llvm-project/llvm/utils/TableGen/InstrInfoEmitter.cpp

621 lines
23 KiB
C++

//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting a description of the target
// instruction set for the code generator.
//
//===----------------------------------------------------------------------===//
#include "CodeGenDAGPatterns.h"
#include "CodeGenInstruction.h"
#include "CodeGenSchedule.h"
#include "CodeGenTarget.h"
#include "SequenceToOffsetTable.h"
#include "TableGenBackends.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <cassert>
#include <cstdint>
#include <map>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
namespace {
class InstrInfoEmitter {
RecordKeeper &Records;
CodeGenDAGPatterns CDP;
const CodeGenSchedModels &SchedModels;
public:
InstrInfoEmitter(RecordKeeper &R):
Records(R), CDP(R), SchedModels(CDP.getTargetInfo().getSchedModels()) {}
// run - Output the instruction set description.
void run(raw_ostream &OS);
private:
void emitEnums(raw_ostream &OS);
typedef std::map<std::vector<std::string>, unsigned> OperandInfoMapTy;
/// The keys of this map are maps which have OpName enum values as their keys
/// and instruction operand indices as their values. The values of this map
/// are lists of instruction names.
typedef std::map<std::map<unsigned, unsigned>,
std::vector<std::string>> OpNameMapTy;
typedef std::map<std::string, unsigned>::iterator StrUintMapIter;
void emitRecord(const CodeGenInstruction &Inst, unsigned Num,
Record *InstrInfo,
std::map<std::vector<Record*>, unsigned> &EL,
const OperandInfoMapTy &OpInfo,
raw_ostream &OS);
void emitOperandTypesEnum(raw_ostream &OS, const CodeGenTarget &Target);
void initOperandMapData(
ArrayRef<const CodeGenInstruction *> NumberedInstructions,
StringRef Namespace,
std::map<std::string, unsigned> &Operands,
OpNameMapTy &OperandMap);
void emitOperandNameMappings(raw_ostream &OS, const CodeGenTarget &Target,
ArrayRef<const CodeGenInstruction*> NumberedInstructions);
// Operand information.
void EmitOperandInfo(raw_ostream &OS, OperandInfoMapTy &OperandInfoIDs);
std::vector<std::string> GetOperandInfo(const CodeGenInstruction &Inst);
};
} // end anonymous namespace
static void PrintDefList(const std::vector<Record*> &Uses,
unsigned Num, raw_ostream &OS) {
OS << "static const MCPhysReg ImplicitList" << Num << "[] = { ";
for (Record *U : Uses)
OS << getQualifiedName(U) << ", ";
OS << "0 };\n";
}
//===----------------------------------------------------------------------===//
// Operand Info Emission.
//===----------------------------------------------------------------------===//
std::vector<std::string>
InstrInfoEmitter::GetOperandInfo(const CodeGenInstruction &Inst) {
std::vector<std::string> Result;
for (auto &Op : Inst.Operands) {
// Handle aggregate operands and normal operands the same way by expanding
// either case into a list of operands for this op.
std::vector<CGIOperandList::OperandInfo> OperandList;
// This might be a multiple operand thing. Targets like X86 have
// registers in their multi-operand operands. It may also be an anonymous
// operand, which has a single operand, but no declared class for the
// operand.
DagInit *MIOI = Op.MIOperandInfo;
if (!MIOI || MIOI->getNumArgs() == 0) {
// Single, anonymous, operand.
OperandList.push_back(Op);
} else {
for (unsigned j = 0, e = Op.MINumOperands; j != e; ++j) {
OperandList.push_back(Op);
auto *OpR = cast<DefInit>(MIOI->getArg(j))->getDef();
OperandList.back().Rec = OpR;
}
}
for (unsigned j = 0, e = OperandList.size(); j != e; ++j) {
Record *OpR = OperandList[j].Rec;
std::string Res;
if (OpR->isSubClassOf("RegisterOperand"))
OpR = OpR->getValueAsDef("RegClass");
if (OpR->isSubClassOf("RegisterClass"))
Res += getQualifiedName(OpR) + "RegClassID, ";
else if (OpR->isSubClassOf("PointerLikeRegClass"))
Res += utostr(OpR->getValueAsInt("RegClassKind")) + ", ";
else
// -1 means the operand does not have a fixed register class.
