherit the bitwidth value
|
|
APInt OpUsefulBits(UsefulBits);
|
|
OpUsefulBits = 1;
|
|
|
|
if (MSB >= Imm) {
|
|
OpUsefulBits <<= MSB - Imm + 1;
|
|
--OpUsefulBits;
|
|
// The interesting part will be in the lower part of the result
|
|
getUsefulBits(Op, OpUsefulBits, Depth + 1);
|
|
// The interesting part was starting at Imm in the argument
|
|
OpUsefulBits <<= Imm;
|
|
} else {
|
|
OpUsefulBits <<= MSB + 1;
|
|
--OpUsefulBits;
|
|
// The interesting part will be shifted in the result
|
|
OpUsefulBits <<= OpUsefulBits.getBitWidth() - Imm;
|
|
getUsefulBits(Op, OpUsefulBits, Depth + 1);
|
|
// The interesting part was at zero in the argument
|
|
OpUsefulBits.lshrInPlace(OpUsefulBits.getBitWidth() - Imm);
|
|
}
|
|
|
|
UsefulBits &= OpUsefulBits;
|
|
}
|
|
|
|
static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
|
|
unsigned Depth) {
|
|
uint64_t Imm =
|
|
cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
|
|
uint64_t MSB =
|
|
cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
|
|
|
|
getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
|
|
}
|
|
|
|
static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
|
|
unsigned Depth) {
|
|
uint64_t ShiftTypeAndValue =
|
|
cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
|
|
APInt Mask(UsefulBits);
|
|
Mask.clearAllBits();
|
|
Mask.flipAllBits();
|
|
|
|
if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
|
|
// Shift Left
|
|
uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
|
|
Mask <<= ShiftAmt;
|
|
getUsefulBits(Op, Mask, Depth + 1);
|
|
Mask.lshrInPlace(ShiftAmt);
|
|
} else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
|
|
// Shift Right
|
|
// We do not handle AArch64_AM::ASR, because the sign will change the
|
|
// number of useful bits
|
|
uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
|
|
Mask.lshrInPlace(ShiftAmt);
|
|
getUsefulBits(Op, Mask, Depth + 1);
|
|
Mask <<= ShiftAmt;
|
|
} else
|
|
return;
|
|
|
|
UsefulBits &= Mask;
|
|
}
|
|
|
|
static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
|
|
unsigned Depth) {
|
|
uint64_t Imm =
|
|
cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
|
|
uint64_t MSB =
|
|
cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
|
|
|
|
APInt OpUsefulBits(UsefulBits);
|
|
OpUsefulBits = 1;
|
|
|
|
APInt ResultUsefulBits(UsefulBits.getBitWidth(), 0);
|
|
ResultUsefulBits.flipAllBits();
|
|
APInt Mask(UsefulBits.getBitWidth(), 0);
|
|
|
|
getUsefulBits(Op, ResultUsefulBits, Depth + 1);
|
|
|
|
if (MSB >= Imm) {
|
|
// The instruction is a BFXIL.
|
|
uint64_t Width = MSB - Imm + 1;
|
|
uint64_t LSB = Imm;
|
|
|
|
OpUsefulBits <<= Width;
|
|
--OpUsefulBits;
|
|
|
|
if (Op.getOperand(1) == Orig) {
|
|
// Copy the low bits from the result to bits starting from LSB.
|
|
Mask = ResultUsefulBits & OpUsefulBits;
|
|
Mask <<= LSB;
|
|
}
|
|
|
|
if (Op.getOperand(0) == Orig)
|
|
// Bits starting from LSB in the input contribute to the result.
|
|
Mask |= (ResultUsefulBits & ~OpUsefulBits);
|
|
} else {
|
|
// The instruction is a BFI.
|
|
uint64_t Width = MSB + 1;
|
|
uint64_t LSB = UsefulBits.getBitWidth() - Imm;
|
|
|
|
OpUsefulBits <<= Width;
|
|
--OpUsefulBits;
|
|
OpUsefulBits <<= LSB;
|
|
|
|
if (Op.getOperand(1) == Orig) {
|
|
// Copy the bits from the result to the zero bits.
|
|
Mask = ResultUsefulBits & OpUsefulBits;
|
|
Mask.lshrInPlace(LSB);
|
|
}
|
|
|
|
if (Op.getOperand(0) == Orig)
|
|
Mask |= (ResultUsefulBits & ~OpUsefulBits);
|
|
}
|
|
|
|
UsefulBits &= Mask;
|
|
}
|
|
|
|
static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
|
|
SDValue Orig, unsigned Depth) {
|
|
|
|
// Users of this node should have already been instruction selected
|
|
// FIXME: Can we turn that into an assert?
|
|
if (!UserNode->isMachineOpcode())
|
|
return;
|
|
|
|
switch (UserNode->getMachineOpcode()) {
|
|
default:
|
|
return;
|
|
case AArch64::ANDSWri:
|
|
case AArch64::ANDSXri:
|
|
case AArch64::ANDWri:
|
|
case AArch64::ANDXri:
|
|
// We increment Depth only when we call the getUsefulBits
|
|
return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
|
|
Depth);
|
|
case AArch64::UBFMWri:
|
|
case AArch64::UBFMXri:
|
|
return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
|
|
|
|
case AArch64::ORRWrs:
|
|
case AArch64::ORRXrs:
|
|
if (UserNode->getOperand(1) != Orig)
|
|
return;
|
|
return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
|
|
Depth);
|
|
case AArch64::BFMWri:
|
|
case AArch64::BFMXri:
|
|
return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
|
|
|
|
case AArch64::STRBBui:
|
|
case AArch64::STURBBi:
|
|
if (UserNode->getOperand(0) != Orig)
|
|
return;
|
|
UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xff);
|
|
return;
|
|
|
|
case AArch64::STRHHui:
|
|
case AArch64::STURHHi:
|
|
if (UserNode->getOperand(0) != Orig)
|
|
return;
|
|
UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xffff);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
|
|
if (Depth >= 6)
|
|
return;
|
|
// Initialize UsefulBits
|
|
if (!Depth) {
|
|
unsigned Bitwidth = Op.getScalarValueSizeInBits();
|
|
// At the beginning, assume every produced bits is useful
|
|
UsefulBits = APInt(Bitwidth, 0);
|
|
UsefulBits.flipAllBits();
|
|
}
|
|
APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
|
|
|
|
for (SDNode *Node : Op.getNode()->uses()) {
|
|
// A use cannot produce useful bits
|
|
APInt UsefulBitsForUse = APInt(UsefulBits);
|
|
getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
|
|
UsersUsefulBits |= UsefulBitsForUse;
|
|
}
|
|
// UsefulBits contains the produced bits that are meaningful for the
|
|
// current definition, thus a user cannot make a bit meaningful at
|
|
// this point
|
|
UsefulBits &= UsersUsefulBits;
|
|
}
|
|
|
|
/// Create a machine node performing a notional SHL of Op by ShlAmount. If
|
|
/// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
|
|
/// 0, return Op unchanged.