Res += "-1, ";
// Fill in applicable flags.
Res += "0";
// Ptr value whose register class is resolved via callback.
if (OpR->isSubClassOf("PointerLikeRegClass"))
Res += "|(1<<MCOI::LookupPtrRegClass)";
// Predicate operands. Check to see if the original unexpanded operand
// was of type PredicateOp.
if (Op.Rec->isSubClassOf("PredicateOp"))
Res += "|(1<<MCOI::Predicate)";
// Optional def operands. Check to see if the original unexpanded operand
// was of type OptionalDefOperand.
if (Op.Rec->isSubClassOf("OptionalDefOperand"))
Res += "|(1<<MCOI::OptionalDef)";
// Fill in operand type.
Res += ", ";
assert(!Op.OperandType.empty() && "Invalid operand type.");
Res += Op.OperandType;
// Fill in constraint info.
Res += ", ";
const CGIOperandList::ConstraintInfo &Constraint =
Op.Constraints[j];
if (Constraint.isNone())
Res += "0";
else if (Constraint.isEarlyClobber())
Res += "(1 << MCOI::EARLY_CLOBBER)";
else {
assert(Constraint.isTied());
Res += "((" + utostr(Constraint.getTiedOperand()) +
" << 16) | (1 << MCOI::TIED_TO))";
}
Result.push_back(Res);
}
}
return Result;
}
void InstrInfoEmitter::EmitOperandInfo(raw_ostream &OS,
OperandInfoMapTy &OperandInfoIDs) {
// ID #0 is for no operand info.
unsigned OperandListNum = 0;
OperandInfoIDs[std::vector<std::string>()] = ++OperandListNum;
OS << "\n";
const CodeGenTarget &Target = CDP.getTargetInfo();
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
std::vector<std::string> OperandInfo = GetOperandInfo(*Inst);
unsigned &N = OperandInfoIDs[OperandInfo];
if (N != 0) continue;
N = ++OperandListNum;
OS << "static const MCOperandInfo OperandInfo" << N << "[] = { ";
for (const std::string &Info : OperandInfo)
OS << "{ " << Info << " }, ";
OS << "};\n";
}
}
/// Initialize data structures for generating operand name mappings.
///
/// \param Operands [out] A map used to generate the OpName enum with operand
/// names as its keys and operand enum values as its values.
/// \param OperandMap [out] A map for representing the operand name mappings for
/// each instructions. This is used to generate the OperandMap table as
/// well as the getNamedOperandIdx() function.
void InstrInfoEmitter::initOperandMapData(
ArrayRef<const CodeGenInstruction *> NumberedInstructions,
StringRef Namespace,
std::map<std::string, unsigned> &Operands,
OpNameMapTy &OperandMap) {
unsigned NumOperands = 0;
for (const CodeGenInstruction *Inst : NumberedInstructions) {
if (!Inst->TheDef->getValueAsBit("UseNamedOperandTable"))
continue;
std::map<unsigned, unsigned> OpList;
for (const auto &Info : Inst->Operands) {
StrUintMapIter I = Operands.find(Info.Name);
if (I == Operands.end()) {
I = Operands.insert(Operands.begin(),
std::pair<std::string, unsigned>(Info.Name, NumOperands++));
}
OpList[I->second] = Info.MIOperandNo;
}
OperandMap[OpList].push_back(Namespace.str() + "::" +
Inst->TheDef->getName().str());
}
}
/// Generate a table and function for looking up the indices of operands by
/// name.
///
/// This code generates:
/// - An enum in the llvm::TargetNamespace::OpName namespace, with one entry
/// for each operand name.
/// - A 2-dimensional table called OperandMap for mapping OpName enum values to
/// operand indices.