|
|
static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) {
|
|
if (ShlAmount == 0)
|
|
return Op;
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(Op);
|
|
unsigned BitWidth = VT.getSizeInBits();
|
|
unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri;
|
|
|
|
SDNode *ShiftNode;
|
|
if (ShlAmount > 0) {
|
|
// LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
|
|
ShiftNode = CurDAG->getMachineNode(
|
|
UBFMOpc, dl, VT, Op,
|
|
CurDAG->getTargetConstant(BitWidth - ShlAmount, dl, VT),
|
|
CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, dl, VT));
|
|
} else {
|
|
// LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
|
|
assert(ShlAmount < 0 && "expected right shift");
|
|
int ShrAmount = -ShlAmount;
|
|
ShiftNode = CurDAG->getMachineNode(
|
|
UBFMOpc, dl, VT, Op, CurDAG->getTargetConstant(ShrAmount, dl, VT),
|
|
CurDAG->getTargetConstant(BitWidth - 1, dl, VT));
|
|
}
|
|
|
|
return SDValue(ShiftNode, 0);
|
|
}
|
|
|
|
/// Does this tree qualify as an attempt to move a bitfield into position,
|
|
/// essentially "(and (shl VAL, N), Mask)".
|
|
static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op,
|
|
bool BiggerPattern,
|
|
SDValue &Src, int &ShiftAmount,
|
|
int &MaskWidth) {
|
|
EVT VT = Op.getValueType();
|
|
unsigned BitWidth = VT.getSizeInBits();
|
|
(void)BitWidth;
|
|
assert(BitWidth == 32 || BitWidth == 64);
|
|
|
|
KnownBits Known;
|
|
CurDAG->computeKnownBits(Op, Known);
|
|
|
|
// Non-zero in the sense that they're not provably zero, which is the key
|
|
// point if we want to use this value
|
|
uint64_t NonZeroBits = (~Known.Zero).getZExtValue();
|
|
|
|
// Discard a constant AND mask if present. It's safe because the node will
|
|
// already have been factored into the computeKnownBits calculation above.
|
|
uint64_t AndImm;
|
|
if (isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm)) {
|
|
assert((~APInt(BitWidth, AndImm) & ~Known.Zero) == 0);
|
|
Op = Op.getOperand(0);
|
|
}
|
|
|
|
// Don't match if the SHL has more than one use, since then we'll end up
|
|
// generating SHL+UBFIZ instead of just keeping SHL+AND.
|
|
if (!BiggerPattern && !Op.hasOneUse())
|
|
return false;
|
|
|
|
uint64_t ShlImm;
|
|
if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm))
|
|
return false;
|
|
Op = Op.getOperand(0);
|
|
|
|
if (!isShiftedMask_64(NonZeroBits))
|
|
return false;
|
|
|
|
ShiftAmount = countTrailingZeros(NonZeroBits);
|
|
MaskWidth = countTrailingOnes(NonZeroBits >> ShiftAmount);
|
|
|
|
// BFI encompasses sufficiently many nodes that it's worth inserting an extra
|
|
// LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
|
|
// amount. BiggerPattern is true when this pattern is being matched for BFI,
|
|
// BiggerPattern is false when this pattern is being matched for UBFIZ, in
|
|
// which case it is not profitable to insert an extra shift.
|
|
if (ShlImm - ShiftAmount != 0 && !BiggerPattern)
|
|
return false;
|
|
Src = getLeftShift(CurDAG, Op, ShlImm - ShiftAmount);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isShiftedMask(uint64_t Mask, EVT VT) {
|
|
assert(VT == MVT::i32 || VT == MVT::i64);
|
|
if (VT == MVT::i32)
|
|
return isShiftedMask_32(Mask);
|
|
return isShiftedMask_64(Mask);
|
|
}
|
|
|
|
// Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being
|
|
// inserted only sets known zero bits.
|
|
static bool tryBitfieldInsertOpFromOrAndImm(SDNode *N, SelectionDAG *CurDAG) {
|
|
assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i32 && VT != MVT::i64)
|
|
return false;
|
|
|
|
unsigned BitWidth = VT.getSizeInBits();
|
|
|
|
uint64_t OrImm;
|
|
if (!isOpcWithIntImmediate(N, ISD::OR, OrImm))
|
|
return false;
|
|
|
|
// Skip this transformation if the ORR immediate can be encoded in the ORR.
|
|
// Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely
|
|
// performance neutral.
|
|
if (AArch64_AM::isLogicalImmediate(OrImm, BitWidth))
|
|
return false;
|
|
|
|
uint64_t MaskImm;
|
|
SDValue And = N->getOperand(0);
|
|
// Must be a single use AND with an immediate operand.
|
|
if (!And.hasOneUse() ||
|
|
!isOpcWithIntImmediate(And.getNode(), ISD::AND, MaskImm))
|
|
return false;
|
|
|
|
// Compute the Known Zero for the AND as this allows us to catch more general
|
|
// cases than just looking for AND with imm.
|
|
KnownBits Known;
|
|
CurDAG->computeKnownBits(And, Known);
|
|
|
|
// Non-zero in the sense that they're not provably zero, which is the key
|
|
// point if we want to use this value.
|
|
uint64_t NotKnownZero = (~Known.Zero).getZExtValue();
|
|
|
|
// The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00).
|
|
if (!isShiftedMask(Known.Zero.getZExtValue(), VT))
|
|
return false;
|
|
|
|
// The bits being inserted must only set those bits that are known to be zero.
|
|
if ((OrImm & NotKnownZero) != 0) {
|
|
// FIXME: It's okay if the OrImm sets NotKnownZero bits to 1, but we don't
|
|
// currently handle this case.
|
|
return false;
|
|
}
|
|
|
|
// BFI/BFXIL dst, src, #lsb, #width.
|
|
int LSB = countTrailingOnes(NotKnownZero);
|
|
int Width = BitWidth - APInt(BitWidth, NotKnownZero).countPopulation();
|
|
|
|
// BFI/BFXIL is an alias of BFM, so translate to BFM operands.
|
|
unsigned ImmR = (BitWidth - LSB) % BitWidth;
|
|
unsigned ImmS = Width - 1;
|
|
|
|
// If we're creating a BFI instruction avoid cases where we need more
|
|
// instructions to materialize the BFI constant as compared to the original
|
|
// ORR. A BFXIL will use the same constant as the original ORR, so the code
|
|
// should be no worse in this case.
|
|
bool IsBFI = LSB != 0;
|
|
uint64_t BFIImm = OrImm >> LSB;
|
|
if (IsBFI && !AArch64_AM::isLogicalImmediate(BFIImm, BitWidth)) {
|
|
// We have a BFI instruction and we know the constant can't be materialized
|
|
// with a ORR-immediate with the zero register.
|
|
unsigned OrChunks = 0, BFIChunks = 0;
|
|
for (unsigned Shift = 0; Shift < BitWidth; Shift += 16) {
|
|
if (((OrImm >> Shift) & 0xFFFF) != 0)
|
|
++OrChunks;
|
|
if (((BFIImm >> Shift) & 0xFFFF) != 0)
|
|
++BFIChunks;
|
|
}
|
|
if (BFIChunks > OrChunks)
|
|
return false;
|
|
}
|
|
|
|
// Materialize the constant to be inserted.
|
|
SDLoc DL(N);
|
|
unsigned MOVIOpc = VT == MVT::i32 ? AArch64::MOVi32imm : AArch64::MOVi64imm;
|
|
SDNode *MOVI = CurDAG->getMachineNode(
|
|
MOVIOpc, DL, VT, CurDAG->getTargetConstant(BFIImm, DL, VT));
|
|
|
|
// Create the BFI/BFXIL instruction.
|
|
SDValue Ops[] = {And.getOperand(0), SDValue(MOVI, 0),
|
|
CurDAG->getTargetConstant(ImmR, DL, VT),
|
|
CurDAG->getTargetConstant(ImmS, DL, VT)};
|
|
unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
|
|
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
|
|
return true;
|
|
}
|
|
|
|
static bool tryBitfieldInsertOpFromOr(SDNode *N, const APInt &UsefulBits,
|
|
SelectionDAG *CurDAG) {
|
|
assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i32 && VT != MVT::i64)
|
|
return false;
|
|
|
|
unsigned BitWidth = VT.getSizeInBits();
|
|
|
|
// Because of simplify-demanded-bits in DAGCombine, involved masks may not
|
|
// have the expected shape. Try to undo that.
|
|
|
|
unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros();
|
|
unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros();
|
|
|
|
// Given a OR operation, check if we have the following pattern
|
|
// ubfm c, b, imm, imm2 (or something that does the same jobs, see
|
|
// isBitfieldExtractOp)
|
|
// d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
|
|
// countTrailingZeros(mask2) == imm2 - imm + 1
|
|
// f = d | c
|
|
// if yes, replace the OR instruction with:
|
|
// f = BFM Opd0, Opd1, LSB, MSB ; where LSB = imm, and MSB = imm2
|
|
|
|
// OR is commutative, check all combinations of operand order and values of
|
|
// BiggerPattern, i.e.
|
|
// Opd0, Opd1, BiggerPattern=false
|
|
// Opd1, Opd0, BiggerPattern=false
|
|
// Opd0, Opd1, BiggerPattern=true
|
|
// Opd1, Opd0, BiggerPattern=true
|
|
// Several of these combinations may match, so check with BiggerPattern=false
|
|
// first since that will produce better results by matching more instructions
|
|
// and/or inserting fewer extra instructions.
|
|
for (int I = 0; I < 4; ++I) {
|
|
|
|
SDValue Dst, Src;
|
|
unsigned ImmR, ImmS;
|
|
bool BiggerPattern = I / 2;
|
|
SDValue OrOpd0Val = N->getOperand(I % 2);
|
|
SDNode *OrOpd0 = OrOpd0Val.getNode();
|
|
SDValue OrOpd1Val = N->getOperand((I + 1) % 2);
|
|
SDNode *OrOpd1 = OrOpd1Val.getNode();
|
|
|
|
unsigned BFXOpc;
|
|
int DstLSB, Width;
|
|
if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS,
|
|
NumberOfIgnoredLowBits, BiggerPattern)) {
|
|
// Check that the returned opcode is compatible with the pattern,
|
|
// i.e., same type and zero extended (U and not S)
|
|
if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) ||
|
|
(BFXOpc != AArch64::UBFMWri && VT == MVT::i32))
|
|
continue;
|
|
|
|
// Compute the width of the bitfield insertion
|
|
DstLSB = 0;
|
|
Width = ImmS - ImmR + 1;
|
|
// FIXME: This constraint is to catch bitfield insertion we may
|
|
// want to widen the pattern if we want to grab general bitfied
|
|
// move case
|
|
if (Width <= 0)
|
|
continue;
|
|
|
|
// If the mask on the insertee is correct, we have a BFXIL operation. We
|
|
// can share the ImmR and ImmS values from the already-computed UBFM.
|
|
} else if (isBitfieldPositioningOp(CurDAG, OrOpd0Val,
|
|
BiggerPattern,
|
|
Src, DstLSB, Width)) {
|
|
ImmR = (BitWidth - DstLSB) % BitWidth;
|
|
ImmS = Width - 1;
|
|
} else
|
|
continue;
|
|
|
|
// Check the second part of the pattern
|
|
EVT VT = OrOpd1->getValueType(0);
|
|
assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand");
|
|
|
|
// Compute the Known Zero for the candidate of the first operand.
|
|
// This allows to catch more general case than just looking for
|
|
// AND with imm. Indeed, simplify-demanded-bits may have removed
|
|
// the AND instruction because it proves it was useless.
|
|
KnownBits Known;
|
|
CurDAG->computeKnownBits(OrOpd1Val, Known);
|
|
|
|
// Check if there is enough room for the second operand to appear
|
|
// in the first one
|
|
APInt BitsToBeInserted =
|
|
APInt::getBitsSet(Known.getBitWidth(), DstLSB, DstLSB + Width);
|
|
|
|
if ((BitsToBeInserted & ~Known.Zero) != 0)
|
|
continue;
|
|
|
|
// Set the first operand
|
|
uint64_t Imm;
|
|
if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
|
|
isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT))
|
|
// In that case, we can eliminate the AND
|
|
Dst = OrOpd1->getOperand(0);
|
|
else
|
|
// Maybe the AND has been removed by simplify-demanded-bits
|
|
// or is useful because it discards more bits
|
|
Dst = OrOpd1Val;
|
|
|
|
// both parts match
|
|
SDLoc DL(N);
|
|
SDValue Ops[] = {Dst, Src, CurDAG->getTargetConstant(ImmR, DL, VT),
|
|
CurDAG->getTargetConstant(ImmS, DL, VT)};
|
|
unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
|
|
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
|
|
return true;
|
|
}
|
|
|
|
// Generate a BFXIL from 'or (and X, Mask0Imm), (and Y, Mask1Imm)' iff
|
|
// Mask0Imm and ~Mask1Imm are equivalent and one of the MaskImms is a shifted
|
|
// mask (e.g., 0x000ffff0).