/// - A function called getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx)
/// for looking up the operand index for an instruction, given a value from
/// OpName enum
void InstrInfoEmitter::emitOperandNameMappings(raw_ostream &OS,
const CodeGenTarget &Target,
ArrayRef<const CodeGenInstruction*> NumberedInstructions) {
StringRef Namespace = Target.getInstNamespace();
std::string OpNameNS = "OpName";
// Map of operand names to their enumeration value. This will be used to
// generate the OpName enum.
std::map<std::string, unsigned> Operands;
OpNameMapTy OperandMap;
initOperandMapData(NumberedInstructions, Namespace, Operands, OperandMap);
OS << "#ifdef GET_INSTRINFO_OPERAND_ENUM\n";
OS << "#undef GET_INSTRINFO_OPERAND_ENUM\n";
OS << "namespace llvm {\n";
OS << "namespace " << Namespace << " {\n";
OS << "namespace " << OpNameNS << " {\n";
OS << "enum {\n";
for (const auto &Op : Operands)
OS << " " << Op.first << " = " << Op.second << ",\n";
OS << "OPERAND_LAST";
OS << "\n};\n";
OS << "} // end namespace OpName\n";
OS << "} // end namespace " << Namespace << "\n";
OS << "} // end namespace llvm\n";
OS << "#endif //GET_INSTRINFO_OPERAND_ENUM\n\n";
OS << "#ifdef GET_INSTRINFO_NAMED_OPS\n";
OS << "#undef GET_INSTRINFO_NAMED_OPS\n";
OS << "namespace llvm {\n";
OS << "namespace " << Namespace << " {\n";
OS << "LLVM_READONLY\n";
OS << "int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx) {\n";
if (!Operands.empty()) {
OS << " static const int16_t OperandMap [][" << Operands.size()
<< "] = {\n";
for (const auto &Entry : OperandMap) {
const std::map<unsigned, unsigned> &OpList = Entry.first;
OS << "{";
// Emit a row of the OperandMap table
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
OS << (OpList.count(i) == 0 ? -1 : (int)OpList.find(i)->second) << ", ";
OS << "},\n";
}
OS << "};\n";
OS << " switch(Opcode) {\n";
unsigned TableIndex = 0;
for (const auto &Entry : OperandMap) {
for (const std::string &Name : Entry.second)
OS << " case " << Name << ":\n";
OS << " return OperandMap[" << TableIndex++ << "][NamedIdx];\n";
}
OS << " default: return -1;\n";
OS << " }\n";
} else {
// There are no operands, so no need to emit anything
OS << " return -1;\n";
}
OS << "}\n";
OS << "} // end namespace " << Namespace << "\n";
OS << "} // end namespace llvm\n";
OS << "#endif //GET_INSTRINFO_NAMED_OPS\n\n";
}
/// Generate an enum for all the operand types for this target, under the
/// llvm::TargetNamespace::OpTypes namespace.
/// Operand types are all definitions derived of the Operand Target.td class.
void InstrInfoEmitter::emitOperandTypesEnum(raw_ostream &OS,
const CodeGenTarget &Target) {
StringRef Namespace = Target.getInstNamespace();
std::vector<Record *> Operands = Records.getAllDerivedDefinitions("Operand");
OS << "#ifdef GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
OS << "#undef GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
OS << "namespace llvm {\n";
OS << "namespace " << Namespace << " {\n";
OS << "namespace OpTypes {\n";
OS << "enum OperandType {\n";
unsigned EnumVal = 0;
for (const Record *Op : Operands) {
if (!Op->isAnonymous())
OS << " " << Op->getName() << " = " << EnumVal << ",\n";
++EnumVal;
}
OS << " OPERAND_TYPE_LIST_END" << "\n};\n";
OS << "} // end namespace OpTypes\n";
OS << "} // end namespace " << Namespace << "\n";
OS << "} // end namespace llvm\n";
OS << "#endif // GET_INSTRINFO_OPERAND_TYPES_ENUM\n\n";
}
//===----------------------------------------------------------------------===//
// Main Output.
//===----------------------------------------------------------------------===//
// run - Emit the main instruction description records for the target...
void InstrInfoEmitter::run(raw_ostream &OS) {
emitSourceFileHeader("Target Instruction Enum Values and Descriptors", OS);
emitEnums(OS);
OS << "#ifdef GET_INSTRINFO_MC_DESC\n";
OS << "#undef GET_INSTRINFO_MC_DESC\n";
OS << "namespace llvm {\n\n";
CodeGenTarget &Target = CDP.getTargetInfo();
const std::string &TargetName = Target.getName();
Record *InstrInfo = Target.getInstructionSet();
// Keep track of all of the def lists we have emitted already.
std::map<std::vector<Record*>, unsigned> EmittedLists;
unsigned ListNumber = 0;
// Emit all of the instruction's implicit uses and defs.
for (const CodeGenInstruction *II : Target.getInstructionsByEnumValue()) {
Record *Inst = II->TheDef;
std::vector<Record*> Uses = Inst->getValueAsListOfDefs("Uses");
if (!Uses.empty()) {
unsigned &IL = EmittedLists[Uses];
if (!IL) PrintDefList(Uses, IL = ++ListNumber, OS);
}
std::vector<Record*> Defs = Inst->getValueAsListOfDefs("Defs");
if (!Defs.empty()) {
unsigned &IL = EmittedLists[Defs];
if (!IL) PrintDefList(Defs, IL = ++ListNumber, OS);
}
}
OperandInfoMapTy OperandInfoIDs;
// Emit all of the operand info records.
EmitOperandInfo(OS, OperandInfoIDs);
// Emit all of the MCInstrDesc records in their ENUM ordering.
//
OS << "\nextern const MCInstrDesc " << TargetName << "Insts[] = {\n";
ArrayRef<const CodeGenInstruction*> NumberedInstructions =
Target.getInstructionsByEnumValue();
SequenceToOffsetTable<std::string> InstrNames;
unsigned Num = 0;
for (const CodeGenInstruction *Inst : NumberedInstructions) {
// Keep a list of the instruction names.
InstrNames.add(Inst->TheDef->getName());
// Emit the record into the table.
emitRecord(*Inst, Num++, InstrInfo, EmittedLists, OperandInfoIDs, OS);
}
OS << "};\n\n";
// Emit the array of instruction names.
InstrNames.layout();
OS << "extern const char " << TargetName << "InstrNameData[] = {\n";
InstrNames.emit(OS, printChar);
OS << "};\n\n";
OS << "extern const unsigned " << TargetName <<"InstrNameIndices[] = {";
Num = 0;
for (const CodeGenInstruction *Inst : NumberedInstructions) {
// Newline every eight entries.
if (Num % 8 == 0)
OS << "\n ";
OS << InstrNames.get(Inst->TheDef->getName()) << "U, ";
++Num;
}
OS << "\n};\n\n";
// MCInstrInfo initialization routine.
OS << "static inline void Init" << TargetName
<< "MCInstrInfo(MCInstrInfo *II) {\n";
OS << " II->InitMCInstrInfo(" << TargetName << "Insts, "
<< TargetName << "InstrNameIndices, " << TargetName << "InstrNameData, "
<< NumberedInstructions.size() << ");\n}\n\n";
OS << "} // end llvm namespace\n";
OS << "#endif // GET_INSTRINFO_MC_DESC\n\n";
// Create a TargetInstrInfo subclass to hide the MC layer initialization.
OS << "#ifdef GET_INSTRINFO_HEADER\n";
OS << "#undef GET_INSTRINFO_HEADER\n";
std::string ClassName = TargetName + "GenInstrInfo";
OS << "namespace llvm {\n";
OS << "struct " << ClassName << " : public TargetInstrInfo {\n"
<< " explicit " << ClassName
<< "(int CFSetupOpcode = -1, int CFDestroyOpcode = -1, int CatchRetOpcode = -1, int ReturnOpcode = -1);\n"
<< " ~" << ClassName << "() override = default;\n"
<< "};\n";
OS << "} // end llvm namespace\n";
OS << "#endif // GET_INSTRINFO_HEADER\n\n";
OS << "#ifdef GET_INSTRINFO_CTOR_DTOR\n";
OS << "#undef GET_INSTRINFO_CTOR_DTOR\n";
OS << "namespace llvm {\n";
OS << "extern const MCInstrDesc " << TargetName << "Insts[];\n";
OS << "extern const unsigned " << TargetName << "InstrNameIndices[];\n";
OS << "extern const char " << TargetName << "InstrNameData[];\n";
OS << ClassName << "::" << ClassName
<< "(int CFSetupOpcode, int CFDestroyOpcode, int CatchRetOpcode, int ReturnOpcode)\n"
<< " : TargetInstrInfo(CFSetupOpcode, CFDestroyOpcode, CatchRetOpcode, ReturnOpcode) {\n"
<< " InitMCInstrInfo(" << TargetName << "Insts, " << TargetName
<< "InstrNameIndices, " << TargetName << "InstrNameData, "
<< NumberedInstructions.size() << ");\n}\n";
OS << "} // end llvm namespace\n";
OS << "#endif // GET_INSTRINFO_CTOR_DTOR\n\n";
emitOperandNameMappings(OS, Target, NumberedInstructions);
emitOperandTypesEnum(OS, Target);
}
void InstrInfoEmitter::emitRecord(const CodeGenInstruction &Inst, unsigned Num,
Record *InstrInfo,
std::map<std::vector<Record*>, unsigned> &EmittedLists,
const OperandInfoMapTy &OpInfo,
raw_ostream &OS) {
int MinOperands = 0;
if (!Inst.Operands.empty())
// Each logical operand can be multiple MI operands.