|
|
uint64_t Mask0Imm, Mask1Imm;
|
|
SDValue And0 = N->getOperand(0);
|
|
SDValue And1 = N->getOperand(1);
|
|
if (And0.hasOneUse() && And1.hasOneUse() &&
|
|
isOpcWithIntImmediate(And0.getNode(), ISD::AND, Mask0Imm) &&
|
|
isOpcWithIntImmediate(And1.getNode(), ISD::AND, Mask1Imm) &&
|
|
APInt(BitWidth, Mask0Imm) == ~APInt(BitWidth, Mask1Imm) &&
|
|
(isShiftedMask(Mask0Imm, VT) || isShiftedMask(Mask1Imm, VT))) {
|
|
|
|
// ORR is commutative, so canonicalize to the form 'or (and X, Mask0Imm),
|
|
// (and Y, Mask1Imm)' where Mask1Imm is the shifted mask masking off the
|
|
// bits to be inserted.
|
|
if (isShiftedMask(Mask0Imm, VT)) {
|
|
std::swap(And0, And1);
|
|
std::swap(Mask0Imm, Mask1Imm);
|
|
}
|
|
|
|
SDValue Src = And1->getOperand(0);
|
|
SDValue Dst = And0->getOperand(0);
|
|
unsigned LSB = countTrailingZeros(Mask1Imm);
|
|
int Width = BitWidth - APInt(BitWidth, Mask0Imm).countPopulation();
|
|
|
|
// The BFXIL inserts the low-order bits from a source register, so right
|
|
// shift the needed bits into place.
|
|
SDLoc DL(N);
|
|
unsigned ShiftOpc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
|
|
SDNode *LSR = CurDAG->getMachineNode(
|
|
ShiftOpc, DL, VT, Src, CurDAG->getTargetConstant(LSB, DL, VT),
|
|
CurDAG->getTargetConstant(BitWidth - 1, DL, VT));
|
|
|
|
// BFXIL is an alias of BFM, so translate to BFM operands.
|
|
unsigned ImmR = (BitWidth - LSB) % BitWidth;
|
|
unsigned ImmS = Width - 1;
|
|
|
|
// Create the BFXIL instruction.
|
|
SDValue Ops[] = {Dst, SDValue(LSR, 0),
|
|
CurDAG->getTargetConstant(ImmR, DL, VT),
|
|
CurDAG->getTargetConstant(ImmS, DL, VT)};
|
|
unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
|
|
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode *N) {
|
|
if (N->getOpcode() != ISD::OR)
|
|
return false;
|
|
|
|
APInt NUsefulBits;
|
|
getUsefulBits(SDValue(N, 0), NUsefulBits);
|
|
|
|
// If all bits are not useful, just return UNDEF.
|
|
if (!NUsefulBits) {
|
|
CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
|
|
return true;
|
|
}
|
|
|
|
if (tryBitfieldInsertOpFromOr(N, NUsefulBits, CurDAG))
|
|
return true;
|
|
|
|
return tryBitfieldInsertOpFromOrAndImm(N, CurDAG);
|
|
}
|
|
|
|
/// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the
|
|
/// equivalent of a left shift by a constant amount followed by an and masking
|
|
/// out a contiguous set of bits.
|
|
bool AArch64DAGToDAGISel::tryBitfieldInsertInZeroOp(SDNode *N) {
|
|
if (N->getOpcode() != ISD::AND)
|
|
return false;
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i32 && VT != MVT::i64)
|
|
return false;
|
|
|
|
SDValue Op0;
|
|
int DstLSB, Width;
|
|
if (!isBitfieldPositioningOp(CurDAG, SDValue(N, 0), /*BiggerPattern=*/false,
|
|
Op0, DstLSB, Width))
|
|
return false;
|
|
|
|
// ImmR is the rotate right amount.
|
|
unsigned ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
|
|
// ImmS is the most significant bit of the source to be moved.
|
|
unsigned ImmS = Width - 1;
|
|
|
|
SDLoc DL(N);
|
|
SDValue Ops[] = {Op0, CurDAG->getTargetConstant(ImmR, DL, VT),
|
|
CurDAG->getTargetConstant(ImmS, DL, VT)};
|
|
unsigned Opc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
|
|
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
|
|
unsigned RegWidth) {
|
|
APFloat FVal(0.0);
|
|
if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
|
|
FVal = CN->getValueAPF();
|
|
else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
|
|
// Some otherwise illegal constants are allowed in this case.
|
|
if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow ||
|
|
!isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
|
|
return false;
|
|
|
|
ConstantPoolSDNode *CN =
|
|
dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
|
|
FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
|
|
} else
|
|
return false;
|
|
|
|
// An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
|
|
// is between 1 and 32 for a destination w-register, or 1 and 64 for an
|
|
// x-register.
|
|
//
|
|
// By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
|
|
// want THIS_NODE to be 2^fbits. This is much easier to deal with using
|
|
// integers.
|
|
bool IsExact;
|
|
|
|
// fbits is between 1 and 64 in the worst-case, which means the fmul
|
|
// could have 2^64 as an actual operand. Need 65 bits of precision.
|
|
APSInt IntVal(65, true);
|
|
FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
|
|
|
|
// N.b. isPowerOf2 also checks for > 0.
|
|
if (!IsExact || !IntVal.isPowerOf2()) return false;
|
|
unsigned FBits = IntVal.logBase2();
|
|
|
|
// Checks above should have guaranteed that we haven't lost information in
|
|
// finding FBits, but it must still be in range.
|
|
if (FBits == 0 || FBits > RegWidth) return false;
|
|
|
|
FixedPos = CurDAG->getTargetConstant(FBits, SDLoc(N), MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
// Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
|
|
// of the string and obtains the integer values from them and combines these
|
|
// into a single value to be used in the MRS/MSR instruction.
|
|
static int getIntOperandFromRegisterString(StringRef RegString) {
|
|
SmallVector<StringRef, 5> Fields;
|
|
RegString.split(Fields, ':');
|
|
|
|
if (Fields.size() == 1)
|
|
return -1;
|
|
|
|
assert(Fields.size() == 5
|
|
&& "Invalid number of fields in read register string");
|
|
|
|
SmallVector<int, 5> Ops;
|
|
bool AllIntFields = true;
|
|
|
|
for (StringRef Field : Fields) {
|
|
unsigned IntField;
|
|
AllIntFields &= !Field.getAsInteger(10, IntField);
|
|
Ops.push_back(IntField);
|
|
}
|
|
|
|
assert(AllIntFields &&
|
|
"Unexpected non-integer value in special register string.");
|
|
|
|
// Need to combine the integer fields of the string into a single value
|
|
// based on the bit encoding of MRS/MSR instruction.