MinOperands = Inst.Operands.back().MIOperandNo +
Inst.Operands.back().MINumOperands;
OS << " { ";
OS << Num << ",\t" << MinOperands << ",\t"
<< Inst.Operands.NumDefs << ",\t"
<< Inst.TheDef->getValueAsInt("Size") << ",\t"
<< SchedModels.getSchedClassIdx(Inst) << ",\t0";
// Emit all of the target independent flags...
if (Inst.isPseudo) OS << "|(1ULL<<MCID::Pseudo)";
if (Inst.isReturn) OS << "|(1ULL<<MCID::Return)";
if (Inst.isBranch) OS << "|(1ULL<<MCID::Branch)";
if (Inst.isIndirectBranch) OS << "|(1ULL<<MCID::IndirectBranch)";
if (Inst.isCompare) OS << "|(1ULL<<MCID::Compare)";
if (Inst.isMoveImm) OS << "|(1ULL<<MCID::MoveImm)";
if (Inst.isBitcast) OS << "|(1ULL<<MCID::Bitcast)";
if (Inst.isAdd) OS << "|(1ULL<<MCID::Add)";
if (Inst.isSelect) OS << "|(1ULL<<MCID::Select)";
if (Inst.isBarrier) OS << "|(1ULL<<MCID::Barrier)";
if (Inst.hasDelaySlot) OS << "|(1ULL<<MCID::DelaySlot)";
if (Inst.isCall) OS << "|(1ULL<<MCID::Call)";
if (Inst.canFoldAsLoad) OS << "|(1ULL<<MCID::FoldableAsLoad)";
if (Inst.mayLoad) OS << "|(1ULL<<MCID::MayLoad)";
if (Inst.mayStore) OS << "|(1ULL<<MCID::MayStore)";
if (Inst.isPredicable) OS << "|(1ULL<<MCID::Predicable)";
if (Inst.isConvertibleToThreeAddress) OS << "|(1ULL<<MCID::ConvertibleTo3Addr)";
if (Inst.isCommutable) OS << "|(1ULL<<MCID::Commutable)";
if (Inst.isTerminator) OS << "|(1ULL<<MCID::Terminator)";
if (Inst.isReMaterializable) OS << "|(1ULL<<MCID::Rematerializable)";
if (Inst.isNotDuplicable) OS << "|(1ULL<<MCID::NotDuplicable)";
if (Inst.Operands.hasOptionalDef) OS << "|(1ULL<<MCID::HasOptionalDef)";
if (Inst.usesCustomInserter) OS << "|(1ULL<<MCID::UsesCustomInserter)";
if (Inst.hasPostISelHook) OS << "|(1ULL<<MCID::HasPostISelHook)";
if (Inst.Operands.isVariadic)OS << "|(1ULL<<MCID::Variadic)";
if (Inst.hasSideEffects) OS << "|(1ULL<<MCID::UnmodeledSideEffects)";
if (Inst.isAsCheapAsAMove) OS << "|(1ULL<<MCID::CheapAsAMove)";
if (Inst.hasExtraSrcRegAllocReq) OS << "|(1ULL<<MCID::ExtraSrcRegAllocReq)";
if (Inst.hasExtraDefRegAllocReq) OS << "|(1ULL<<MCID::ExtraDefRegAllocReq)";
if (Inst.isRegSequence) OS << "|(1ULL<<MCID::RegSequence)";
if (Inst.isExtractSubreg) OS << "|(1ULL<<MCID::ExtractSubreg)";
if (Inst.isInsertSubreg) OS << "|(1ULL<<MCID::InsertSubreg)";
if (Inst.isConvergent) OS << "|(1ULL<<MCID::Convergent)";
// Emit all of the target-specific flags...