|
|
return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) |
|
|
(Ops[3] << 3) | (Ops[4]);
|
|
}
|
|
|
|
// Lower the read_register intrinsic to an MRS instruction node if the special
|
|
// register string argument is either of the form detailed in the ALCE (the
|
|
// form described in getIntOperandsFromRegsterString) or is a named register
|
|
// known by the MRS SysReg mapper.
|
|
bool AArch64DAGToDAGISel::tryReadRegister(SDNode *N) {
|
|
const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
|
|
const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
|
|
SDLoc DL(N);
|
|
|
|
int Reg = getIntOperandFromRegisterString(RegString->getString());
|
|
if (Reg != -1) {
|
|
ReplaceNode(N, CurDAG->getMachineNode(
|
|
AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other,
|
|
CurDAG->getTargetConstant(Reg, DL, MVT::i32),
|
|
N->getOperand(0)));
|
|
return true;
|
|
}
|
|
|
|
// Use the sysreg mapper to map the remaining possible strings to the
|
|
// value for the register to be used for the instruction operand.
|
|
auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
|
|
if (TheReg && TheReg->Readable &&
|
|
TheReg->haveFeatures(Subtarget->getFeatureBits()))
|
|
Reg = TheReg->Encoding;
|
|
else
|
|
Reg = AArch64SysReg::parseGenericRegister(RegString->getString());
|
|
|
|
if (Reg != -1) {
|
|
ReplaceNode(N, CurDAG->getMachineNode(
|
|
AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other,
|
|
CurDAG->getTargetConstant(Reg, DL, MVT::i32),
|
|
N->getOperand(0)));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Lower the write_register intrinsic to an MSR instruction node if the special
|
|
// register string argument is either of the form detailed in the ALCE (the
|
|
// form described in getIntOperandsFromRegsterString) or is a named register
|
|
// known by the MSR SysReg mapper.
|
|
bool AArch64DAGToDAGISel::tryWriteRegister(SDNode *N) {
|
|
const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
|
|
const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
|
|
SDLoc DL(N);
|
|
|
|
int Reg = getIntOperandFromRegisterString(RegString->getString());
|
|
if (Reg != -1) {
|
|
ReplaceNode(
|
|
N, CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other,
|
|
CurDAG->getTargetConstant(Reg, DL, MVT::i32),
|
|
N->getOperand(2), N->getOperand(0)));
|
|
return true;
|
|
}
|
|
|
|
// Check if the register was one of those allowed as the pstatefield value in
|
|
// the MSR (immediate) instruction. To accept the values allowed in the
|
|
// pstatefield for the MSR (immediate) instruction, we also require that an
|
|
// immediate value has been provided as an argument, we know that this is
|
|
// the case as it has been ensured by semantic checking.
|
|
auto PMapper = AArch64PState::lookupPStateByName(RegString->getString());
|
|
if (PMapper) {
|
|
assert (isa<ConstantSDNode>(N->getOperand(2))
|
|
&& "Expected a constant integer expression.");
|
|
unsigned Reg = PMapper->Encoding;
|
|
uint64_t Immed = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
|
|
unsigned State;
|
|
if (Reg == AArch64PState::PAN || Reg == AArch64PState::UAO) {
|
|
assert(Immed < 2 && "Bad imm");
|
|
State = AArch64::MSRpstateImm1;
|
|
} else {
|
|
assert(Immed < 16 && "Bad imm");
|
|
State = AArch64::MSRpstateImm4;
|
|
}
|
|
ReplaceNode(N, CurDAG->getMachineNode(
|
|
State, DL, MVT::Other,
|
|
CurDAG->getTargetConstant(Reg, DL, MVT::i32),
|
|
CurDAG->getTargetConstant(Immed, DL, MVT::i16),
|
|
N->getOperand(0)));
|
|
return true;
|
|
}
|
|
|
|
// Use the sysreg mapper to attempt to map the remaining possible strings
|
|
// to the value for the register to be used for the MSR (register)
|
|
// instruction operand.
|
|
auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
|
|
if (TheReg && TheReg->Writeable &&
|
|
TheReg->haveFeatures(Subtarget->getFeatureBits()))
|
|
Reg = TheReg->Encoding;
|
|
else
|
|
Reg = AArch64SysReg::parseGenericRegister(RegString->getString());
|
|
if (Reg != -1) {
|
|
ReplaceNode(N, CurDAG->getMachineNode(
|
|
AArch64::MSR, DL, MVT::Other,
|
|
CurDAG->getTargetConstant(Reg, DL, MVT::i32),
|
|
N->getOperand(2), N->getOperand(0)));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// We've got special pseudo-instructions for these
|
|
bool AArch64DAGToDAGISel::SelectCMP_SWAP(SDNode *N) {
|
|
unsigned Opcode;
|
|
EVT MemTy = cast<MemSDNode>(N)->getMemoryVT();
|
|
|
|
// Leave IR for LSE if subtarget supports it.
|
|
if (Subtarget->hasLSE()) return false;
|
|
|
|
if (MemTy == MVT::i8)
|
|
Opcode = AArch64::CMP_SWAP_8;
|
|
else if (MemTy == MVT::i16)
|
|
Opcode = AArch64::CMP_SWAP_16;
|
|
else if (MemTy == MVT::i32)
|
|
Opcode = AArch64::CMP_SWAP_32;
|
|
else if (MemTy == MVT::i64)
|
|
Opcode = AArch64::CMP_SWAP_64;
|
|
else
|
|
llvm_unreachable("Unknown AtomicCmpSwap type");
|
|
|
|
MVT RegTy = MemTy == MVT::i64 ? MVT::i64 : MVT::i32;
|
|
SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3),
|
|
N->getOperand(0)};
|
|
SDNode *CmpSwap = CurDAG->getMachineNode(
|
|
Opcode, SDLoc(N),
|
|
CurDAG->getVTList(RegTy, MVT::i32, MVT::Other), Ops);
|
|
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
|
|
cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0));
|
|
ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2));
|
|
CurDAG->RemoveDeadNode(N);
|
|
|
|
return true;
|
|
}
|
|
|
|
void AArch64DAGToDAGISel::Select(SDNode *Node) {
|
|
// Dump information about the Node being selected
|
|
DEBUG(errs() << "Selecting: ");
|
|
DEBUG(Node->dump(CurDAG));
|
|
DEBUG(errs() << "\n");
|
|
|
|
// If we have a custom node, we already have selected!
|
|
if (Node->isMachineOpcode()) {
|
|
DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
|
|
Node->setNodeId(-1);
|
|
return;
|
|
}
|
|
|
|
// Few custom selection stuff.
|
|
EVT VT = Node->getValueType(0);
|
|
|
|
switch (Node->getOpcode()) {
|
|
default:
|
|
break;
|
|
|
|
case ISD::ATOMIC_CMP_SWAP:
|
|
if (SelectCMP_SWAP(Node))
|
|
return;
|
|
break;
|
|
|
|
case ISD::READ_REGISTER:
|
|
if (tryReadRegister(Node))
|
|
return;
|
|
break;
|
|
|
|
case ISD::WRITE_REGISTER:
|
|
if (tryWriteRegister(Node))
|
|
return;
|
|
break;
|
|
|
|
case ISD::ADD:
|
|
if (tryMLAV64LaneV128(Node))
|
|
return;
|
|
break;
|
|
|
|
case ISD::LOAD: {
|
|
// Try to select as an indexed load. Fall through to normal processing
|
|
// if we can't.
|
|
if (tryIndexedLoad(Node))
|
|
return;
|
|
break;
|
|
}
|
|
|
|
case ISD::SRL:
|
|
case ISD::AND:
|
|
case ISD::SRA:
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
if (tryBitfieldExtractOp(Node))
|
|
return;
|
|
if (tryBitfieldInsertInZeroOp(Node))
|
|
return;
|
|
break;
|
|
|
|
case ISD::SIGN_EXTEND:
|
|
if (tryBitfieldExtractOpFromSExt(Node))
|
|
return;
|
|
break;
|
|
|
|
case ISD::OR:
|
|
if (tryBitfieldInsertOp(Node))
|
|
return;
|
|
break;
|
|
|
|
case ISD::EXTRACT_VECTOR_ELT: {
|
|
// Extracting lane zero is a special case where we can just use a plain
|
|
// EXTRACT_SUBREG instruction, which will become FMOV. This is easier for
|
|
// the rest of the compiler, especially the register allocator and copyi
|
|
// propagation, to reason about, so is preferred when it's possible to
|
|
// use it.
|
|
ConstantSDNode *LaneNode = cast<ConstantSDNode>(Node->getOperand(1));
|
|
// Bail and use the default Select() for non-zero lanes.
|
|
if (LaneNode->getZExtValue() != 0)
|
|
break;
|
|
// If the element type is not the same as the result type, likewise
|
|
// bail and use the default Select(), as there's more to do than just
|
|
// a cross-class COPY. This catches extracts of i8 and i16 elements
|
|
// since they will need an explicit zext.
|
|
if (VT != Node->getOperand(0).getValueType().getVectorElementType())
|
|
break;
|
|
unsigned SubReg;
|
|
switch (Node->getOperand(0)
|
|
.getValueType()
|
|
.getVectorElementType()
|
|
.getSizeInBits()) {
|
|
default:
|
|
llvm_unreachable("Unexpected vector element type!");
|
|
case 64:
|
|
SubReg = AArch64::dsub;
|
|
break;
|
|
case 32:
|
|
SubReg = AArch64::ssub;
|
|
break;
|
|
case 16:
|
|
SubReg = AArch64::hsub;
|
|
break;
|
|
case 8:
|
|
llvm_unreachable("unexpected zext-requiring extract element!");
|
|
}
|
|
SDValue Extract = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(Node), VT,
|
|
Node->getOperand(0));
|
|
DEBUG(dbgs() << "ISEL: Custom selection!\n=> ");
|
|
DEBUG(Extract->dumpr(CurDAG));
|
|
DEBUG(dbgs() << "\n");
|
|
ReplaceNode(Node, Extract.getNode());
|
|
return;
|
|
}
|
|
case ISD::Constant: {
|
|
// Materialize zero constants as copies from WZR/XZR. This allows
|
|
// the coalescer to propagate these into other instructions.
|
|
ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
|
|
if (ConstNode->isNullValue()) {
|
|
if (VT == MVT::i32) {
|
|
SDValue New = CurDAG->getCopyFromReg(
|
|
CurDAG->getEntryNode(), SDLoc(Node), AArch64::WZR, MVT::i32);
|
|
ReplaceNode(Node, New.getNode());
|
|
return;
|
|
} else if (VT == MVT::i64) {
|
|
SDValue New = CurDAG->getCopyFromReg(
|
|
CurDAG->getEntryNode(), SDLoc(Node), AArch64::XZR, MVT::i64);
|
|
ReplaceNode(Node, New.getNode());
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ISD::FrameIndex: {
|
|
// Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
|
|
int FI = cast<FrameIndexSDNode>(Node)->getIndex();
|
|
unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
|
|
const TargetLowering *TLI = getTargetLowering();
|
|
SDValue TFI = CurDAG->getTargetFrameIndex(
|
|
FI, TLI->getPointerTy(CurDAG->getDataLayout()));
|
|
SDLoc DL(Node);
|
|
SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, DL, MVT::i32),
|
|
CurDAG->getTargetConstant(Shifter, DL, MVT::i32) };
|
|
CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops);
|
|
return;
|
|
}
|
|
case ISD::INTRINSIC_W_CHAIN: {
|
|
unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
|
|
switch (IntNo) {
|
|
default:
|
|
break;
|
|
case Intrinsic::aarch64_ldaxp:
|
|
case Intrinsic::aarch64_ldxp: {
|
|
unsigned Op =
|
|
IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX;
|
|
SDValue MemAddr = Node->getOperand(2);
|
|
SDLoc DL(Node);
|
|
SDValue Chain = Node->getOperand(0);
|
|
|
|
SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
|
|
MVT::Other, MemAddr, Chain);
|
|
|
|
// Transfer memoperands.
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
|
|
cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
|
|
ReplaceNode(Node, Ld);
|
|
return;
|
|
}
|
|
case Intrinsic::aarch64_stlxp:
|
|
case Intrinsic::aarch64_stxp: {
|
|
unsigned Op =
|
|
IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX;
|
|
SDLoc DL(Node);
|
|
SDValue Chain = Node->getOperand(0);
|
|
SDValue ValLo = Node->getOperand(2);
|
|
SDValue ValHi = Node->getOperand(3);
|
|
SDValue MemAddr = Node->getOperand(4);
|
|
|
|
// Place arguments in the right order.
|
|
SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain};
|
|
|
|
SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
|
|
// Transfer memoperands.