BitsInit *TSF = Inst.TheDef->getValueAsBitsInit("TSFlags");
if (!TSF)
PrintFatalError("no TSFlags?");
uint64_t Value = 0;
for (unsigned i = 0, e = TSF->getNumBits(); i != e; ++i) {
if (const auto *Bit = dyn_cast<BitInit>(TSF->getBit(i)))
Value |= uint64_t(Bit->getValue()) << i;
else
PrintFatalError("Invalid TSFlags bit in " + Inst.TheDef->getName());
}
OS << ", 0x";
OS.write_hex(Value);
OS << "ULL, ";
// Emit the implicit uses and defs lists...
std::vector<Record*> UseList = Inst.TheDef->getValueAsListOfDefs("Uses");
if (UseList.empty())
OS << "nullptr, ";
else
OS << "ImplicitList" << EmittedLists[UseList] << ", ";
std::vector<Record*> DefList = Inst.TheDef->getValueAsListOfDefs("Defs");
if (DefList.empty())
OS << "nullptr, ";
else
OS << "ImplicitList" << EmittedLists[DefList] << ", ";
// Emit the operand info.
std::vector<std::string> OperandInfo = GetOperandInfo(Inst);
if (OperandInfo.empty())
OS << "nullptr";
else
OS << "OperandInfo" << OpInfo.find(OperandInfo)->second;
CodeGenTarget &Target = CDP.getTargetInfo();
if (Inst.HasComplexDeprecationPredicate)
// Emit a function pointer to the complex predicate method.
OS << ", -1 "
<< ",&get" << Inst.DeprecatedReason << "DeprecationInfo";
else if (!Inst.DeprecatedReason.empty())
// Emit the Subtarget feature.
OS << ", " << Target.getInstNamespace() << "::" << Inst.DeprecatedReason
<< " ,nullptr";
else
// Instruction isn't deprecated.
OS << ", -1 ,nullptr";
OS << " }, // Inst #" << Num << " = " << Inst.TheDef->getName() << "\n";
}
// emitEnums - Print out enum values for all of the instructions.
void InstrInfoEmitter::emitEnums(raw_ostream &OS) {
OS << "#ifdef GET_INSTRINFO_ENUM\n";
OS << "#undef GET_INSTRINFO_ENUM\n";
OS << "namespace llvm {\n\n";
CodeGenTarget Target(Records);
// We must emit the PHI opcode first...
StringRef Namespace = Target.getInstNamespace();
if (Namespace.empty())
PrintFatalError("No instructions defined!");
OS << "namespace " << Namespace << " {\n";
OS << " enum {\n";
unsigned Num = 0;
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue())
OS << " " << Inst->TheDef->getName() << "\t= " << Num++ << ",\n";
OS << " INSTRUCTION_LIST_END = " << Num << "\n";
OS << " };\n\n";
OS << "} // end " << Namespace << " namespace\n";
OS << "} // end llvm namespace\n";
OS << "#endif // GET_INSTRINFO_ENUM\n\n";
OS << "#ifdef GET_INSTRINFO_SCHED_ENUM\n";
OS << "#undef GET_INSTRINFO_SCHED_ENUM\n";
OS << "namespace llvm {\n\n";
OS << "namespace " << Namespace << " {\n";
OS << "namespace Sched {\n";
OS << " enum {\n";
Num = 0;
for (const auto &Class : SchedModels.explicit_classes())
OS << " " << Class.Name << "\t= " << Num++ << ",\n";
OS << " SCHED_LIST_END = " << Num << "\n";
OS << " };\n";
OS << "} // end Sched namespace\n";
OS << "} // end " << Namespace << " namespace\n";
OS << "} // end llvm namespace\n";
OS << "#endif // GET_INSTRINFO_SCHED_ENUM\n\n";
}
namespace llvm {
void EmitInstrInfo(RecordKeeper &RK, raw_ostream &OS) {
InstrInfoEmitter(RK).run(OS);
EmitMapTable(RK, OS);
}
} // end llvm namespace