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
|
|
cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
ReplaceNode(Node, St);
|
|
return;
|
|
}
|
|
case Intrinsic::aarch64_neon_ld1x2:
|
|
if (VT == MVT::v8i8) {
|
|
SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
case Intrinsic::aarch64_neon_ld1x3:
|
|
if (VT == MVT::v8i8) {
|
|
SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
case Intrinsic::aarch64_neon_ld1x4:
|
|
if (VT == MVT::v8i8) {
|
|
SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
case Intrinsic::aarch64_neon_ld2:
|
|
if (VT == MVT::v8i8) {
|
|
SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
case Intrinsic::aarch64_neon_ld3:
|
|
if (VT == MVT::v8i8) {
|
|
SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
case Intrinsic::aarch64_neon_ld4:
|
|
if (VT == MVT::v8i8) {
|
|
SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
case Intrinsic::aarch64_neon_ld2r:
|
|
if (VT == MVT::v8i8) {
|
|
SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
case Intrinsic::aarch64_neon_ld3r:
|
|
if (VT == MVT::v8i8) {
|
|
SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
case Intrinsic::aarch64_neon_ld4r:
|
|
if (VT == MVT::v8i8) {
|
|
SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
case Intrinsic::aarch64_neon_ld2lane:
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
|
|
SelectLoadLane(Node, 2, AArch64::LD2i8);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
|
|
VT == MVT::v8f16) {
|
|
SelectLoadLane(Node, 2, AArch64::LD2i16);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
|
|
VT == MVT::v2f32) {
|
|
SelectLoadLane(Node, 2, AArch64::LD2i32);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
|
|
VT == MVT::v1f64) {
|
|
SelectLoadLane(Node, 2, AArch64::LD2i64);
|
|
return;
|
|
}
|
|
break;
|
|
case Intrinsic::aarch64_neon_ld3lane:
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
|
|
SelectLoadLane(Node, 3, AArch64::LD3i8);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
|
|
VT == MVT::v8f16) {
|
|
SelectLoadLane(Node, 3, AArch64::LD3i16);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
|
|
VT == MVT::v2f32) {
|
|
SelectLoadLane(Node, 3, AArch64::LD3i32);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
|
|
VT == MVT::v1f64) {
|
|
SelectLoadLane(Node, 3, AArch64::LD3i64);
|
|
return;
|
|
}
|
|
break;
|
|
case Intrinsic::aarch64_neon_ld4lane:
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
|
|
SelectLoadLane(Node, 4, AArch64::LD4i8);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
|
|
VT == MVT::v8f16) {
|
|
SelectLoadLane(Node, 4, AArch64::LD4i16);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
|
|
VT == MVT::v2f32) {
|
|
SelectLoadLane(Node, 4, AArch64::LD4i32);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
|
|
VT == MVT::v1f64) {
|
|
SelectLoadLane(Node, 4, AArch64::LD4i64);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
} break;
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
|
|
switch (IntNo) {
|
|
default:
|
|
break;
|
|
case Intrinsic::aarch64_neon_tbl2:
|
|
SelectTable(Node, 2,
|
|
VT == MVT::v8i8 ? AArch64::TBLv8i8Two : AArch64::TBLv16i8Two,
|
|
false);
|
|
return;
|
|
case Intrinsic::aarch64_neon_tbl3:
|
|
SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three
|
|
: AArch64::TBLv16i8Three,
|
|
false);
|
|
return;
|
|
case Intrinsic::aarch64_neon_tbl4:
|
|
SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four
|
|
: AArch64::TBLv16i8Four,
|
|
false);
|
|
return;
|
|
case Intrinsic::aarch64_neon_tbx2:
|
|
SelectTable(Node, 2,
|
|
VT == MVT::v8i8 ? AArch64::TBXv8i8Two : AArch64::TBXv16i8Two,
|
|
true);
|
|
return;
|
|
case Intrinsic::aarch64_neon_tbx3:
|
|
SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three
|
|
: AArch64::TBXv16i8Three,
|
|
true);
|
|
return;
|
|
case Intrinsic::aarch64_neon_tbx4:
|
|
SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four
|
|
: AArch64::TBXv16i8Four,
|
|
true);
|
|
return;
|
|
case Intrinsic::aarch64_neon_smull:
|
|
case Intrinsic::aarch64_neon_umull:
|
|
if (tryMULLV64LaneV128(IntNo, Node))
|
|
return;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_VOID: {
|
|
unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
|
|
if (Node->getNumOperands() >= 3)
|
|
VT = Node->getOperand(2)->getValueType(0);
|
|
switch (IntNo) {
|
|
default:
|
|
break;
|
|
case Intrinsic::aarch64_neon_st1x2: {
|
|
if (VT == MVT::v8i8) {
|
|
SelectStore(Node, 2, AArch64::ST1Twov8b);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectStore(Node, 2, AArch64::ST1Twov16b);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectStore(Node, 2, AArch64::ST1Twov4h);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectStore(Node, 2, AArch64::ST1Twov8h);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectStore(Node, 2, AArch64::ST1Twov2s);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectStore(Node, 2, AArch64::ST1Twov4s);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectStore(Node, 2, AArch64::ST1Twov2d);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectStore(Node, 2, AArch64::ST1Twov1d);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::aarch64_neon_st1x3: {
|
|
if (VT == MVT::v8i8) {
|
|
SelectStore(Node, 3, AArch64::ST1Threev8b);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectStore(Node, 3, AArch64::ST1Threev16b);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectStore(Node, 3, AArch64::ST1Threev4h);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectStore(Node, 3, AArch64::ST1Threev8h);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectStore(Node, 3, AArch64::ST1Threev2s);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectStore(Node, 3, AArch64::ST1Threev4s);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectStore(Node, 3, AArch64::ST1Threev2d);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectStore(Node, 3, AArch64::ST1Threev1d);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::aarch64_neon_st1x4: {
|
|
if (VT == MVT::v8i8) {
|
|
SelectStore(Node, 4, AArch64::ST1Fourv8b);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectStore(Node, 4, AArch64::ST1Fourv16b);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectStore(Node, 4, AArch64::ST1Fourv4h);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectStore(Node, 4, AArch64::ST1Fourv8h);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectStore(Node, 4, AArch64::ST1Fourv2s);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectStore(Node, 4, AArch64::ST1Fourv4s);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectStore(Node, 4, AArch64::ST1Fourv2d);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectStore(Node, 4, AArch64::ST1Fourv1d);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::aarch64_neon_st2: {
|
|
if (VT == MVT::v8i8) {
|
|
SelectStore(Node, 2, AArch64::ST2Twov8b);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectStore(Node, 2, AArch64::ST2Twov16b);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectStore(Node, 2, AArch64::ST2Twov4h);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectStore(Node, 2, AArch64::ST2Twov8h);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectStore(Node, 2, AArch64::ST2Twov2s);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectStore(Node, 2, AArch64::ST2Twov4s);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectStore(Node, 2, AArch64::ST2Twov2d);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectStore(Node, 2, AArch64::ST1Twov1d);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::aarch64_neon_st3: {
|
|
if (VT == MVT::v8i8) {
|
|
SelectStore(Node, 3, AArch64::ST3Threev8b);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectStore(Node, 3, AArch64::ST3Threev16b);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectStore(Node, 3, AArch64::ST3Threev4h);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectStore(Node, 3, AArch64::ST3Threev8h);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectStore(Node, 3, AArch64::ST3Threev2s);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectStore(Node, 3, AArch64::ST3Threev4s);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectStore(Node, 3, AArch64::ST3Threev2d);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectStore(Node, 3, AArch64::ST1Threev1d);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::aarch64_neon_st4: {
|
|
if (VT == MVT::v8i8) {
|
|
SelectStore(Node, 4, AArch64::ST4Fourv8b);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectStore(Node, 4, AArch64::ST4Fourv16b);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectStore(Node, 4, AArch64::ST4Fourv4h);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectStore(Node, 4, AArch64::ST4Fourv8h);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectStore(Node, 4, AArch64::ST4Fourv2s);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectStore(Node, 4, AArch64::ST4Fourv4s);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectStore(Node, 4, AArch64::ST4Fourv2d);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectStore(Node, 4, AArch64::ST1Fourv1d);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::aarch64_neon_st2lane: {
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
|
|
SelectStoreLane(Node, 2, AArch64::ST2i8);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
|
|
VT == MVT::v8f16) {
|
|
SelectStoreLane(Node, 2, AArch64::ST2i16);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
|
|
VT == MVT::v2f32) {
|
|
SelectStoreLane(Node, 2, AArch64::ST2i32);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
|
|
VT == MVT::v1f64) {
|
|
SelectStoreLane(Node, 2, AArch64::ST2i64);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::aarch64_neon_st3lane: {
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
|
|
SelectStoreLane(Node, 3, AArch64::ST3i8);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
|
|
VT == MVT::v8f16) {
|
|
SelectStoreLane(Node, 3, AArch64::ST3i16);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
|
|
VT == MVT::v2f32) {
|
|
SelectStoreLane(Node, 3, AArch64::ST3i32);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
|
|
VT == MVT::v1f64) {
|
|
SelectStoreLane(Node, 3, AArch64::ST3i64);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::aarch64_neon_st4lane: {
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
|
|
SelectStoreLane(Node, 4, AArch64::ST4i8);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
|
|
VT == MVT::v8f16) {
|
|
SelectStoreLane(Node, 4, AArch64::ST4i16);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
|
|
VT == MVT::v2f32) {
|
|
SelectStoreLane(Node, 4, AArch64::ST4i32);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
|
|
VT == MVT::v1f64) {
|
|
SelectStoreLane(Node, 4, AArch64::ST4i64);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::LD2post: {
|
|
if (VT == MVT::v8i8) {
|
|
SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::LD3post: {
|
|
if (VT == MVT::v8i8) {
|
|
SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::LD4post: {
|
|
if (VT == MVT::v8i8) {
|
|
SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::LD1x2post: {
|
|
if (VT == MVT::v8i8) {
|
|
SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::LD1x3post: {
|
|
if (VT == MVT::v8i8) {
|
|
SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::LD1x4post: {
|
|
if (VT == MVT::v8i8) {
|
|
SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::LD1DUPpost: {
|
|
if (VT == MVT::v8i8) {
|
|
SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::LD2DUPpost: {
|
|
if (VT == MVT::v8i8) {
|
|
SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::LD3DUPpost: {
|
|
if (VT == MVT::v8i8) {
|
|
SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::LD4DUPpost: {
|
|
if (VT == MVT::v8i8) {
|
|
SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::LD1LANEpost: {
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
|
|
SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
|
|
VT == MVT::v8f16) {
|
|
SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
|
|
VT == MVT::v2f32) {
|
|
SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
|
|
VT == MVT::v1f64) {
|
|
SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::LD2LANEpost: {
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
|
|
SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
|
|
VT == MVT::v8f16) {
|
|
SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
|
|
VT == MVT::v2f32) {
|
|
SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
|
|
VT == MVT::v1f64) {
|
|
SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::LD3LANEpost: {
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
|
|
SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
|
|
VT == MVT::v8f16) {
|
|
SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
|
|
VT == MVT::v2f32) {
|
|
SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
|
|
VT == MVT::v1f64) {
|
|
SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::LD4LANEpost: {
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
|
|
SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
|
|
VT == MVT::v8f16) {
|
|
SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
|
|
VT == MVT::v2f32) {
|
|
SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
|
|
VT == MVT::v1f64) {
|
|
SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::ST2post: {
|
|
VT = Node->getOperand(1).getValueType();
|
|
if (VT == MVT::v8i8) {
|
|
SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::ST3post: {
|
|
VT = Node->getOperand(1).getValueType();
|
|
if (VT == MVT::v8i8) {
|
|
SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::ST4post: {
|
|
VT = Node->getOperand(1).getValueType();
|
|
if (VT == MVT::v8i8) {
|
|
SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::ST1x2post: {
|
|
VT = Node->getOperand(1).getValueType();
|
|
if (VT == MVT::v8i8) {
|
|
SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::ST1x3post: {
|
|
VT = Node->getOperand(1).getValueType();
|
|
if (VT == MVT::v8i8) {
|
|
SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::ST1x4post: {
|
|
VT = Node->getOperand(1).getValueType();
|
|
if (VT == MVT::v8i8) {
|
|
SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
|
|
return;
|
|
} else if (VT == MVT::v16i8) {
|
|
SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
|
|
SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
|
|
SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
|
|
SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
|
|
SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST);
|
|
return;
|
|
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
|
|
SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
|
|
SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::ST2LANEpost: {
|
|
VT = Node->getOperand(1).getValueType();
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
|
|
SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
|
|
VT == MVT::v8f16) {
|
|
SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
|
|
VT == MVT::v2f32) {
|
|
SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
|
|
VT == MVT::v1f64) {
|
|
SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::ST3LANEpost: {
|
|
VT = Node->getOperand(1).getValueType();
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
|
|
SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
|
|
VT == MVT::v8f16) {
|
|
SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
|
|
VT == MVT::v2f32) {
|
|
SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
|
|
VT == MVT::v1f64) {
|
|
SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case AArch64ISD::ST4LANEpost: {
|
|
VT = Node->getOperand(1).getValueType();
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
|
|
SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
|
|
return;
|
|
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
|
|
VT == MVT::v8f16) {
|
|
SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
|
|
return;
|
|
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
|
|
VT == MVT::v2f32) {
|
|
SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST);
|
|
return;
|
|
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
|
|
VT == MVT::v1f64) {
|
|
SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Select the default instruction
|
|
SelectCode(Node);
|
|
}
|
|
|
|
/// createAArch64ISelDag - This pass converts a legalized DAG into a
|
|
/// AArch64-specific DAG, ready for instruction scheduling.
|
|
FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM,
|
|
CodeGenOpt::Level OptLevel) {
|
|
return new AArch64DAGToDAGISel(TM, OptLevel);
|
|
}
|